# **Table of Contents**

# What type of heater do you need?

| Watlow's Lead Time Options 3        |
|-------------------------------------|
|                                     |
| Heater Selection Matrix 4           |
| Heating Solids                      |
| Cartridge/Insertion Heaters 9       |
| FIREROD® Cartridge Heaters          |
| Tubular Heaters 59                  |
| Tabalai Hoatoio                     |
| WATROD™ Single/Double-Ended Heaters |
| WATROD™ Single/Double-Ended Heaters |

| Immersion Heaters 10                                                                                                                                                                                                 | 63                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| WATROD and FIREBAR Screw Plug Immersion Heaters                                                                                                                                                                      | 35<br>37<br>07<br>07<br>13<br>16<br>18 |
| Circulation Heaters 32                                                                                                                                                                                               | 27                                     |
| STARFLOW™ Heaters                                                                                                                                                                                                    | 31<br>77                               |
| Fluid Delivery Heaters 38                                                                                                                                                                                            | 83                                     |
| FREEFLEX® Heaters38 Syringe Heaters38                                                                                                                                                                                |                                        |
| Air Heaters 38                                                                                                                                                                                                       | 89                                     |
| Duct Heaters 30  LDH SERIES and D SERIES 33  MDH SERIES 44  Finned Heaters 40  375 Finned Strip Heaters 40  FINBAR Single-Ended Heaters 40  FIREROD Cartridge Heaters 40  Enclosure Heaters 40  Enclosure Heaters 40 | 91<br>05<br>09<br>09<br>15<br>16       |
| WATROD Heaters                                                                                                                                                                                                       |                                        |

WATLOW® \_\_\_

# **Table of Contents**

| High-Temperature Heaters                                                                  | 423          |
|-------------------------------------------------------------------------------------------|--------------|
| MULTICELL Heaters                                                                         | .431<br>.432 |
| Specialty Heaters                                                                         | 457          |
| ULTRAMIC® Advanced Ceramic Heaters<br>Thick Film Conduction Heaters<br>Coil/Cable Heaters | .463         |
| Strip/Clamp-On Heaters                                                                    | 475          |
| Mineral Insulated (MI) Strip Heaters                                                      | .481<br>.489 |
| Band/Barrel Heaters                                                                       | 491          |
| Mineral Insulated (MI) Band Heaters                                                       | 493          |
| Nozzle Heaters                                                                            | 505          |
| Mineral Insulated (MI) Nozzle Heaters  Pre-Coiled Cable Nozzle Heaters                    |              |
| Radiant Heaters                                                                           | 511          |
| RAYMAX® Panel Heaters MI Band and Strip Emitters                                          |              |
| Thermostats and Accessories                                                               | 529          |
| ST10 and ST207  Bulb and Capillary                                                        |              |

| Reference Data                                   | 541        |
|--------------------------------------------------|------------|
| Power Calculations                               | 549<br>551 |
| Agency Certifications, Recognition and Approvals | 561        |
| WATROD and FIREBAR Element and Assemblies        | 563        |
| Index                                            | 569        |
| Product Category Index<br>Part Number Index      |            |
| Terms and Conditions of Sale                     | 575        |
| Terms and Conditions of Sale                     | 575        |

# **Watlow's Lead Time Options**

To remain competitive in our fast-paced world, you need a supplier that is committed to helping you succeed. Watlow® shows its commitment through multiple options designed to get you what you need quickly.

Watlow understands that your heating requirements vary from application to application. To help meet your individual needs, Watlow offers several options to ensure you receive your product when you need it.

#### **RAPID SHIP and Manufacturing Lead Times**



Watlow's industry-leading RAPID SHIP offering is available throughout the catalog for various products. RAPID SHIP products are noted with "RS" and the RAPID SHIP logo. RAPID SHIP assures that your products will be manufactured and shipped from the factory the next business day.

Products not available as RAPID SHIP will be noted with an "M" which stands for Manufacturing lead times. In many instances Manufacturing lead times are just a few days longer than RAPID SHIP due to lower volumes, unique materials or other manufacturing complexities that must be considered when building your heaters. Contact your local sales representative to check the current lead times offered.

#### FAST TRACK™ for FIREROD® Heaters



Watlow's FAST TRACK™ program for made-to-order FIREROD® cartridge heaters allows a range of FIRERODs to be shipped in two or five days.

With the FAST TRACK program, you can choose the size, voltage, wattage and termination from a predetermined set of options and choose when you want it – either a two- or five-day lead time.

For more information and applicable products, look for the FAST TRACK logo in the cartridge section of this catalog.

# **Heating Solids**

| Heater<br>Type                     | Application Description                                                                                                                                                                                                                | Sheath<br>Materials                                                       | Typica<br>Watt De<br>W/in <sup>2</sup> | I Max.<br>ensities<br>W/cm² | _                            | perating<br>ratures<br>°C | Catalog<br>Page      |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|-----------------------------|------------------------------|---------------------------|----------------------|
| Cartridge/<br>Insertion<br>Heaters | These heaters are inserted into a close fit hole (i.e. platens, dies and molds).                                                                                                                                                       | Alloy 800<br>Stainless steel                                              | up to 400<br>up to 400                 | 62.0<br>62.0                | 1400<br>1000                 | 760<br>540                | 11                   |
| Tubular<br>Heaters                 | These heaters are clamped to the object to be heated, usually exterior surfaces of tanks or other process vessels or fitted into milled grooves in a platen.                                                                           | Flat: Alloy 800<br>Stainless steel<br>Round: Alloy 800<br>Stainless steel | 40<br>40<br>40<br>40                   | 6.2<br>6.2<br>6.2<br>6.2    | 1400<br>1200<br>1600<br>1200 | 760<br>650<br>870<br>650  | 93<br>93<br>61<br>61 |
| Flexible<br>Heaters                | These heaters are bonded or otherwise fastened to the part. Commonly used to heat irregular surfaces and shapes, or applications requiring distributed wattage or limited space.                                                       | Polyimide<br>Silicone rubber                                              | 20<br>10                               | 3.1<br>1.6                  | 390<br>500                   | 200<br>260                | 148<br>117           |
| High-<br>Temperature<br>Heaters    | MULTICELL™ heaters are loosely inserted into the platen hole for radiant heating. Can also be used in any static or dynamic non-contact application as a radiant heat source. Commonly used for extreme high temperature applications. | Alloy 600<br>Alloy 800                                                    | 60<br>60                               | 9.3<br>9.3                  | 2100<br>2100                 | 1150<br>1150              | 425                  |
|                                    | Ceramic fiber heaters can be formed into an oversized chamber to surround the object being heated. Using radiant and convection heat transfer, ceramic fiber heaters are used in ovens and furnaces.                                   | Molded ceramic fiber adiant                                               |                                        | 4.6                         | 2200                         | 1205                      | 433                  |
| Specialty<br>Heaters               | ULTRAMIC® advanced ceramic heaters are bonded or clamped to the object being heated.                                                                                                                                                   | Aluminum nitride                                                          | 1000                                   | 155                         | 1112                         | 600                       | 459                  |
|                                    | Thick film conduction heaters are clamped to the part being heated.                                                                                                                                                                    | Dielectric glass on 430 stainless steel substrate                         | 75                                     | 11.6                        | 1022                         | 550                       | 463                  |
|                                    | Coil/Cable heaters can be formed to heat flat or curved surfaces, or wound around the object being heated. Typical applications include platen heating and plastic injection molding nozzles.                                          | Stainless steel or<br>Alloy 600                                           | 30                                     | 4.6                         | 1200                         | 650                       | 467                  |
| Strip/<br>Clamp-On<br>Heaters      | These heaters are bolted or clamped to a surface (i.e. dies, molds, ovens). Often used for freeze and moisture protection.                                                                                                             | Aluminized steel with refractory insulation Stainless steel with          | 100                                    | 15.5                        | 1100                         | 595                       | 481                  |
|                                    |                                                                                                                                                                                                                                        | mineral insulation                                                        | 140                                    | 21.7                        | 1400                         | 760                       | 477                  |
| Band/<br>Barrel<br>Heaters         | These heaters are clamped to cylindrical surfaces (i.e. extrusion barrels and nozzles).                                                                                                                                                | Stainless steel with mineral insulation                                   | 100                                    | 15.5                        | 1400                         | 760                       | 493                  |
| Radiant<br>Heaters                 | These heaters are used in any static or dynamic, non-contact application where conduction or convection heating is not practical. Commonly used in laminating processes, thermoforming and paint drying.                               | Molded ceramic fiber<br>Stainless steel<br>emitter strip                  | 20<br>30                               | 3<br>4.6                    | 2000<br>2200                 | 1095<br>1200              | 518<br>514           |

# **Heating Liquids/Surface Heating and Immersion**

| Heater<br>Type                     | Application Description                                                                                                                                                                                                                                                             | Sheath<br>Materials                                                                 |                            | al Max.<br>ensities<br>W/cm²           | Max. Op<br>Tempe<br>°F                     |                                        | Catalog<br>Page                  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------|----------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------|
| Cartridge/<br>Insertion<br>Heaters | These are used as an immersion heater placed either directly in the liquid, or in a protective well (recommended for immersion in water or 90 plus percent water soluble solutions).                                                                                                | Alloy 800                                                                           | Up to 300<br>in water      | 46.5                                   | 212<br>in water                            | 100                                    | 11                               |
| Tubular<br>Heaters                 | These heaters are immersed directly in the liquid being heated. Most commonly used when high kilowatts are required. Multiple style mounting adaptors, such as flanges and NPT fittings, provide excellent pressure boundaries.                                                     | Flat: Alloy 800<br>Stainless steel<br>Round: Alloy 800<br>Stainless steel<br>Steel  | 60<br>60<br>60<br>60<br>60 | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3 | 1400<br>1200<br>350<br>1600<br>1200<br>750 | 760<br>650<br>180<br>870<br>650<br>400 | 93<br>93<br>61<br>61<br>61<br>61 |
| Flexible<br>Heaters                | These heaters are applied to the surface of a pipe vessel containing a liquid (well suited for curved surfaces and irregular shaped objects; frequently used for freeze protection).                                                                                                | Polyimide<br>Silicone rubber                                                        | 20<br>10                   | 3.1<br>1.6                             | 390<br>500                                 | 200<br>260                             | 148<br>117                       |
| Immersion<br>Heaters               | FIREBAR® heaters have multiple elements mounted in a flange or screw plug fitting. They are immersed directly in a fluid or in a protective well.                                                                                                                                   | Alloy 800                                                                           | Up to 100                  | 15.5                                   | 212<br>in water                            | 100                                    | 165                              |
|                                    | WATROD™ heaters have multiple elements mounted in a flange or screw plug fitting. These are immersed directly in a fluid or in a protective well.                                                                                                                                   | Alloy 800<br>316 stainless steel<br>Steel                                           |                            | 15.5                                   | 212<br>in water<br>1400<br>in air          | 100<br>760                             | 165                              |
| Circulation<br>Heaters             | Tubular heaters have multiple elements mounted in a screw plug or ANSI flange fitting and placed in a vessel through which fluid is passed. FIREBAR or WATROD elements may be utilized.                                                                                             | Round: Alloy 800<br>Stainless steel<br>Steel                                        | 60<br>60<br>60<br>60       | 9.3<br>9.3<br>9.3<br>9.3               | 1600<br>350<br>1200<br>750                 | 870<br>180<br>650<br>400               | 331                              |
| Fluid<br>Delivery<br>Heaters       | FREEFLEX® heaters have polymeric heated tubing, used to maintain temperature in medical applications where heated flexible tubing is required.                                                                                                                                      | Polyimide                                                                           | 72 W/ft                    | 22 W/m                                 | 212                                        | 100                                    | 385                              |
|                                    | Syringe heaters are formed to fit a cylindrical part. They are often used in medical applications for heating contrast media and often incorporate a sensor and on-board system.                                                                                                    | Lexan<br>Silicone rubber                                                            | 2<br>3                     | 0.31<br>0.47                           | 185<br>428                                 | 85<br>220                              | 388                              |
| High-<br>Temperature<br>Heaters    | Ceramic fiber assembled heaters can be used in a chamber surrounding the tank, vessel, crucible or bath. Radiant and convection heat transfer heat the load.                                                                                                                        | Molded ceramic fiber                                                                | 30                         | 4.6                                    | 2200                                       | 1205                                   | 433                              |
| Specialty<br>Heaters               | Coil/Cable heaters that are wrapped or wound around pipe or vessel containing a liquid can be used, or used directly as an immersion heater. They are often used in applications with space limitations (i.e. photo processing equipment, scientific instruments and heat tracing). | Stainless steel or<br>Alloy 600                                                     | 30                         | 4.6                                    | 1200                                       | 650                                    | 467                              |
| Strip/<br>Clamp-On<br>Heaters      | These heaters are bolted or clamped to the wall of a tank or vessel. They are used in food warming and other applications offering a flat mounting surface.                                                                                                                         | Aluminized steel with refractory insulation Stainless steel with mineral insulation | 100<br>140                 | 15.5<br>21.7                           | 1100<br>1400                               | 595<br>760                             | 481<br>477                       |
| Band/<br>Barrel<br>Heaters         | These heaters are clamped to cylindrical surfaces and are most commonly used to heat liquids flowing through pipes as freeze protection.                                                                                                                                            | Stainless steel with mineral insulation                                             | 100                        | 15.5                                   | 1400                                       | 760                                    | 493                              |

# **Heating Gases**

| Heater<br>Type                     | Sheath Application Description Materials                                                                                                                                                                                                                   |                                                                            |                      | al Max.<br>ensities<br>W/cm² |                              | perating<br>ratures<br>°C | Catalog<br>Page |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|------------------------------|------------------------------|---------------------------|-----------------|
| Cartridge/<br>Insertion<br>Heaters | These heaters are mounted in pipes or vessels through which gases pass. They can be placed in protection tubes, making access and wiring easier.                                                                                                           | Alloy 800 or stainless<br>steel                                            | 100                  | 15.5                         | Contact                      | Watlow                    | 11              |
| Tubular<br>Heaters                 | These heaters have multiple elements mounted in an array and placed in a duct or vessel through which gases pass. Flat tubular elements can be modified with the addition of fins to increase surface area.                                                | Flat: Alloy 800<br>Stainless steel<br>Round: Alloy 800<br>Alloy 600        | 30<br>30<br>30<br>30 | 4.6<br>4.6<br>4.6<br>4.6     | 1400<br>1200<br>1600<br>1800 | 760<br>650<br>870<br>980  | 237             |
| Flexible<br>Heaters                | These heaters are applied to the surface of a pipe or vessel containing gases. They are well suited for curved surfaces and irregular shaped objects. Excellent for use in enclosures.                                                                     | Polyimide<br>Silicone rubber                                               | 5<br>5               | 0.8<br>0.8                   | 390<br>500                   | 200<br>260                | 148<br>117      |
| Circulation<br>Heaters             | Tubular heaters have multiple elements mounted in a screw plug or ANSI flange fitting and placed in a vessel through which fluid is passed. FIREBAR or WATROD elements may be utilized.                                                                    | Flat: Alloy 800<br>304 stainless<br>steel<br>Round: Alloy 800<br>Alloy 600 | 30<br>30<br>30<br>30 | 4.6<br>4.6<br>4.6<br>4.6     | 1400<br>1200<br>1600<br>1800 | 760<br>650<br>870<br>980  | 331             |
| Air<br>Heaters                     | Duct heaters have multiple elements placed in a duct through which gases pass.                                                                                                                                                                             | Alloy 800                                                                  | 20 to 30             | 3 to 4.6                     | 1400                         | 760                       | 391             |
|                                    | Enclosure heaters prevent freezing and condensation in electrical and mechanical housings.                                                                                                                                                                 | Stainless steel<br>Aluminum                                                | 15<br>5              | 2.3<br>0.8                   | 1200<br>150                  | 650<br>66                 | 417<br>419      |
|                                    | Finned FIREBAR heaters have aluminized steel fins attached to a FIREBAR element. They are used for forced air heating and radiant heating in drivers, ovens and duct work.                                                                                 | Stainless steel                                                            | Up to 50             |                              | 1200                         | 650                       | 112             |
|                                    | Finned Strip have aluminized steel fins attached to a 375 heater. They are used for air heating, freeze protection and load bank resistors.                                                                                                                | Aluminized steel                                                           | 30                   | 4.7                          | 1100                         | 595                       | 409             |
| High-<br>Temperature<br>Heaters    | MULTICELL heaters have multiple elements placed in a duct or vessel through which gases pass. Designs are also available to heat a pass tube externally to isolate gas from the element. Excellent for use in high temperature/high pressure applications. | Alloy 600<br>Alloy 800                                                     | 60<br>60             | 9.3<br>9.3                   | 2100<br>2100                 | 1150<br>1150              | 425             |
|                                    | Ceramic fiber heaters are used to construct chambers and furnaces through which gases are passed. Heaters function as high-temperature radiant heaters surrounding transfer pipes or other special vessels.                                                | Molded ceramic fiber                                                       | 30                   | 4.6                          | 2200                         | 1205                      | 433             |
| Specialty<br>Heaters               | Coil/Cable heaters are sinuated or wound into coils, which can be inserted into a pipe or vessel to heat flowing air or gases. Cable heaters readily lend themselves to applications where space is restricted.                                            | Stainless steel or<br>Alloy 600                                            | 30                   | 4.6                          | 1200                         | 650                       | 467             |

# **Heating Within a Vacuum**

| Heater<br>Type                     | Application Description                                                                                                                                                                                                           | Sheath<br>Materials                                                 | Typical Max.<br>Watt Densities<br>W/in <sup>2</sup> W/cm <sup>2</sup> |                          | Max. O <sub>l</sub><br>Tempe<br>°F | Catalog<br>Page          |                      |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|------------------------------------|--------------------------|----------------------|
| Cartridge/<br>Insertion<br>Heaters | These heaters are mounted in a vacuum vessel for radiant energy transfer.                                                                                                                                                         | Alloy 800<br>Stainless steel                                        | up to 35<br>up to 35                                                  | 5.4<br>5.4               | 1400<br>1000                       | 760<br>538               | 11                   |
| Tubular<br>Heaters                 | These heaters are mounted in a vacuum vessel for radiant energy transfer.                                                                                                                                                         | Flat: Alloy 800<br>Stainless steel<br>Round: Alloy 800<br>Alloy 600 | 30<br>30<br>30<br>30                                                  | 4.6<br>4.6<br>4.6<br>4.6 | 1400<br>1200<br>1600<br>1800       | 760<br>650<br>870<br>980 | 93<br>93<br>61<br>61 |
| Flexible<br>Heaters                | These heaters are applied to the exterior surface of a pipe or vessel. They are well suited for curved surfaces and irregular shaped objects. Note: Polyimide is the only flexible heater type recommended for use in the vacuum. | Polyimide                                                           | 7                                                                     | 1.1                      | 390                                | 200                      | 148                  |
| High-<br>Temperature<br>Heaters    | MULTICELL heaters are mounted in a vacuum vessel for radiant energy transfer.  Ceramic fiber heaters surround the exterior surface of a vacuum vessel, using radiant energy for heat transfer.                                    | Alloy 600<br>Alloy 800<br>Molded ceramic fiber                      | 60<br>60<br>30                                                        | 9.3<br>9.3<br>4.6        | 2250<br>2250<br>2200               | 1230<br>1230<br>1205     | 425<br>433           |
| Specialty<br>Heaters               | ULTRAMIC advanced ceramic heaters are bonded or clamped to the object being heated. Coil/Cable heaters are wound into a coil or sinuated pattern                                                                                  | Aluminum nitride Alloy 600 or                                       | 1000                                                                  | 155                      | 1112                               | 600                      | 459                  |
|                                    | and mounted in a vacuum vessel for radiant energy transfer.                                                                                                                                                                       | Stainless steel                                                     | 20                                                                    | 3.1                      | 1200                               | 650                      | 467                  |
| Band/Barrel<br>Heaters             | These heaters are applied to exterior surface of a pipe or vessel.                                                                                                                                                                | Stainless steel with mineral insulation                             | 100                                                                   | 15.5                     | 1400                               | 760                      | 493                  |



WATLOW®

| Cartridge/Insertion Heaters | Sheath Materials | ,    | perating<br>ratures<br>°C |     | al Max.<br>ensities<br>W/cm² | Page |
|-----------------------------|------------------|------|---------------------------|-----|------------------------------|------|
| FIREROD®                    | Alloy 800        | 1400 | 760                       | 400 | 62.0                         | 44   |
|                             | Stainless steel  | 1000 | 538                       | 400 | 62.0                         | 11   |
| High-Temperature FIREROD    | Alloy 800        | 1800 | 982                       | 100 | 15.5                         | 36   |
| Metric FIREROD              | Alloy 800        | 1400 | 760                       | 330 | 50.0                         | 48   |
| MULTICELL™                  | Alloy 800        | 2050 | 1120                      | 30  | 4.6                          | 58   |

Cartridge/Insertion Heaters





10 WATLOW®

# FIREROD® Cartridge Heaters

The Watlow® FIREROD® cartridge heater incorporates engineering excellence and is supported by almost 60 years of solid industry performance across a broad range of simple and complex applications. As the premier choice in swaged cartridge heating, thousands of industrial manufacturers continue to choose Watlow as their trusted thermal partner and certified cartridge heater supplier.

Built using premium materials and tight manufacturing controls, the FIREROD heater provides superior heat transfer, uniform temperatures, resistance to oxidation and corrosion and a long life even at high temperatures. Every system component that leaves our manufacturing facilities meets our strict quality assurance specifications, in addition to those set forth by leading standards and regulating industries.

To meet our customer's individual needs, there are many delivery options available for FIREROD heaters.

## **Performance Capabilities**

- Part temperatures up to 1400°F (760°C) on alloy 800 sheath
- Watt densities up to 400 W/in<sup>2</sup> (62 W/cm<sup>2</sup>)
- Maximum voltage up to 480V

#### **Features and Benefits**

#### Nickel-chromium resistance wire

 Ensures even and efficient distribution of heat to the sheath

#### **Conductor pins**

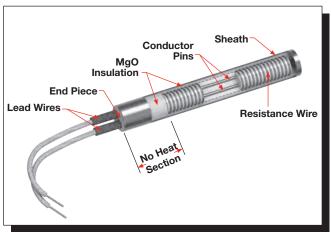
- Provide a metallurgical bond to the resistance wire
- Ensure a trouble-free electrical connection

# Magnesium oxide insulation of specific grain and purity

 Results in high dielectric strength and contributes to faster heat-up

#### Alloy 800 sheath

 Resists oxidation and corrosion from heat, many chemicals and atmospheres


# Minimal spacing between the element wire and sheath

- Results in lower internal temperature
- Accommodates a design with fewer or smaller heaters operating at higher watt densities

# International Organization for Standardization (ISO) 9001 certified

Provides confidence that quality and reliability expectations are met





### UL® and CSA approved flexible stranded wires

 Lead insulation rated to temperatures up to 480°F (250°C)

#### Patented lead adapter (LA) method

 Allows same day shipment on more than 150,000 configurations of stock FIREROD heaters and lead combinations

## **Typical Applications**

- · Semiconductor chamber heating
- Semiconductor wire and die bonding
- Freeze protection and deicing of equipment in cold climates or applications
- Humidity control
- Patient comfort heating used in medical devices
- Mold die and platen heating
- · Seal bars used in packaging equipment
- Test sample heating in gas chromatography equipment

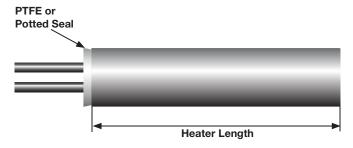
WATLOW<sup>®</sup> 11

## **FIREROD Cartridge Heaters**

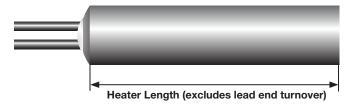
### Applications and Technical Data

#### **Tolerances**

#### **Diameter**


- 1 in. (25 mm) units: ±0.003 in. (±0.08 mm)
- All other units: ±0.002 in. (±0.05 mm)

## **Sheath Length**


- All units up to 4<sup>1</sup>/<sub>2</sub> in. (114 mm) long: ±<sup>3</sup>/<sub>32</sub> in. (±2.4 mm)
- ¹/8 in. diameter units over 4¹/2 in. (114 mm) long: ±3%
- All other units over 4<sup>1</sup>/<sub>2</sub> in. (114 mm) long: ±2%

## **Length Measurements**

#### Pin Style and Potted FIRERODs



#### PTFE - Swaged-in Leads FIRERODs



## Wattage

- <sup>1</sup>/8 in. units: +10%, -15%
- All other units: +5%, -10%

#### Resistance

- <sup>1</sup>/<sub>8</sub> in. units: +15%, -10%
- All other units: +10%, -5%

Resistance changes with temperature. There are three circumstances under which resistance can be measured:

- 1. Room temperature (before use): nominal ohms are 90% of Ohm's law calculation.
- 2. Room temperature (after use): nominal ohms are 95% of Ohm's law calculation.
- 3. At temperature (during use): depending on application nominal ohms are approximately 100% of Ohm's law.

**Note:** Resistance and wattage values are approximate depending on application conditions.

## **Component Recognition File Numbers**

- UL® component rated to 240VAC (file number E52951)
- CSA component rated to 240VAC (file number LR7392)
- VDE component rated to 240VAC (file number 10062-4911-0006)

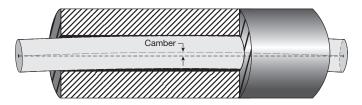
**Note:** Not all options or combinations of options are covered. UL $^{\circledR}$ , CSA, VDE and CE marking is available upon request.

## **FIREROD Cartridge Heaters**

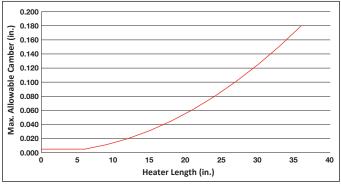
### Applications and Technical Data

#### **Dimensional Data**

This table shows minimum/maximum sheath lengths for available FIREROD diameters.


| FIREROD Diameter |       |             | FIREROD Diameter Length |        |      |        |  |  |
|------------------|-------|-------------|-------------------------|--------|------|--------|--|--|
| Nominal          | Ac    | Actual Min. |                         | lin.   | Max. |        |  |  |
| in.              | in.   | (mm)        | in.                     | (mm)   | in.  | (mm)   |  |  |
| 1/8              | 0.122 | (3.1)       | 7/8                     | (22.2) | 12   | (305)  |  |  |
| 1/4              | 0.246 | (6.3)       | 7/8                     | (22.2) | 36   | (915)  |  |  |
| 3/8              | 0.371 | (9.4)       | 7/8                     | (22.2) | 48   | (1220) |  |  |
| 1/2              | 0.496 | (12.6)      | 7/8                     | (22.2) | 60   | (1520) |  |  |
| 5/8              | 0.621 | (15.8)      | 1                       | (25.0) | 72   | (1830) |  |  |
| 3/4              | 0.746 | (18.9)      | 1                       | (25.0) | 72   | (1830) |  |  |
| 1                | 0.996 | (25.3)      | 1 <sup>1</sup> /4       | (32.0) | 72   | (1830) |  |  |

Indicates **recommended** maximum sheath length; however, longer lengths may be available.


#### **Camber**

Camber is defined as the maximum deviation of the heater's centerline from straight. FIREROD camber within allowable tolerances is verified via passage through a cylindrical gauge of specified length and diameter. Normally, slight camber does not present a problem since the heater will flex enough to fit into a straight, close-fit hole.

#### **Camber Measurement**



#### **Allowable Camber Versus Length**



Max. camber = 0.020 in. x (length in feet)<sup>2</sup> or 0.005 in., whichever is greater.

## **FIREROD Cartridge Heaters**

Applications and Technical Data (Continued)

#### **Electrical Data**

The table below will assist you in selecting the correct FIREROD heater for your application, according to available voltage, amperage and wattage.

Please note, some combinations of minimum and maximum wattages are not available on the same heater diameter. If your application exceeds the limitations shown, contact your Watlow representative.



| FIREROD      |               |                             | Min. Watts @ 120V <sup>③</sup><br>Heater Length |                                              | Max. Watts       |                   |                 |                 |                   |                     |
|--------------|---------------|-----------------------------|-------------------------------------------------|----------------------------------------------|------------------|-------------------|-----------------|-----------------|-------------------|---------------------|
| Diameter in. | Volts<br>Max. | Ampere<br>Max. <sup>①</sup> | 1 in.<br>(25 mm)                                | 1 <sup>1</sup> / <sub>2</sub> in.<br>(38 mm) | 2 in.<br>(50 mm) | 120V<br>1-phase   | 240V<br>1-phase | 480V<br>1-phase | 240V<br>3-phase   | 480V<br>3-phase     |
| 1/8          | 240           | 3.1                         | _                                               | 8                                            | 5                | 360               | 720             | _               | _                 | _                   |
| 1/4          | 240           | 4.4 <sup>②</sup>            | 100                                             | 55                                           | 40               | 525               | 1050            | _               | _                 | _                   |
| 3/8          | 240           | 6.7                         | 65                                              | 35                                           | 25               | 800               | 1600            | _               | _                 | _                   |
| 1/2          | 240           | 9.7                         | 40                                              | 25                                           | 20               | 1160              | 2320            | _               | _                 | _                   |
| 5/8          | 480           | 23.0                        | 35                                              | 20                                           | 15               | 2760              | 5520            | 11,000          | (5)               | 5                   |
| 3/4          | 480           | 23.0                        | 30                                              | 15                                           | 10               | 2760 <sup>④</sup> | 5520            | 11,000          | 9550              | 19,100              |
| 1®           | 480           | 23.0                        | _                                               | 15                                           | 10               | 2760 <sup>®</sup> | 5520            | 11,000          | 9550 <sup>®</sup> | 19,100 <sup>④</sup> |

| Number Of Circuits ® |         |         |  |  |  |  |
|----------------------|---------|---------|--|--|--|--|
| Diameter in.         | 1-phase | 3-phase |  |  |  |  |
| 3/4                  | 3       | 1       |  |  |  |  |
| 1                    | 5       | 2       |  |  |  |  |

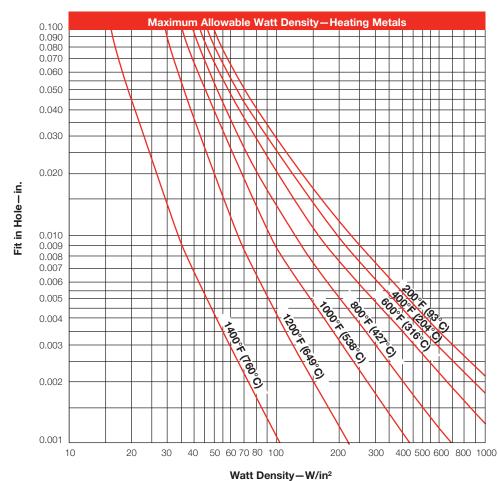
- ① Determined by the current carrying capacity of internal parts and lead wire. Alternate material may be available.
- ③ Determined by the limitation of space for resistance winding. For minimum wattage of 240VAC multiply value by four.
- Higher wattages are available using more than one set of power leads. Multiply the wattage from the table by the applicable factor.
- ⑤ Contact your Watlow representative for data.
- ⑥ On <sup>3</sup>/4 in. (19 mm) diameter units, either three single-phase circuits or one three-phase delta or wye circuit is available. On 1 in. (25 mm) diameter units, either five single-phase or two three-phase delta circuits are available.
- ② A minimum charge per line item applies.

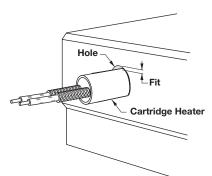
## **FIREROD Cartridge Heaters**

#### Maximum Allowable Watt Density

The following four charts detail maximum allowable watt densities for applications that use metal, steam, air or gas heating. Please review the charts and applicable data to determine the correct watt density for your application.

#### **Correction Factors**


These graphs depict FIRERODs used in steel parts, therefore, for stainless steel, aluminum or brass, refer to applicable correction factors:


- 1. For stainless steel, enter the graph with a fit 0.0015 in. (0.04 mm) larger than actual fit.
- 2. For aluminum and brass, enter the graph with a temperature 100°F (38°C) above actual temperature.

## **Heating Metals**

The Maximum Watt Density — Heating Metals chart will display the maximum hole fit or recommended watt density of the heater. Enter the chart with either known variable, part-fit-in-hole dimension or W/in². Then, find the application temperature by reading up or over on the chart.

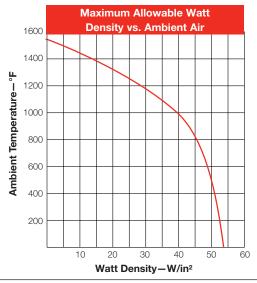
If the fit of the heater in the hole dimension is not known, it can be easily determined. Subtract the minimum diameter of the FIREROD (nominal diameter minus tolerance) from the maximum hole diameter. For example, the hole fit is 0.006 in. (0.15 mm) for a hole diameter of 0.500 in. (13 mm) minus a heater diameter of 0.496 in. (12.6 mm)  $\pm 0.002$  in. (0.05 mm). For FIREROD heaters in square holes or grooves, contact your Watlow representative for the fit in hole dimension.





Fit in hole = maximum hole I.D. minus minimum heater O.D.

Watt Delisity - W/III-

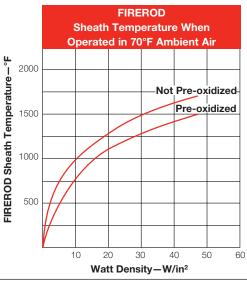

## **FIREROD Cartridge Heaters**

Maximum Allowable Watt Density (Continued)

#### Watt Density vs. Ambient Air Temperature

The Watt Density vs. Ambient Air Temperature graph shows the maximum allowable watt density when one FIREROD is operated in air or similar gas.

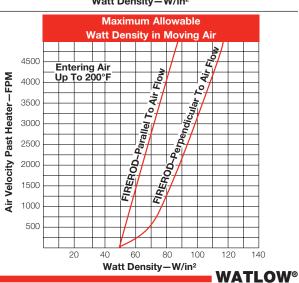
For FIRERODs grouped in a single row, with no less than one diameter between elements, multiply value from the graph by 0.95. When a reflector is placed behind the heaters, multiply the maximum allowable watt density value from the graph by 0.85.




## **Sheath Temperature in Ambient Air**

The Sheath Temperature in Ambient Air graph indicates the watt density required to bring a pre-oxidized FIREROD to a given sheath temperature when operated in 70°F (21°C) ambient air.

At 44 W/in<sup>2</sup> (6.8 W/cm<sup>2</sup>), the sheath temperature is 1450°F (784°C). At this temperature, a one-year life is expected if cycling is not too frequent.


Higher temperatures result in reduced heater life.



## **Watt Density in Moving Air**

The Watt Density in Moving Air graph shows the maximum allowable watt density of a FIREROD in moving air.

The air movement is expressed in feet per minute (FPM). If the air flow is known in cubic feet per minute (CFM), divide the CFM by the net-free area around the heater (ft²). The net-free area is the total area of the enclosure minus the area occupied by the heater.



# **FIREROD Cartridge Heaters**

#### **Lead and Diameter Information**

#### **Standard Lead Specifications**

| Heater<br>Diameter<br>in. (mm) | Max.<br>Voltage | Standard<br>Lead Gauge<br>Fiberglass | Size Tolerance<br>Fiberglass | Standard<br>Lead Gauge<br>PTFE | Size<br>Tolerance<br>PTFE | Stainless Steel<br>Hose<br>I.D. | Stainless Steel<br>Braid<br>I.D. |
|--------------------------------|-----------------|--------------------------------------|------------------------------|--------------------------------|---------------------------|---------------------------------|----------------------------------|
| 1/8 (3)                        | 300             | 24                                   | 0.044 - 0.058                | 24 solid                       | 0.036 - 0.044             | 1/8                             | 1/8                              |
| 1/4 (6)                        | 300             | 22                                   | 0.066 - 0.078                | 22                             | 0.050 - 0.058             | 5/32                            | 1/8                              |
| 3/8 (10)                       | 300             | 22                                   | 0.076 - 0.088                | 20                             | 0.056 - 0.064             | 7/32                            | <sup>3</sup> /16                 |
| 1/2 (13)                       | 300             | 18                                   | 0.089 - 0.101                | 20                             | 0.074 - 0.084             | 9/32                            | 1/4                              |
| <sup>5</sup> /8 (16)           | 600             | 18                                   | 0.108 - 0.124                | 18                             | 0.097 - 0.113             | <sup>7</sup> /16                | 3/8                              |
| 3/4 (19)                       | 600             | 18                                   | 0.108 - 0.124                | 14                             | 0.097 - 0.113             | <sup>7</sup> /16                | 3/8                              |
| 1 (25)①                        | 600             | 18                                   | 0.095 - 0.109                | 14                             | 0.087 - 0.101             | N/A                             | N/A                              |

Lead length tolerances:

1 to 36 in. (25 to 914 mm) =  $-\frac{1}{2}$  in. (13 mm),  $+\frac{11}{2}$  in. (38 mm)

> 36 to 72 in. (914 to 1829 mm) = -1, +3 in. (-25 + 76 mm) ①

Stainless steel hose and braid tolerances: same as lead wire.

Units constructed with 480V require MGT or PTFE leads. If connecting heaters in series above 300V, MGT leads are also required.

Ratings: GGS, 300V, 482°F (250°C) MGT, 600V, 842°F (450°C) PTFE, 600V, 392°F (200°C)

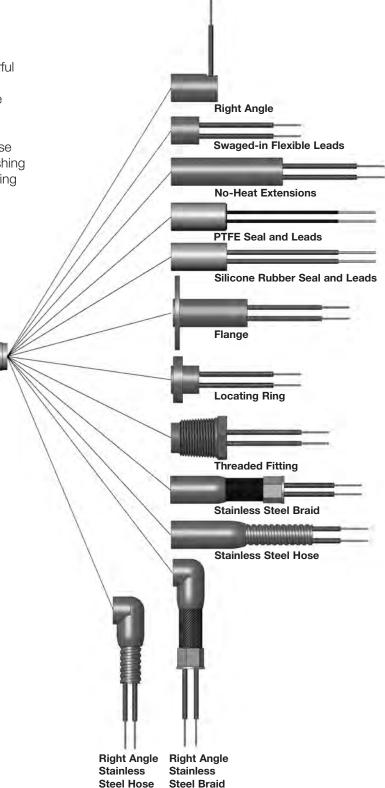
Silicone rubber, 600V, 302°F (150°C)

① A minimum charge per line item applies.

#### **Additional Lead Specifications**

| Lead Gauge  | Nickel Ampacity | N.C.C. Ampacity | SPC/NPC |
|-------------|-----------------|-----------------|---------|
| 26          | 2.5             | 4.2             | 6.0     |
| 24 stranded | 3.1             | 5.2             | 7.5     |
| 24 solid    | 3.1             | 5.2             | 7.5     |
| 22          | 4.4             | 7.2             | 10.5    |
| 20          | N/A             | N/A             | 14.0    |
| 18          | 7.6             | 12.6            | 18.0    |
| 16          | 9.7             | 16.1            | 23.0    |
| 14          | 12.5            | 21.0            | 30.0    |
| 12          | 16.8            | 28.0            | 40.0    |
| 10          | 23.0            | 38.5            | 55.0    |

WATLOW® \_\_\_\_\_\_ 17


# **FIREROD Cartridge Heaters**

Lead Adapter (LA)

**Options** 

#### **Patented LA Modification Method**

The lead adapter (LA) modification process is a powerful tool for providing a wide range of finished heater configurations very quickly. The LA process allows the base FIREROD heater to be modified into a multitude of configurations. The base FIREROD heater can be selected to meet customers' individual needs. The base heater can then be customized by adding various finishing options like lead length, lead protection, flanges, locating rings and right-angle constructions.



# **FIREROD Cartridge Heaters**

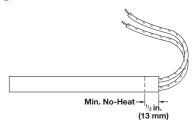
Lead Adapter (LA)

**Options** 



Watlow's FAST TRACK program allows made-to-order FIREROD cartridge heaters to be shipped in two or five days. You can design a FIREROD to meet your unique applications. You can choose the size, voltage, wattage, termination options and your preferred lead time. To take advantage of this program contact your Watlow representative.

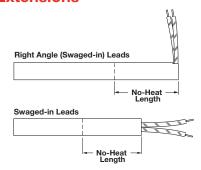
| Options                                    | <sup>1</sup> /4 Inch | <sup>3</sup> /8 Inch | <sup>1</sup> /2 Inch | <sup>5</sup> /8 Inch | <sup>3</sup> /4 Inch |
|--------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Swaged-in leads                            | <b>√</b>             | <b>√</b>             | <b>√</b>             | <b>√</b>             | <b>√</b>             |
| PTFE seal and leads                        |                      | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Right angle leads                          | <b>√</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Stainless steel hose                       | <b>√</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Right angle hose                           |                      | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Stainless steel braid                      | <b>√</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Right angle braid                          |                      | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Straight hose with PTFE seal and leads     |                      | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             |
| Right angle hose with PTFE seal and leads  |                      | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Straight braid with PTFE seal and leads    |                      | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Right angle braid with PTFE seal and leads |                      | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             |
| Right angle PTFE seal and leads            |                      | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             |
| Ground lead                                | <b>√</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             |
| FS flange                                  | ✓                    | <b>✓</b>             | <b>✓</b>             |                      |                      |
| FM flange                                  | <b>√</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             |
| FL flange                                  |                      |                      |                      | <b>✓</b>             | <b>✓</b>             |
| Single stainless steel fitting             | <b>√</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             | <b>✓</b>             |
| Additional lead end no-heat length         | <b>√</b>             | <b>✓</b>             | <b>✓</b>             | <b>√</b>             | <b>✓</b>             |


Note: Maximum heater length is 24 inches.

## **FIREROD Cartridge Heaters**

#### LA

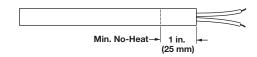
### **Termination Options**


### LA Swaged-in Flexible Leads



LA swaged-in flexible leads are used in applications where a high degree of flexing exists or the leads must be bent sharply adjacent to the heater without exposing or breaking the conductor. The stranded wire leads are connected internally and exit through the lead end. The overall length of the heater is extended by <sup>1</sup>/<sub>4</sub> in. (6 mm). To order, specify **length adder code E** bringing the total lead end no-heat to <sup>1</sup>/<sub>2</sub> in. (13 mm).

This LA option is not available on <sup>1</sup>/s in. (3 mm) diameter FIRERODs. On <sup>1</sup>/s in. (3 mm) diameter FIRERODs, leads are connected externally using a solid conductor lead wire. If stranded wire is desired on <sup>1</sup>/s in. (3 mm) diameter units, contact your Watlow representative.


#### **No-Heat Extensions**



No-heat extensions are recommended in applications where leads may be exposed to excessive heat and require a cooler lead end. They are also used when heat is not required along the entire length of the FIREROD.

No-heat extensions are available for most LA options in diameters of  $^3/8$ ,  $^1/2$ ,  $^5/8$  and  $^3/4$  in. (10, 13, 16 and 19 mm). These extensions are designed to provide a total no-heat length of 1,  $1^1/2$ , 2 or  $2^1/2$  in. (25, 38, 51 or 65 mm) at the lead end of FIRERODs only. Contact your Watlow representative for available LA options.

#### **LA PTFE Seal and Leads**



The LA PTFE seal and leads protect the heater against moisture/contamination from lubricating oil, cleaning solvents, plastic material or fumes and organic tapes. This seal is effective to 392°F (200°C) under continuous operation.

Please note when ordering this option, that a minimum no-heat section is required to allow for construction. Additional no-heat may be required to keep the seal below effective temperatures. The minimum lead end no-heat required is 1 in. (25 mm). The LA cap adds <sup>3</sup>/<sub>4</sub> in. (19 mm) to the overall length of the heater. To order, specify **option code T**.

#### **LA Silicone Rubber Seal and Leads**



The LA silicone rubber seal and leads protect the heater against moisture and contamination from lubricating oil, cleaning solvents, plastic material, fumes and organic tapes. This seal is effective to 302°F (150°C) under continuous operation.

Please note when ordering this option, that a minimum no-heat section is required to allow for construction. Additional no-heat may be required to keep the seal below effective temperatures. The minimum lead end no-heat required is 1 in. (25 mm). The LA cap adds <sup>3</sup>/<sub>4</sub> in. (19 mm) to the overall length. To order, specify **option code P**.

WATLOW<sup>®</sup>

## **FIREROD Cartridge Heaters**

#### LA

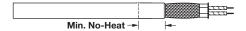
**Termination Options** (Continued)

#### **LA Straight Stainless Steel Hose**



An LA straight stainless steel hose provides the best protection against abrasion from sharp edges. It also offers ease of handling and wiring in abrasive environments. Unless specified a 12 in. (305 mm) hose is supplied. Leads are 2 in. (51 mm) longer than the hose but, longer leads are available.

The minimum lead end no-heat required is <sup>3</sup>/<sub>4</sub> in. (19 mm). This option adds <sup>1</sup>/<sub>2</sub> in. (13 mm) to the overall length. To order, specify **option code H**.

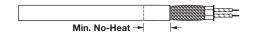

# LA Straight Stainless Steel Hose with PTFE Leads and Seal



An LA straight stainless steel hose with PTFE leads and seal is the ultimate combination for providing abrasion protection and a moisture resistant seal. Unless specified, a standard 12 in. (305 mm) hose is supplied. Leads are 2 in. (51 mm) longer than the hose, but longer leads are available. This seal is effective up to 392°F (200°C) under continuous operation.

The minimum lead end no-heat required is 1 in. (25 mm). This option adds  $^{3}/_{4}$  in. (19 mm) to the overall length. To order, specify **option code G**.

### **LA Straight Stainless Steel Braid**




The LA straight stainless steel braid is designed to protect leads from abrasion against sharp edges. It is the most flexible Watlow protective lead arrangement.

Unless specified, a 12 in. (305 mm) braid is supplied. Leads are 2 in. (51 mm) longer than the braid, but longer leads are available.

The minimum lead end no-heat required is  $^{3}/_{4}$  in. (19 mm). This option adds  $^{1}/_{2}$  in. (13 mm) to the overall length. To order, specify **option code C**.

# LA Straight Stainless Steel Braid with PTFE Leads and Seal



The LA straight stainless steel braid with PTFE leads and seal is Watlow's most flexible lead protection with a moisture resistant seal. Unless specified, a 12 in. (305 mm) braid is supplied. Leads are 2 in. (51 mm) longer than the braid, but longer leads are available. This seal is effective up to 392°F (200°C) under continuous operation.

The minimum lead end no-heat required is 1 in. (25 mm). This option adds  $^{3}/_{4}$  in. (19 mm) to the overall length. To order, specify **option code F**.

WATLOW<sup>®</sup> 21

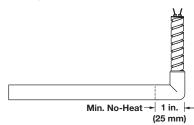
# **FIREROD Cartridge Heaters**

#### LA

## **Right Angle Options**

### **LA Right Angle Leads**




LA right angle leads are used in applications with a high degree of flexing and when space limitations are critical. Stranded lead wires are connected internally (swaged-in) and exit at a 90 degree angle at the end of the heater.

To order, specify option code R.

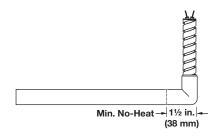
| Minimum No-Heat Required in. (mm) |                                    |                      |                                    |                        |                        |
|-----------------------------------|------------------------------------|----------------------|------------------------------------|------------------------|------------------------|
| Dia.                              | 1/4                                | <sup>3</sup> /8      | 1/2                                | <sup>5</sup> /8        | 3/4                    |
| In. (mm)                          | <sup>13</sup> / <sub>16</sub> (21) | <sup>3</sup> /4 (19) | <sup>13</sup> / <sub>16</sub> (21) | <sup>13</sup> /16 (21) | <sup>13</sup> /16 (21) |

To order right angle leads with PTFE leads and seals, specify **option code B**.

### LA Right Angle Stainless Steel Hose



The diameter of the right angle extension is equal to the nominal diameter of the heater.


An LA right angle stainless steel hose is provided for wiring convenience. Like the LA straight stainless steel hose, it protects leads from abrasion against sharp edges. Unless specified, a 12 in. (305 mm) hose is supplied. Leads are 2 in. (51 mm) longer than the hose, but longer leads are available.

| Diameter              | <sup>3</sup> /8      | 1/2                  | <sup>5</sup> /8      | 3/4                    |
|-----------------------|----------------------|----------------------|----------------------|------------------------|
| Adder length in. (mm) | <sup>3</sup> /4 (19) | <sup>3</sup> /4 (19) | <sup>3</sup> /4 (19) | <sup>7</sup> /8 (22)   |
| Min. no-heat in. (mm) | 1 (25)               | 1 (25)               | 1 (25)               | 1 <sup>1</sup> /8 (29) |

To order specify option code W.

**Note:** This option is not available on <sup>1</sup>/<sub>4</sub> in. (6 mm) diameter.

# LA Right Angle Stainless Steel Hose with PTFE Leads and Seal

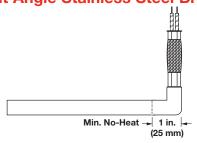


The diameter of the right angle extension is equal to the nominal diameter of the heater.

An LA right angle stainless steel hose with PTFE leads and a seal is the ultimate combination for providing abrasion protection and a moisture resistant seal with wiring convenience. Unless specified, a 12 in. (305 mm) hose is supplied. Leads are 2 in. (51 mm) longer than the hose but longer leads are available. This seal is effective to 392°F (200°C) under continuous operation.

The minimum lead end no-heat required is  $1^{1/2}$  in. (38 mm). This option adds  $1^{1/4}$  in. (32 mm) to overall length on stock units.

To order, specify option code M.


**Note:** This option is not available on <sup>1</sup>/<sub>4</sub> in. (6 mm) diameter.

## **FIREROD Cartridge Heaters**

#### LA

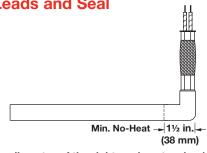
Right Angle Options (Continued)

# LA Right Angle Stainless Steel Braid



The diameter of the right angle extension is equal to the nominal diameter of the heater.

An LA right angle stainless steel braid is provided for wiring convenience. It protects leads from abrasion against sharp edges.


Unless specified, a 12 in. (305 mm) braid is supplied. Leads are 2 in. (51 mm) longer than the braid, but longer leads are available.

| Diameter              | <sup>3</sup> /8      | 1/2                  | <sup>5</sup> /8      | 3/4                  |
|-----------------------|----------------------|----------------------|----------------------|----------------------|
| Adder length in. (mm) | <sup>3</sup> /4 (19) | <sup>3</sup> /4 (19) | <sup>3</sup> /4 (19) | <sup>7</sup> /8 (22) |
| Min. no-heat in. (mm) | 1 (25)               | 1 (25)               | 1 (25)               | <sup>1</sup> /8 (3)  |

To order, specify option code Y.

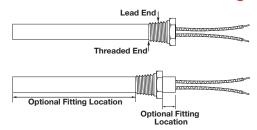
**Note:** This option is not available on <sup>1</sup>/<sub>4</sub> in. (6 mm) diameter.

# LA Right Angle Stainless Steel Braid with PTFE Leads and Seal



# The diameter of the right angle extension is equal to the nominal diameter of the heater.

The LA right angle stainless steel braid with PTFE leads and seal is Watlow's most flexible lead protection with a moisture resistant PTFE seal and wiring convenience. Unless specified, a 12 in. (305 mm) braid is supplied. Leads are 2 in. (51 mm) longer than the braid, but longer leads are available. This seal is effective up to 392°F (200°C) under continuous operation.


The minimum lead end no-heat required is  $1^{1}/2$  in. (38 mm). This option adds  $1^{1}/4$  in. (32 mm) to the overall length on stock units.

To order, specify option code A.

**Note:** This option is not available on <sup>1</sup>/<sub>4</sub> in. (6 mm) diameter.

## **Mounting Options**

## **LA Stainless Steel Threaded Fittings**



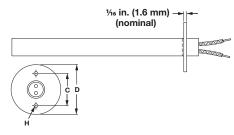
Fitting overlaps the unheated section and is silver soldered to the sheath.

Threaded fittings allow fast, water-tight installation of the heater into a threaded hole. These fittings are 304 stainless steel, other stainless steel alloys are available upon request. Double threaded fittings are also available. Please see page 33 for threaded fitting specifications.

Provide the location of the fittings if no-heat extension option is requested.

| Lead<br>Arrangement   | Minimum Distance <sup>①</sup> Between Threaded End and Lead End in. (mm) |  |  |  |
|-----------------------|--------------------------------------------------------------------------|--|--|--|
| Crimped Leads         | 1/4 (6)                                                                  |  |  |  |
| Swaged-in Leads       | <sup>5</sup> /16 <sup>②④</sup> (8)                                       |  |  |  |
| STR SS Hose           | <sup>1</sup> /2 <sup>③</sup> (13)                                        |  |  |  |
| STR SS Braid          | 1/2 (13)                                                                 |  |  |  |
| PTFE Seal & Leads     | <sup>7</sup> /8 (22)                                                     |  |  |  |
| Silicone Seal & Leads | <sup>7</sup> / <sub>8</sub> (22)                                         |  |  |  |

- ① The location of the threaded fitting from the thread end of the fitting to the lead end of the heater.
  - All optional fitting locations are available only with LA no-heat extensions. Contact your Watlow representative for details.
- ② On <sup>1</sup>/<sub>4</sub> in. diameter FIREROD only "A" dimension is <sup>7</sup>/<sub>16</sub> in. (11.1 mm).
- 3 On  $^{1}/_{4}$  in. diameter FIREROD only "A" dimension is  $^{5}/_{8}$  in. (15.9 mm).
- ① On 5/8 in. and 3/4 in. the fitting is located at 7/8 in. from the lead end using a 3/4 in. no-heat extension. In order to locate at 5/16 in., the fitting must be epoxied.


Note: Minimum distance between threaded end and heated section is  $^{1}/_{4}$  in.

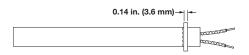
# **FIREROD Cartridge Heaters**

#### LA

### **Mounting Options**

### **Flanges**




Stainless steel flanges are a convenient mounting method to position a heater within an application. The flange is staked on and located  $^{1}/_{4}$  in. (6 mm) from the lead end. The flange can be located up to  $2^{1}/_{4}$  in. (57 mm) from the lead end if it is over a no-heat section. Use this option in combination with most LA configurations.

To order, specify **flange**, size and locations.

#### Flange Specifications

| FIREROD                          | Flores         | in. (mm)               |                        |           |  |  |
|----------------------------------|----------------|------------------------|------------------------|-----------|--|--|
| Diameter in.                     | Flange<br>Size | D                      | С                      | н         |  |  |
| 1/4, 3/8, 1/2                    | FS             | 1 (25)                 | <sup>3</sup> /4 (19)   | 0.144 (4) |  |  |
| 1/4, 3/8, 1/2<br>5/8, 3/4        | FM             | 1 <sup>1</sup> /2 (38) | 1 <sup>1</sup> /8 (29) | 0.156 (4) |  |  |
| <sup>5</sup> /8, <sup>3</sup> /4 | FL             | 2 (51)                 | 1 <sup>1</sup> /2 (38) | 0.201 (5) |  |  |

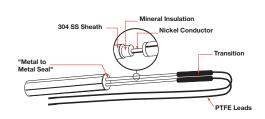
### **Locating Ring**



A stainless steel locating ring can be used as a retaining collar to position a FIREROD if mounting requirements are not critical.

For LA, specify the location if the no-heat extension option is requested. On FIRERODs with crimped on leads without the LA option, the locating ring will be located on the last <sup>1</sup>/<sub>4</sub> in. (6 mm).

To order, specify locating ring.


#### **Locating Ring Specifications**

| Diameter              | 1/4                  | <sup>3</sup> /8      | 1/2                  | <sup>5</sup> /8      | <sup>3</sup> / <sub>4</sub> |
|-----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------|
| Ring O.D.<br>in. (mm) | <sup>1</sup> /2 (13) | <sup>5</sup> /8 (16) | <sup>3</sup> /4 (19) | <sup>7</sup> /8 (22) | 1 (25)                      |

## **FIREROD Cartridge Heaters**

#### LA

#### Mineral Insulated (MI) Leads



MI leads handle both high temperatures and contamination, and resist other problems including abrasion and excessive vibration. The metal seal and swaged-in formable MI cable leads can handle temperatures up to 1500°F (815°C). The lead end seal resists moisture and other forms of contamination, including gases, oils, plastic drool, solvents and water.

This LA option is also available as a manufactured item. Specify MI leads and seal, as well as volts, watts, cable length, lead length and type. Unless specified, 6 in. (152 mm) of MI cable and 12 in. (305 mm) of PTFE leads will be supplied. To order, specify **option code J.** 

Note: A minimum charge per line item applies.

#### **Benefits**

- Increases heater life
- Minimizes down time
- Resists moisture contamination
- Allows a cartridge heater to be used where it was not previously possible
- · Resists abrasion and vibration
- Forms and bends to fit the contours of wiring raceways
- Protects against high temperatures without additional insulation

#### **Typical Applications**

- Vacuum forming
- Plastic molding
- Medical device manufacturing
- Food handling equipment
- Zinc die-casting

#### **Technical Data**

Max. temp. of cable: 1500°F (815°C)

Max. temp. of cable to lead transition: 300°F (149°C)

(where flexible leads attach to cable)
Cable sheath material: 304 SS

Conductor material: nickel

Max. voltage: 240V

Transition length: 11/8 in. (28.6 mm)

## **Lead Types**

PTFE 392°F (200°C) - T

| Heater<br>Diameter<br>in. | Max.<br>Current<br>Amperes | Conductor<br>Diameter<br>in. | Cable<br>Diameter<br>in. | Transition<br>Diameter<br>in. | Cable I<br>Min.<br>ir | Length<br>Max.<br>า. | Min.<br>Bend Radius | Max.<br>Voltage<br>in. | Length<br>Adder      |
|---------------------------|----------------------------|------------------------------|--------------------------|-------------------------------|-----------------------|----------------------|---------------------|------------------------|----------------------|
| 3/8                       | 7.0                        | 0.044                        | 0.108                    | 0.230                         | 6                     | 72                   | 0.225               | 240                    | G ( <sup>3</sup> /8) |
| 1/2                       | 7.0                        | 0.044                        | 0.108                    | 0.230                         | 6                     | 72                   | 0.225               | 240                    | K (9/16)             |
| 5/8                       | 9.7                        | 0.062                        | 0.138                    | 0.250                         | 6                     | 72                   | 0.280               | 240                    | L ( <sup>5</sup> /8) |
| 3/4                       | 9.7                        | 0.062                        | 0.138                    | 0.250                         | 6                     | 72                   | 0.280               | 240                    | L ( <sup>5</sup> /8) |

This information pertains to standard FIREROD heaters.

WATLOW® \_\_\_\_\_ 25

## FIREROD Cartridge Heaters

#### **LA Options**

| Option                                     | М                                  | inimum Length                         | Adders Per Diamet in. (mm)                      | er Per Option                                                       | Option<br>Code  |
|--------------------------------------------|------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|-----------------|
| Heater Diameter                            | 1/4 (6)                            | <sup>3</sup> /8 (9.5)                 | <sup>1</sup> / <sub>2</sub> (13) <sup>5</sup> / | ′8 (15.9) <sup>3</sup> /4                                           | (19)            |
| Swaged-in leads                            | E <sup>1</sup> /4 (6)              | E <sup>1</sup> / <sub>4</sub> (6)     | E <sup>1</sup> / <sub>4</sub> (6) E             | <sup>1</sup> / <sub>4</sub> (6) E <sup>1</sup> / <sub>4</sub>       | (6) None        |
| Right angle leads                          | K <sup>9</sup> /16 (14)            | J <sup>1</sup> / <sub>2</sub> (13)    | K <sup>9</sup> /16 (14) K                       | <sup>9</sup> /16 (14) K <sup>9</sup> /16                            | (14) <b>R</b>   |
| PTFE seal and leads                        |                                    | N <sup>3</sup> / <sub>4</sub> (19)    | N <sup>3</sup> / <sub>4</sub> (19) N            | <sup>3</sup> / <sub>4</sub> (19) N <sup>3</sup> / <sub>4</sub>      | (19) <b>T</b>   |
| Right angle PTFE seal and leads            |                                    | N <sup>3</sup> / <sub>4</sub> (19)    | N <sup>3</sup> / <sub>4</sub> (19) N            | <sup>3</sup> / <sub>4</sub> (19) N <sup>3</sup> / <sub>4</sub>      | (19) <b>B</b>   |
| Silicone seal and leads                    |                                    | N <sup>3</sup> / <sub>4</sub> (19)    | N <sup>3</sup> / <sub>4</sub> (19) N            | <sup>3</sup> / <sub>4</sub> (19) N <sup>3</sup> / <sub>4</sub>      | (19) <b>P</b>   |
| Straight hose                              | J <sup>1</sup> /2 (13)             | J <sup>1</sup> / <sub>2</sub> (13)    | J <sup>1</sup> / <sub>2</sub> (13) J            | <sup>1</sup> / <sub>2</sub> (13) J <sup>1</sup> / <sub>2</sub>      | (13) <b>H</b>   |
| Right angle hose                           |                                    | N <sup>3</sup> / <sub>4</sub> (19)    | N <sup>3</sup> / <sub>4</sub> (19) N            | <sup>3</sup> / <sub>4</sub> (19) R <sup>7</sup> / <sub>8</sub>      | (22.2) <b>W</b> |
| Straight hose with PTFE seal and leads     |                                    | N <sup>3</sup> / <sub>4</sub> (19)    | N <sup>3</sup> / <sub>4</sub> (19) N            | <sup>3</sup> / <sub>4</sub> (19) N <sup>3</sup> / <sub>4</sub>      | (19) <b>G</b>   |
| Straight braid                             | J <sup>1</sup> / <sub>2</sub> (13) | J <sup>1</sup> / <sub>2</sub> (13)    | J <sup>1</sup> / <sub>2</sub> (13) J            | <sup>1</sup> / <sub>2</sub> (13) J <sup>1</sup> / <sub>2</sub>      | (13) <b>C</b>   |
| Right angle braid                          |                                    | N <sup>3</sup> / <sub>4</sub> (19)    | N <sup>3</sup> / <sub>4</sub> (19) N            | <sup>3</sup> / <sub>4</sub> (19) R <sup>7</sup> / <sub>8</sub>      | (22) <b>Y</b>   |
| Right angle braid with PTFE seal and leads |                                    | 1E 1 <sup>1</sup> / <sub>4</sub> (32) | 1E 1 <sup>1</sup> / <sub>4</sub> (32) 1E        | 1 <sup>1</sup> / <sub>4</sub> (32) 1E 1 <sup>1</sup> / <sub>4</sub> | (32) <b>A</b>   |
| Straight braid with PTFE seal and leads    |                                    | N <sup>3</sup> / <sub>4</sub> (19)    | N <sup>3</sup> / <sub>4</sub> (19) N            | <sup>3</sup> / <sub>4</sub> (19) N <sup>3</sup> / <sub>4</sub>      | (19) <b>F</b>   |
| Right angle hose with PTFE seal and leads  |                                    | 1E 1 <sup>1</sup> / <sub>4</sub> (32) | 1E 1 <sup>1</sup> / <sub>4</sub> (32) 1E        | 1 <sup>1</sup> / <sub>4</sub> (32) 1E 1 <sup>1</sup> / <sub>4</sub> | (32) <b>M</b>   |

LA options are available for all FIRERODs, except the <sup>1</sup>/8 in. diameter size. To order any of these options, please build the order number by specifying the Watlow part number, length adder code, option code and lead length.

**Ordering Example:** The order number **J12A89-N72W74** indicates an order for a 12 in. (305 mm) FIREROD with 72 in. (1830 mm) right angle stainless steel hose and 74 in. (1880 mm) leads. The overall heater length equals 12<sup>3</sup>/4 in. (324 mm).

**Note:** No-heat extensions are available for most LA options in diameters of 3/8, 1/2, 5/8 and 3/4 in. Contact your Watlow representative for available LA options.

To order any of these dimensions, please specify the applicable length adder code shown.

### **Lead Type Codes**

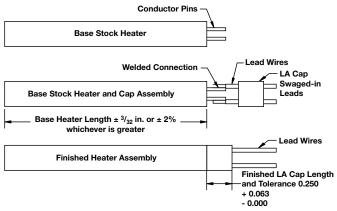
| Туре | Maximum Temperature | Option Code |
|------|---------------------|-------------|
| GGS  | 482°F (250°C)       | None        |
| MGT  | 842°F (450°C)       | Н           |
| PTFE | 392°F (200°C)       | Т           |

Note: Available for LA fiberglass leads.

#### **No-Heat Length Adder Codes**

| Length Adder Code |
|-------------------|
|                   |
| N                 |
| 1E                |
| 1N                |
| 2E                |
|                   |

# Modifying Basic FIRERODs Using the LA Process for Swaged-in Leads


#### Watlow:

- Shortens conductor pins
- Welds lead wires to pins
- Places an LA cap over the lead end of the heater
- Reduces the diameter of the LA cap over the lead end of the base unit to produce a rugged integrated heater assembly

#### Notes:

- Other LA construction options use a similar modification process
- Maximum temperature of LA cap is 1000°F (538°C)

#### **Length Tolerance for Stock Heaters With LA Options**

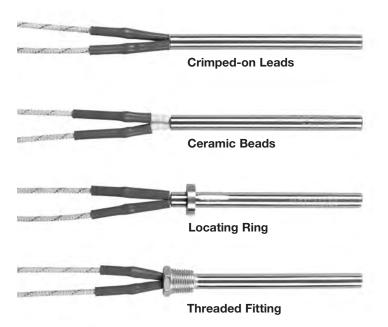


Note: Base stock heater tolerance + LA cap tolerance = total tolerance for assembly

## **FIREROD Cartridge Heaters**

## Non-Lead Adapter (LA)

### **Modification Coding**


Watlow offers heaters in various diameters, lengths and volt-wattage combinations that are ready for shipping. Basic modifications can be made and heaters are shipped the same day. Modifications include flanges, threaded fittings, locating rings, ceramic beads and crimped on leads. Following is a list of all available non-LA mounting and pin option codes.

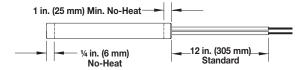
## **Mounting Option Codes**

- BA Small flange FS (available on 1/4, 3/8 and 1/2 in.)
- BB Medium flange FM (available on  $^{1}/_{4}$ ,  $^{3}/_{8}$ ,  $^{1}/_{2}$ ,  $^{5}/_{8}$  and  $^{3}/_{4}$  in.)
- BC Large flange FL (available on 5/8 and 3/4 in.)
- BD Locating ring (available on  $^{1}/_{4}$ ,  $^{3}/_{8}$ ,  $^{1}/_{2}$ ,  $^{5}/_{8}$  and  $^{3}/_{4}$  in.)
- BG Single stainless steel fitting
- BH Double stainless steel fitting
- BY Stainless steel reversed

## **Pin Option Codes**

- AA Short pins 3/8 in. (10 mm)
- AB Medium pins <sup>5</sup>/<sub>8</sub> in. (16 mm)
- AC Long pins 13/4 in. (45 mm)
- AD Stagger pins
- AE Ceramic beads <sup>1</sup>/<sub>2</sub> in. (13 mm)
- AF Ceramic beads <sup>3</sup>/<sub>4</sub> in. (19 mm)
- AG Ceramic beads 1 in. (25 mm)
- AH Ceramic beads 1<sup>1</sup>/<sub>4</sub> in. (32 mm)
- AJ Ceramic beads 1<sup>1</sup>/<sub>2</sub> in. (38 mm)



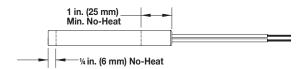

WATLOW<sup>®</sup> \_\_\_\_\_\_ 27

## **FIREROD Cartridge Heaters**

Made-to-Order

**Straight Options** 

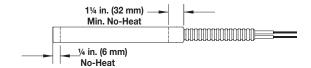
### Swaged-in Flexible Leads




Swaged-in flexible leads are used in applications where a high degree of flexing exists or leads must be bent sharply adjacent to the heater without exposing or breaking the conductor. Stranded wire leads are connected internally and exit through the lead end.

Lead wire type is high temperature fiberglass. The maximum temperature of the standard fiberglass end piece is 842°F (450°C). Unless specified, 12 in. (305 mm) leads are supplied.

The minimum lead end for no-heat is 1 in. (25 mm) min. or 12 percent of overall heater length. Additional no-heat may be required to keep the end piece and leads below the maximum operating temperatures.

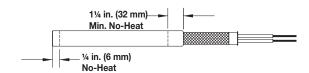

#### PTFE Seal and Leads



A PTFE seal and leads protect the heater against moisture and contamination from cleaning solvents, plastic material, fumes and organic tapes. This seal is effective up to 392°F (200°C) under continuous operation.

The PTFE seal and leads have a minimum lead end unheated section of 1 in. (25 mm). Additional no-heat may be required to keep the seal below its maximum operating temperature.

#### **Straight Stainless Steel Hose**




A straight stainless steel hose provides the best protection against abrasion from sharp edges. It also offers ease of handling and wiring in abrasive environments.

Unless specified, a 12 in. (305 mm) hose is supplied. Leads are 2 in. (51 mm) longer than the hose.

**Note:** This option is available with PTFE leads and seal. Minimum no-heats are longer. Contact your Watlow representative for details.

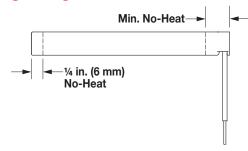
#### **Straight Stainless Steel Braid**



A straight stainless braid is designed to protect leads from abrasion against sharp edges and is Watlow's most flexible protective lead arrangement.

Unless specified, a 12 in. (305 mm) braid is supplied. Leads are 2 in. (51 mm) longer than the braid.

**Note:** This option is available with PTFE leads and seal. Minimum no-heats are longer. Contact your Watlow representative for details.

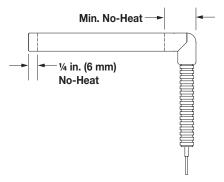

WATLOW<sup>®</sup>

## **FIREROD Cartridge Heaters**

Made-to-Order

**Right Angle Options** 

#### **Right Angle Leads**




Right angle leads are used in applications with a high degree of flexing and when space limitations are critical. Standard lead wires are connected internally (swaged-in) and exit at a 90° angle at the end of the heater.

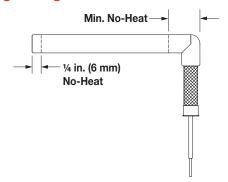
| Diameter              | 1/4                    | 3/8                    | 1/2                     | <sup>5</sup> /8         | 3/4                     |
|-----------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|
| Min. no-heat in. (mm) | 1 <sup>1</sup> /4 (32) | 1 <sup>1</sup> /4 (32) | 1 <sup>5</sup> /16 (33) | 1 <sup>7</sup> /16 (37) | 1 <sup>7</sup> /16 (37) |

**Note:** This option is available with PTFE leads and seal. Minimum no-heats are longer. Contact your Watlow representative for details.

## **Right Angle Stainless Steel Hose**



The diameter of the right angle extension is equal to the nominal diameter of the heater.


A right angle stainless steel hose is provided for wiring convenience. It protects leads from abrasion against sharp edges.

Unless specified, a 12 in. (305 mm) hose is supplied. Leads are 2 in. (51 mm) longer than the hose.

| Diameter              | 1/4                     | 3/8                    | 1/2                     | <sup>5</sup> /8          | 3/4                      |
|-----------------------|-------------------------|------------------------|-------------------------|--------------------------|--------------------------|
| Min. no-heat in. (mm) | 1 <sup>5</sup> /16 (33) | 1 <sup>3</sup> /8 (35) | 1 <sup>9</sup> /16 (40) | 1 <sup>11</sup> /16 (43) | 1 <sup>13</sup> /16 (46) |

**Note:** This option is available with PTFE leads and seal. Minimum no-heats are longer. Contact your Watlow representative for details.

#### **Right Angle Stainless Steel Braid**



The diameter of the right angle extension is equal to the nominal diameter of the heater.

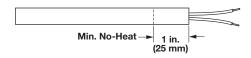
A right angle stainless steel braid is provided for wiring convenience. It protects leads from abrasion against sharp edges.

Unless specified, a 12 in. (305 mm) hose is supplied. Leads are 2 in. (51 mm) longer than the hose.

| Diameter              | 1/4                     | <sup>3</sup> /8        | 1/2                     | <sup>5</sup> /8 | 3/4                      |
|-----------------------|-------------------------|------------------------|-------------------------|-----------------|--------------------------|
| Min. no-heat in. (mm) | 1 <sup>5</sup> /16 (33) | 1 <sup>3</sup> /8 (35) | 1 <sup>9</sup> /16 (40) | 111/16 (43)     | 1 <sup>13</sup> /16 (46) |

**Note:** This option is available with PTFE leads and seal. Minimum no-heats are longer. Contact your Watlow representative for details.

29


WATLOW®

## **FIREROD Cartridge Heaters**

#### Made-to-Order

### **Termination Options**

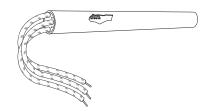

#### Silicone Rubber Seal and Leads



Made-to-order silicone rubber seal and leads protect the heater against moisture and contamination from lubricating oil, cleaning solvents, plastic material, fumes and organic tapes. This seal is effective up to 302°F (150°C) under continuous operation.

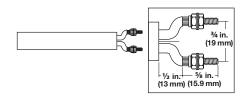
Silicone rubber seal and leads for made-to-order units greater than 10 in. (250 mm) long comprise a minimum no-heat section of approximately 12 percent of the overall length. Longer no-heat sections are available if required.

### Epoxy Seal




Epoxy seals help protect the heater against moisture and contamination from lubricating oil, cleaning solvents, plastic material, fumes and organic tapes. These seals are effective up to 250°F (121°C) under continuous operation.

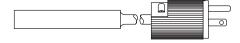
Epoxy seals can be ordered only on units greater than <sup>1</sup>/<sub>8</sub> in. (3 mm) in diameter with crimped on leads. The minimum no-heat section at the lead end is 1 in. (25 mm). Longer no-heat sections are available upon request.


To order, specify epoxy seal.

#### **Ground Lead**



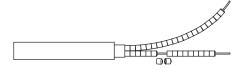
Ground leads are a safety feature to protect both workers and equipment. This configuration is not available on all options. Contact your Watlow representative for additional information. To order, specify **ground lead**.


#### **Post Terminals**



Post terminals provide a quick, secure connection with ring or fork connectors or bus bars. Threaded 6-32 studs are soldered to the solid power pins. Nuts and washers are provided.

Post terminals are available on FIREROD heaters of <sup>5</sup>/8, <sup>3</sup>/<sub>4</sub> and 1 in. (16, 19 and 25 mm) diameter. On 1 in. (25 mm) diameters, pins are straight. To order, specify **post terminals**.


## **UL® Listed Plugs**



UL® listed plugs are a safe, convenient installation method, especially when frequent connection or disconnection is required. These plugs have a nylon dead front, a molded-in cord grip and straight or Twist-Lock® blades with or without ground.

Use UL® listed plugs with a stainless steel hose, conduit, braid or lead wires with sleeving. To order, specify **UL® listed plugs**.

### **Ceramic Bead Insulation**



Ceramic bead insulation protects the leads from high ambient temperatures above 842°F (450°C).

The beads fit over solid conductors that extend to reach a cooler area where flexible wires can be attached.

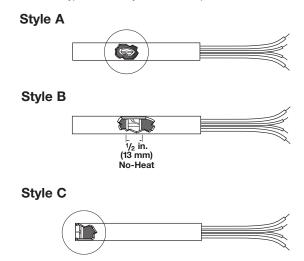
This option is not available on <sup>1</sup>/<sub>8</sub> in. (3 mm) diameter leads. The maximum available length on FIRERODs is 12 in. (305 mm). To order, specify **ceramic beads** and length, and additional lead length.

## **FIREROD Cartridge Heaters**

Made-to-Order

#### **Options**

#### **Passivation**


During the manufacturing and handling of stainless steel, particles of iron or tool steel may embed in the sheath. If they are not removed, particles may corrode and produce rust spots. In critical sheath contact applications for the medical industry, passivation will remove free iron from the sheath. To order, specify **316L stainless steel sheath** and **passivation**.

**Note:** A minimum charge per line item applies.

#### **Thermocouple Types**

| ASTM | Conductor C          | naracteristics      | Temperature Range       |
|------|----------------------|---------------------|-------------------------|
| Code | Positive             | Negative            | °F (°C)                 |
| J    | Iron                 | Constantan          |                         |
|      | (Magnetic)           | (Non-Magnetic)      | 0 to 1400 (-20 to 760)  |
|      | (White)              | (Red)               |                         |
| K    | Chromel <sup>®</sup> | Alumel <sup>®</sup> |                         |
|      | (Non-Magnetic)       | (Magnetic)          | 0 to 2300 (-20 to 1260) |
|      | (Yellow)             | (Red)               |                         |

For other ISA types, contact your Watlow representative.



### **Individually Controlled Heat Zones**

Individually controlled heat zones offer the flexibility to control temperature by zones, along the length of the FIREROD heater. This is an advantage for heating requirements of certain applications, such as seal bars. This internal construction can be ordered on  $^{5}/_{8}$ ,  $^{3}/_{4}$  and 1 in. (16, 19 and 25 mm) diameter FIREROD heaters. To order, specify **individually controlled heat zones** and wattage and length per zone.

**Note:** A minimum charge per line item applies.

#### **Internal Thermocouple**

Style A internal thermocouples can be used to evaluate heat transfer efficiency of an application. This measurement can help to cut energy costs and increase heater life. The ungrounded junction is located in the heater core to monitor the internal temperature of the heater.

The Style B internal thermocouple provides a good approximation of part temperature and is located anywhere along the length of the heater. Due to variations in production, this style may be grounded or ungrounded.

This junction is located adjacent to the inside heater sheath in the center of the heated section unless otherwise specified. A  $^{1}/_{2}$  in. (13 mm) unheated section is required.

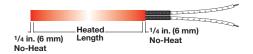
A Style C internal thermocouple is useful in applications where material flows past the end of the heater, as in plastic molding. This grounded junction is embedded in a special end disc. Unless requested, the disc end is not mechanically sealed.

To order, specify internal thermocouple, Style A, B or C and thermocouple ASTM Type J or K.

If not specified, 12 in. (305 mm) thermocouple leads are supplied.

#### **Availability**

All styles are available on all diameters with the exception of  $^{1}/_{8}$  in. (3.2 mm) diameter, which is available only with Style C, and 1 in. (25 mm) which is available only with Style A and B.


WATLOW® \_\_\_\_\_ 31

## **FIREROD Cartridge Heaters**

Made-to-Order

#### **Options**

#### **Distributed Wattage**



Distributed wattage varies the watt density along the length of the heater. This construction technique compensates for heat losses along the edges of heated parts and is ideal for seal bar applications.

To order, specify **distributed wattage** and give the length and wattage for each section.

Note: A minimum charge per line item applies.

### **Dual Voltage**

When the FIREROD requires the flexibility of operating on two voltages, dual voltage internal construction should be used. Dual voltage is not compatible for all lead options. Contact your Watlow representative for availability. To order, specify **dual voltage** and voltage requirements.

Note: A minimum charge per line item applies.

## **Centerless Grinding**

Centerless grinding can be used to furnish precision diameters to permit closer heater-to-part fit allowing higher watt densities to be used.

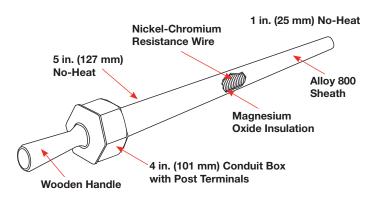
For centerless ground heaters, the heater must have PTFE seal and leads (maximum 12 in. (305 mm) lead length) or crimped on leads. Longer lead lengths are available, but require an external connection. The length of a FIREROD available for centerless grinding depends on the construction. Please contact your Watlow representative for assistance. To order, specify centerless grinding.

| FIREROD<br>Diameter<br>in. | Actual<br>Precision Diameter<br>in. |
|----------------------------|-------------------------------------|
| 1/4                        | 0.241 ± 0.0005                      |
| 3/8                        | 0.363 ± 0.0005                      |
| 1/2                        | $0.488 \pm 0.0005$                  |
| 5/8                        | 0.613 ± 0.0005                      |
| 3/4                        | $0.738 \pm 0.0005$                  |
| 1 <sup>①</sup>             | 0.984 ± 0.0005                      |

<sup>&</sup>lt;sup>①</sup>A minimum charge per line item applies.

#### **Bolt Heaters**

The high performance FIREROD can be upgraded with a conduit box and wooden handle.

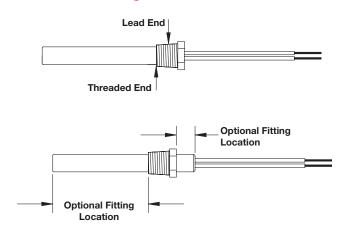

When inserted into a hollow bolt, this heater lengthens the bolt by heat expansion allowing the nut to be further wrench-tightened. The FIREROD bolt is then de-energized and removed. Upon cooling, the bolt contracts to a tight fit.

#### **Performance Capabilities**

- Part temperatures up to 1000°F (540°C)
- Maximum watt density up to 100 W/in<sup>2</sup> (15.5 W/cm<sup>2</sup>)

| FIREROD Bolt Specifications |       |        |        |        |  |  |  |
|-----------------------------|-------|--------|--------|--------|--|--|--|
| Diameter ±0.005 in.         | 0.496 | 0.621  | 0.746  | 0.996  |  |  |  |
| Maximum Volts               | 240   | 480    | 480    | 480    |  |  |  |
| Maximum Amperes             | 9.7   | 23     | 46     | 46     |  |  |  |
| 120 Maximum Watts           | 1,160 | 2,760  | 5,520  | 5,520  |  |  |  |
| 240 Maximum Watts           | 2,320 | 5,520  | 11,000 | 11,000 |  |  |  |
| 1 PH 480                    |       | 11,000 | 22,000 | 22,000 |  |  |  |
| 3 PH Available              |       | —      | YES    | YES    |  |  |  |

**Note:** Minimum charge per line item applies.



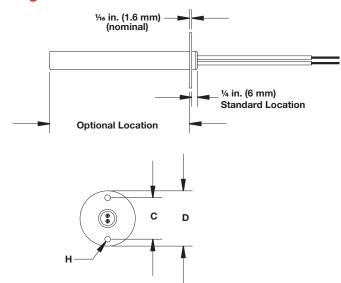

## **FIREROD Cartridge Heaters**

#### Made-to-Order

### **Mounting Options**

#### **Threaded Fittings**




Threaded fittings allow fast, water-tight heater installation into a threaded hole. Standard fittings are 304 stainless steel and welded to the heater sheath. Other materials are available upon request. Double threaded fittings are also available.

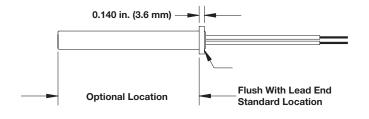
Unless specified, the fitting hex is located flush with the lead end.

#### **Threaded Fittings Specifications**

| Heater<br>Diameter<br>in. |     | Thread<br>(NPTF)<br>(mm) |     | Thread<br>Length<br>(mm) | Double<br>Fitting<br>in. |      |
|---------------------------|-----|--------------------------|-----|--------------------------|--------------------------|------|
| 1/4                       | 1/8 | (3)                      | 1/2 | (13)                     | <sup>7</sup> /8          | (22) |
| 3/8                       | 1/4 | (6)                      | 5/8 | (16)                     | 1 <sup>5</sup> /16       | (49) |
| 1/2                       | 3/8 | (10)                     | 3/4 | (19)                     | 1 <sup>3</sup> /8        | (35) |
| 5/8                       | 1/2 | (13)                     | 7/8 | (22)                     | 1 <sup>13</sup> /16      | (46) |
| 3/4                       | 3/4 | (19)                     | 1   | (25)                     | 1 <sup>13</sup> /16      | (46) |
| 1                         | 1   | (25)                     | 1   | (25)                     | 1 <sup>1</sup> /2        | (38) |

## **Flanges**




Stainless steel flanges are a convenient mounting method and can be used to position a heater within an application. The standard location is <sup>1</sup>/<sub>4</sub> in. (6 mm) from the lead end. However, a specific location may be requested in any location along the no-heat section. Unless specified, flanges are staked to the sheath.

To order, specify **flange size** and location.

#### Flange Specifications

| FIREROD<br>Diameter<br>in.          | Flange<br>Size | D<br>in. (mm)          | C<br>in. (mm)          | H<br>in. |
|-------------------------------------|----------------|------------------------|------------------------|----------|
| 1/8, 1/4, 3/8, 1/2                  | FS             | 1 (25)                 | <sup>3</sup> /4 (19)   | 0.144    |
| 1/4, 3/8, 1/2,<br>5/8, 3/4          | FM             | 1 <sup>1</sup> /2 (38) | 1 <sup>1</sup> /8 (28) | 0.156    |
| <sup>5</sup> /8, <sup>3</sup> /4, 1 | FL             | 2 (51)                 | 1 <sup>1</sup> /2 (38) | 0.201    |

## **Locating Rings**



A stainless steel locating ring can be used as a retaining collar to position a FIREROD heater if mounting requirements are not critical. Standard locating rings are staked to the heater sheath.

To order, specify locating ring and location.

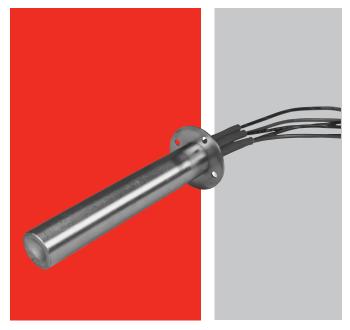
#### **Locating Ring Specifications**

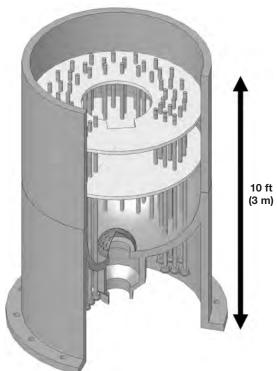
|                       | •                    |                      |                      |                      |        |
|-----------------------|----------------------|----------------------|----------------------|----------------------|--------|
| Diameter - in.        | 1/4                  | <sup>3</sup> /8      | 1/2                  | <sup>5</sup> /8      | 3/4    |
| Ring O.D.<br>in. (mm) | <sup>1</sup> /2 (13) | <sup>5</sup> /8 (16) | <sup>3</sup> /4 (19) | <sup>7</sup> /8 (22) | 1 (25) |

WATLOW® \_\_\_\_\_ 33



# **Extended Capabilities For Custom Cartridge Heaters**


Special cartridge heaters can be engineered and designed to meet the most difficult applications and the highest quality standards. From nuclear power plants to open heart surgeries, Watlow cartridge heaters with extended capabilities are exceeding customer expectations. For more than 80 years, emphasis on sound engineering and quality control has established Watlow as a preferred supplier for many high-performance heating requirements. For large opportunities, a solution for you can be engineered to accommodate:


- Custom diameters
- High watt density applications
- Long heater lengths
- Low current leakage constructions
- Special testing and inspection
- Non-destructive testing: x-ray, helium leak tests and start up verification
- Integrated thermostats
- Value added integration of the Watlow heater into a sub-assembly
- Complete documentation packages: approval drawings, material traceability, inspection traceability and other compliance documents.



**High Performance Cartridge Heaters** 

Watlow has developed a wide range of heaters and assemblies to meet requirements for the most demanding applications. Watlow can engineer and manufacture heaters with low leakage constructions, integrated temperature controls or limits and unique customer hardware and connectors.





**Nuclear Pressurizer Heaters** 

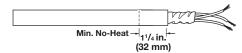
Watlow has provided specialized heaters to the nuclear industry for more than 40 years. Watlow pressurizer heaters are highly reliable and manufactured to meet the exacting standards of the nuclear industry.



# **Extended Capabilities For FIREROD Cartridge Heaters**

#### Made-to-Order

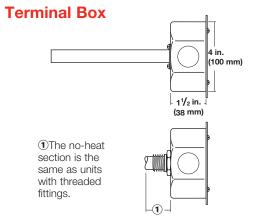
### **Termination Options**


#### **Low Electrical Leakage**

This construction technique minimizes current leakage of the heating element. It is especially useful in critical medical applications where low set point ground fault interrupts are used.

Low electrical leakage is available on  $^3/8$ ,  $^1/2$ ,  $^5/8$  and  $^3/4$  in. (10, 13, 16 and 19 mm) diameter FIREROD heaters

To order, specify low electrical leakage.

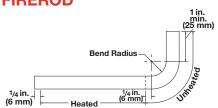

#### **SJO Cord**



SJO cord is used in low temperature applications where lead wires require protection against moisture or when UL® listed plugs are needed. This cord is limited to 140°F (60°C) under continuous operation.

FIREROD heaters greater than 10 in. (250 mm) have a minimum no-heat section of approximately 12 percent + <sup>1</sup>/<sub>4</sub> in. (6 mm) of the overall length.

To order, specify either two conductor or three conductor as well as overall length.




A 4 in. (100 mm) NEMA 1 octagonal terminal box is mounted on a flange or a threaded fitting. Boxes have <sup>1</sup>/<sub>2</sub> in. (13 mm) conduit knockouts for electrical connection.

Hazardous location (NEMA 4 and NEMA 7) terminal boxes are also available. Contact your Watlow representative for details. Terminal boxes are available on <sup>1</sup>/<sub>2</sub> in. (13 mm) through 1 in. (25 mm) diameter FIREROD heaters. To order, specify **terminal box** and **NEMA type**.

### **Options**

#### **Bent FIREROD**



In applications where leads must exit at an angle, a bend can be made in the unheated section only. Heated sections may be on either side of the bend. It is recommended that the heater be bent at the Watlow factory.

A 304 stainless steel sheath is used on bent FIREROD heaters. If the sheath temperature exceeds 1000°F (540°C), contact your Watlow representative.

See dimensions noted on the chart or contact your Watlow representative if application needs exceed limitations shown.

| FIREROD<br>Diameter<br>in. | Min. Required<br>No-Heat Length<br>in. (mm) | Bend<br>Radius<br>in. (mm)       |
|----------------------------|---------------------------------------------|----------------------------------|
| 1/4                        | 2 <sup>1</sup> /4 (56)                      | <sup>1</sup> / <sub>2</sub> (13) |
| 3/8                        | 2 <sup>3</sup> /8 (60)                      | <sup>1</sup> / <sub>2</sub> (13) |
| 1/2                        | 2 <sup>7</sup> /8 (72)                      | <sup>3</sup> / <sub>4</sub> (19) |
| 5/8                        | 3 <sup>5</sup> /16 (83)                     | 1 (25)                           |
| 3/4                        | 3 <sup>13</sup> /16 (98)                    | 1 <sup>1</sup> /4 (32)           |

#### **Mounting Options**

#### **Brass Threaded Fittings**

Threaded fittings allow fast, water-tight installation of the heater into a threaded hole. Double threaded fittings are also available.

Please see page 33 for threaded fitting specifications.

WATLOW<sup>®</sup> \_\_\_\_\_ 35



# Extended Capabilities For High-Temperature (HT) FIREROD® Heaters

The Watlow HT FIREROD heater is especially designed for high temperature platen applications up to 1600°F (871°C). The HT FIREROD heater utilizes the same industry leading design principles used on all Watlow FIREROD products. Advancing the FIREROD heater enables it to withstand application temperatures up to 400°F (204°C) higher than standard cartridge heaters.

HT FIREROD design features, which are important in high temperature applications, include:

- A specially constructed end seal that is virtually airtight to reduce the effects of resistance wire oxidation
- A high-temperature sheath that is treated to improve its emissivity for better heat transfer

#### **Performance Capabilities**

- Platen temperatures up to 1600°F (871°C)
- Maximum watt density up to 100 W/in² (15.5 W/cm²)
- Maximum voltage up to 277VAC ground
- Length tolerance of +0, -4 percent standard diameters;
   +0, -8 percent for special diameter

#### **Made-to-Order Availability**

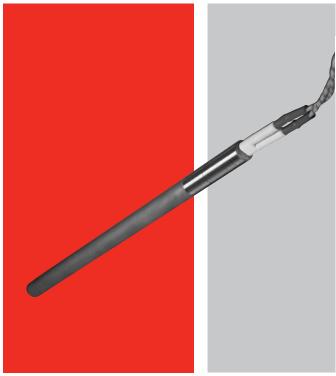
| Nominal<br>Diameter<br>in. | Actual<br>Diameter<br>in. | Max.<br>Amperes |
|----------------------------|---------------------------|-----------------|
| 1/2                        | $0.496 \pm 0.004$         | 10              |
| 5/8                        | $0.580 \pm 0.004$         | 23              |
|                            | $0.621 \pm 0.004$         | 23              |
| 3/4                        | $0.710 \pm 0.004$         | 46              |
|                            | $0.746 \pm 0.004$         | 46              |
| 1                          | 0.960 ± 0.004             | 46              |
|                            | $0.996 \pm 0.006$         | 46              |

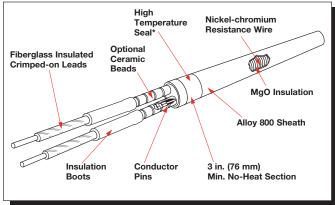
Contact your Watlow representative for special diameter requests.

#### **Features and Benefits**

#### **High-temperature seal**

 Reduces exposure to the atmosphere, which minimizes oxidation of the winding wires resulting in longer element life


**Note:** The first 2 in. (51 mm) must be outside of the platen in free air and less than 1000°F (538°C).


#### Alloy 800 sheath

Transfers heat more efficiently

#### High emissivity sheath

Provides better heat transfer and longer life





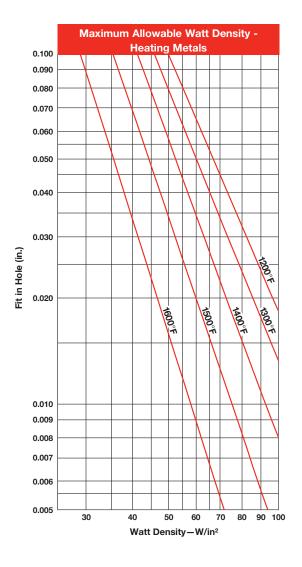
\* First 2 in. (51 mm) at lead end must be kept below 1000°F (538°C).

#### Typical Applications

- Thermo plastic
- Super plastic forming of titanium aircraft parts
- Diffusion bonding to laminate and shape titanium






# Extended Capabilities For High-Temperature (HT) FIREROD Heaters

#### Applications and Technical Data

#### **Options**

- Thermocouples
- Independently controllable heat zones
- Distributed wattage
- Flanges
- Post terminals
- Conduit NEMA boxes
- Bent FIREROD

To consider the HT FIREROD for your application, use the recommended *Maximum Watt Density graph* shown.



### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| Diameter | Sheat             | th Length |       |       | Watt              | Density              | Approx | . Net Wt. |                       |
|----------|-------------------|-----------|-------|-------|-------------------|----------------------|--------|-----------|-----------------------|
| in.      | in.               | (mm)      | Volts | Watts | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs    | (kg)      | Part Number           |
| 1/8      | 1                 | (25.0)    | 24    | 20    | 104               | (16)                 | 0.02   | (0.009)   | C1A-9600 <sup>1</sup> |
| 70       | 1                 | (25.0)    | 24    | 25    | 130               | (20)                 | 0.02   | (0.009)   | C1A-9601 <sup>1</sup> |
|          | 1                 | (25.0)    | 24    | 30    | 157               | (24)                 | 0.02   | (0.009)   | C1A-9602 <sup>1</sup> |
|          | 1                 | (25.0)    | 48    | 20    | 104               | (16)                 | 0.02   | (0.009)   | C1A-9603 <sup>®</sup> |
|          | 1                 | (25.0)    | 48    | 40    | 208               | (32)                 | 0.02   | (0.009)   | C1A-9604 <sup>①</sup> |
|          | 1                 | (25.0)    | 50    | 50    | 260               | (40)                 | 0.02   | (0.009)   | C1A-9605 <sup>①</sup> |
|          | 1 <sup>1</sup> /4 | (32.0)    | 120   | 25    | 87                | (13)                 | 0.02   | (0.009)   | C1E14                 |
|          | 1 <sup>1</sup> /4 | (32.0)    | 120   | 50    | 174               | (18)                 | 0.02   | (0.009)   | C1E13                 |
|          | 1 <sup>1</sup> /4 | (32.0)    | 240   | 35    | 113               | (27)                 | 0.02   | (0.009)   | C1E42                 |
|          | 1 <sup>1</sup> /2 | (38.0)    | 120   | 30    | 78                | (12)                 | 0.02   | (0.009)   | C1J5                  |
|          | 1 <sup>1</sup> /2 | (38.0)    | 120   | 60    | 156               | (24)                 | 0.02   | (0.009)   | C1J6                  |
|          | 2                 | (51.0)    | 120   | 50    | 87                | (13)                 | 0.02   | (0.009)   | C2A4                  |
|          | 2                 | (51.0)    | 120   | 100   | 174               | (27)                 | 0.02   | (0.009)   | C2A5                  |
| 1/4      | 1                 | (25.0)    | 120   | 80    | 208               | (32)                 | 0.02   | (0.009)   | E1A51                 |
| ·        | 1                 | (25.0)    | 120   | 100   | 260               | (40)                 | 0.02   | (0.009)   | E1A52                 |
|          | 1                 | (25.0)    | 120   | 150   | 390               | (60)                 | 0.02   | (0.009)   | E1A53                 |
|          | 1                 | (25.0)    | 240   | 100   | 250               | (39)                 | 0.02   | (0.009)   | E1A66                 |
|          | 1 <sup>1</sup> /4 | (32.0)    | 120   | 75    | 130               | (20)                 | 0.02   | (0.009)   | E1E41                 |
|          | 1 <sup>1</sup> /4 | (32.0)    | 120   | 100   | 173               | (27)                 | 0.02   | (0.009)   | E1E42                 |
|          | 1 <sup>1</sup> /4 | (32.0)    | 120   | 150   | 260               | (40)                 | 0.02   | (0.009)   | E1E43                 |
|          | 1 <sup>1</sup> /4 | (32.0)    | 240   | 225   | 390               | (60)                 | 0.02   | (0.009)   | E1E61                 |
|          | 1 <sup>1</sup> /2 | (38.0)    | 120   | 50    | 65                | (10)                 | 0.02   | (0.009)   | E1J39                 |
|          | 1 <sup>1</sup> /2 | (38.0)    | 120   | 100   | 130               | (20)                 | 0.02   | (0.009)   | E1J40                 |
|          | 1 <sup>1</sup> /2 | (38.0)    | 120   | 150   | 195               | (30)                 | 0.02   | (0.009)   | E1J41                 |
|          | 1 <sup>1</sup> /2 | (38.0)    | 240   | 175   | 228               | (35)                 | 0.02   | (0.009)   | E1J49                 |
|          | 1 <sup>1</sup> /2 | (38.0)    | 120   | 200   | 260               | (40)                 | 0.02   | (0.009)   | E1J42                 |
|          | 1 <sup>1</sup> /2 | (38.0)    | 240   | 200   | 260               | (40)                 | 0.02   | (0.009)   | E1J52                 |
|          | 1 <sup>1</sup> /2 | (38.0)    | 240   | 250   | 325               | (50)                 | 0.02   | (0.009)   | E1J35                 |
|          | 2                 | (51.0)    | 120   | 80    | 68                | (11)                 | 0.03   | (0.014)   | E2A136                |
|          | 2                 | (51.0)    | 120   | 100   | 87                | (13)                 | 0.03   | (0.014)   | E2A55                 |
|          | 2                 | (51.0)    | 240   | 125   | 108               | (17)                 | 0.03   | (0.014)   | E2A82                 |
|          | 2                 | (51.0)    | 120   | 150   | 130               | (20)                 | 0.03   | (0.014)   | E2A56                 |
|          | 2                 | (51.0)    | 240   | 150   | 130               | (20)                 | 0.03   | (0.014)   | E2A77                 |
|          | 2                 | (51.0)    | 120   | 200   | 173               | (27)                 | 0.03   | (0.014)   | E2A57                 |
|          | 2                 | (51.0)    | 240   | 200   | 173               | (27)                 | 0.03   | (0.014)   | E2A50                 |
|          | 2                 | (51.0)    | 120   | 250   | 217               | (33)                 | 0.03   | (0.014)   | E2A72                 |
|          | 2                 | (51.0)    | 240   | 250   | 215               | (33)                 | 0.03   | (0.014)   | E2A76                 |
|          | 2                 | (51.0)    | 240   | 300   | 260               | (40)                 | 0.03   | (0.014)   | E2A83                 |
|          | 21/2              | (64.0)    | 120   | 250   | 159               | (25)                 | 0.03   | (0.014)   | E2J80                 |
|          | 21/2              | (64.0)    | 240   | 250   | 159               | (25)                 | 0.03   | (0.014)   | E2J49                 |
|          | 3                 | (76.0)    | 120   | 100   | 52                | (8)                  | 0.04   | (0.018)   | E3A48                 |
|          | 3                 | (76.0)    | 120   | 200   | 104               | (16)                 | 0.04   | (0.018)   | E3A49                 |
|          | 3                 | (76.0)    | 240   | 200   | 104               | (16)                 | 0.04   | (0.018)   | E3A60                 |
|          | 3                 | (76.0)    | 240   | 250   | 128               | (20)                 | 0.04   | (0.018)   | E3A124                |
|          | 3                 | (76.0)    | 120   | 300   | 156               | (24)                 | 0.04   | (0.018)   | E3A50                 |
|          | 3                 | (76.0)    | 240   | 300   | 156               | (24)                 | 0.04   | (0.018)   | E3A51                 |
|          | 4                 | (102.0)   | 120   | 100   | 37                | (6)                  | 0.04   | (0.018)   | E4A28                 |
|          | 4                 | (102.0)   | 120   | 200   | 74                | (11)                 | 0.04   | (0.018)   | E4A29                 |
|          | 4                 | (102.0)   | 240   | 200   | 74                | (11)                 | 0.04   | (0.018)   | E4A32                 |
|          | 4                 | (102.0)   | 120   | 300   | 111               | (17)                 | 0.04   | (0.018)   | E4A30                 |
|          | 4                 | (102.0)   | 240   | 300   | 111               | (17)                 | 0.04   | (0.018)   | E4A6                  |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.

 $^{\scriptsize \textcircled{1}}$  12 inch GGS swaged-in leads, no additional options available.



Next day shipment

**WATLOW®** 

CONTINUED

### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| iameter | Sheat             | h Length |       |       | Watt              | Density              | Approx | . Net Wt. |            |
|---------|-------------------|----------|-------|-------|-------------------|----------------------|--------|-----------|------------|
| in.     | in.               | (mm)     | Volts | Watts | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs    | (kg)      | Part Numbe |
|         | 4 <sup>1</sup> /2 | (114.0)  | 120   | 200   | 64                | (10)                 | 0.05   | (0.023)   | E4J30      |
| 1/4     | 5                 | (127.0)  | 240   | 350   | 101               | (16)                 | 0.05   | (0.023)   | E5A45      |
|         | 5                 | (127.0)  | 120   | 400   | 113               | (18)                 | 0.05   | (0.023)   | E5A57      |
|         | 5                 | (127.0)  | 240   | 400   | 113               | (18)                 | 0.05   | (0.023)   | E5A34      |
|         | 6                 | (152.0)  | 240   | 400   | 94                | (14)                 | 0.06   | (0.023)   | E6A46      |
|         | 8                 | (203.0)  | 240   | 800   | 136               | (21)                 | 0.08   | (0.027)   | E8A76      |
| 3/8     | 1                 | (25.0)   | 120   | 55    | 95                | (15)                 | 0.03   | (0.014)   | G1A71      |
| 3/8     | 1                 | (25.0)   | 120   | 100   | 172               | (26)                 | 0.03   | (0.014)   | G1A29      |
|         | 1                 | (25.0)   | 120   | 150   | 259               | (40)                 | 0.03   | (0.014)   | G1A38      |
|         | 1                 | (25.0)   | 240   | 200   | 344               | (53)                 | 0.03   | (0.014)   | G1A83      |
|         | 1 <sup>1</sup> /4 | (32.0)   | 120   | 100   | 115               | (18)                 | 0.03   | (0.014)   | G1E91      |
|         | 11/4              | (32.0)   | 120   | 125   | 144               | (22)                 | 0.03   | (0.014)   | G1E74      |
|         | 11/4              | (32.0)   | 120   | 150   | 172               | (27)                 | 0.03   | (0.014)   | G1E92      |
|         | 11/4              | (32.0)   | 240   | 150   | 172               | (27)                 | 0.03   | (0.014)   | G1E93      |
|         | 11/4              | (32.0)   | 120   | 200   | 230               | (35)                 | 0.03   | (0.014)   | G1E94      |
|         | 11/4              | (32.0)   | 240   | 200   | 230               | (35)                 | 0.03   | (0.014)   | G1E95      |
|         | 11/4              | (32.0)   | 120   | 400   | 426               | (66)                 | 0.03   | (0.014)   | G1E99      |
|         | 11/2              | (38.0)   | 120   | 50    | 43                | (7)                  | 0.04   | (0.018)   | G1J25      |
|         | 11/2              | (38.0)   | 120   | 75    | 65                | (10)                 | 0.04   | (0.018)   | G1J70      |
|         | 11/2              | (38.0)   | 120   | 80    | 68                | (11)                 | 0.04   | (0.018)   | G1J66      |
|         | 11/2              | (38.0)   | 120   | 100   | 86                | (13)                 | 0.04   | (0.018)   | G1J59      |
|         | 11/2              | (38.0)   | 240   | 100   | 86                | (13)                 | 0.04   | (0.018)   | G1J110     |
|         | 11/2              | (38.0)   | 240   | 125   | 106               | (16)                 | 0.04   | (0.018)   | G1J182     |
|         | 11/2              | (38.0)   | 120   | 150   | 129               | (20)                 | 0.04   | (0.018)   | G1J31      |
|         | 11/2              | (38.0)   | 240   | 150   | 129               | (20)                 | 0.04   | (0.018)   | G1J39      |
|         | 11/2              | (38.0)   | 120   | 200   | 173               | (27)                 | 0.04   | (0.018)   | G1J85      |
|         | 1 <sup>1</sup> /2 | (38.0)   | 240   | 200   | 173               | (27)                 | 0.04   | (0.018)   | G1J73      |
|         | 11/2              | (38.0)   | 120   | 250   | 216               | (33)                 | 0.04   | (0.018)   | G1J86      |
|         | 11/2              | (38.0)   | 240   | 250   | 216               | (33)                 | 0.04   | (0.018)   | G1J54      |
|         | 13/4              | (45.0)   | 120   | 125   | 86                | (13)                 | 0.05   | (0.023)   | G1N45      |
|         | 13/4              | (45.0)   | 120   | 175   | 122               | (19)                 | 0.05   | (0.023)   | G1N46      |
|         | 13/4              | (45.0)   | 120   | 250   | 172               | (27)                 | 0.05   | (0.023)   | G1N43      |
|         | 13/4              | (45.0)   | 240   | 250   | 172               | (27)                 | 0.05   | (0.023)   | G1N32      |
|         | 2                 | (51.0)   | 120   | 50    | 29                | (5)                  | 0.06   | (0.027)   | G2A53      |
|         | 2                 | (51.0)   | 120   | 75    | 42                | (7)                  | 0.06   | (0.027)   | G2A192     |
|         | 2                 | (51.0)   | 120   | 100   | 57                | (9)                  | 0.06   | (0.027)   | G2A84      |
|         | 2                 | (51.0)   | 240   | 100   | 57                | (9)                  | 0.06   | (0.027)   | G2A76      |
|         | 2                 | (51.0)   | 120   | 150   | 86                | (13)                 | 0.06   | (0.027)   | G2A56      |
|         | 2                 | (51.0)   | 240   | 150   | 86                | (13)                 | 0.06   | (0.027)   | G2A81      |
|         | 2                 | (51.0)   | 120   | 200   | 115               | (18)                 | 0.06   | (0.027)   | G2A127     |
|         | 2                 | (51.0)   | 240   | 200   | 115               | (18)                 | 0.06   | (0.027)   | G2A37      |
|         | 2                 | (51.0)   | 120   | 250   | 144               | (22)                 | 0.06   | (0.027)   | G2A47      |
|         | 2                 | (51.0)   | 240   | 250   | 144               | (22)                 | 0.06   | (0.027)   | G2A73      |
|         | 2                 | (51.0)   | 120   | 300   | 172               | (27)                 | 0.06   | (0.027)   | G2A139     |
|         | 2                 | (51.0)   | 240   | 300   | 172               | (27)                 | 0.06   | (0.027)   | G2A98      |
|         | 2                 | (51.0)   | 120   | 400   | 230               | (36)                 | 0.06   | (0.027)   | G2A153     |
|         | 2                 | (51.0)   | 240   | 400   | 230               | (36)                 | 0.06   | (0.027)   | G2A146     |
|         | 2                 | (51.0)   | 120   | 500   | 282               | (44)                 | 0.06   | (0.027)   | G2A95      |
|         | 2                 | (51.0)   | 240   | 500   | 282               | (44)                 | 0.06   | (0.027)   | G2A97      |
|         | 21/4              | (57.0)   | 120   | 75    | 37                | (6)                  | 0.07   | (0.032)   | G2E88      |
|         | 2 <sup>1</sup> /4 | (57.0)   | 120   | 125   | 62                | (10)                 | 0.07   | (0.032)   | G2E89      |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| iameter | Sheat                         | h Length |          |       | Watt              | Density              | Approx | . Net Wt. |                |
|---------|-------------------------------|----------|----------|-------|-------------------|----------------------|--------|-----------|----------------|
| in.     | in.                           | (mm)     | Volts    | Watts | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs    | (kg)      | Part Numbe     |
| 3/8     | 21/4                          | (57.0)   | 240      | 125   | 62                | (10)                 | 0.07   | (0.032)   | G2E138         |
| 9/8     | 21/4                          | (57.0)   | 240      | 150   | 73                | (11)                 | 0.07   | (0.032)   | G2E68          |
|         | 21/4                          | (57.0)   | 120      | 175   | 86                | (13)                 | 0.07   | (0.032)   | G2E90          |
|         | 21/4                          | (57.0)   | 120      | 250   | 123               | (19)                 | 0.07   | (0.032)   | G2E2           |
|         | 21/4                          | (57.0)   | 240      | 250   | 123               | (19)                 | 0.07   | (0.032)   | G2E78          |
|         | 21/4                          | (57.0)   | 120      | 300   | 148               | (23)                 | 0.07   | (0.032)   | G2E108         |
|         | 2 <sup>1</sup> / <sub>4</sub> | (57.0)   | 240      | 300   | 148               | (23)                 | 0.07   | (0.032)   | G2E12          |
|         | 21/4                          | (57.0)   | 120      | 350   | 173               | (27)                 | 0.07   | (0.032)   | G2E91          |
|         | 21/4                          | (57.0)   | 240      | 350   | 173               | (27)                 | 0.07   | (0.032)   | G2E75          |
|         | 21/2                          | (64.0)   | 120      | 200   | 87                | (13)                 | 0.07   | (0.032)   | G2J110         |
|         | 21/2                          | (64.0)   | 240      | 200   | 87                | (13)                 | 0.07   | (0.032)   | G2J81          |
|         | 21/2                          | (64.0)   | 120      | 250   | 108               | (17)                 | 0.07   | (0.032)   | G2J46          |
|         | 21/2                          | (64.0)   | 240      | 250   | 108               | (17)                 | 0.07   | (0.032)   | G2J80          |
|         | 21/2                          | (64.0)   | 120      | 300   | 130               | (20)                 | 0.07   | (0.032)   | G2J118         |
|         | 21/2                          | (64.0)   | 240      | 300   | 130               | (20)                 | 0.07   | (0.032)   | G2J119         |
|         | 21/2                          | (64.0)   | 120      | 400   | 174               | (27)                 | 0.07   | (0.032)   | G2J26          |
|         | 21/2                          | (64.0)   | 240      | 400   | 174               | (27)                 | 0.07   | (0.032)   | G2J146         |
|         | 21/2                          | (64.0)   | 120      | 500   | 216               | (33)                 | 0.07   | (0.032)   | G2J109         |
|         | 21/2                          | (64.0)   | 240      | 500   | 216               | (33)                 | 0.07   | (0.032)   | G2J52          |
|         | 3                             | (76.0)   | 120      | 100   | 34                | (5)                  | 0.07   | (0.036)   | G3A55          |
|         | 3                             | (76.0)   | 240      | 100   | 34                | (5)                  | 0.08   | (0.036)   | G3A137         |
|         | 3                             | (76.0)   | 120      | 150   | 52                | (8)                  | 0.08   | (0.036)   | G3A121         |
|         | 3                             | (76.0)   | 120      | 200   | 69                | (11)                 | 0.08   | (0.036)   | G3A61          |
|         | 3                             | (76.0)   | 240      | 200   | 69                | (11)                 | 0.08   | (0.036)   | G3A39          |
|         | 3                             | (76.0)   | 120      | 250   | 86                | (13)                 | 0.08   | (0.036)   | G3A52          |
|         | 3                             | (76.0)   | 240      | 250   | 86                | (13)                 | 0.08   | (0.036)   | G3A54          |
|         | 3                             | (76.0)   | 120      | 300   | 104               | (16)                 | 0.08   | (0.036)   | G3A73          |
|         | 3                             | (76.0)   | 240      | 300   | 104               | (16)                 | 0.08   | (0.036)   | G3A92          |
|         | 3                             | (76.0)   | 120      | 400   | 138               | (21)                 | 0.08   | (0.036)   | G3A44          |
|         | 3                             | (76.0)   | 240      | 400   | 138               | (21)                 | 0.08   | (0.036)   | G3A65          |
|         | 3                             | (76.0)   | 120      | 500   | 173               | (27)                 | 0.08   | (0.036)   | G3A119         |
|         | 3                             | (76.0)   | 240      | 500   | 173               | (27)                 | 0.08   | (0.036)   | G3A120         |
|         | 3                             | (76.0)   | 240      | 600   | 208               | (32)                 | 0.08   | (0.036)   | G3A133         |
|         | 31/2                          | (89.0)   | 120      | 250   | 72                | (11)                 | 0.09   | (0.041)   | G3J77          |
|         | 31/2                          | (89.0)   | 240      | 250   | 72                | (11)                 | 0.09   | (0.041)   | G3J65          |
|         | 31/2                          | (89.0)   | 120      | 300   | 87                | (13)                 | 0.09   | (0.041)   | G3J87          |
|         | 31/2                          | (89.0)   | 240      | 300   | 87                | (13)                 | 0.09   | (0.041)   | G3J68          |
|         | 31/2                          | (89.0)   | 120      | 500   | 144               | (22)                 | 0.09   | (0.041)   | G3J22          |
|         | 31/2                          | (89.0)   | 240      | 500   | 144               | (22)                 | 0.09   | (0.041)   | G3J63          |
|         | 4                             | (102.0)  | 120      | 125   | 31                | (5)                  | 0.09   | (0.041)   | G4A54          |
|         | 4                             | (102.0)  | 240      | 125   | 31                | (5)                  | 0.09   | (0.041)   | G4A163         |
|         | 4                             | (102.0)  | 120      | 150   | 37                | (6)                  | 0.09   | (0.041)   | G4A78          |
|         | 4                             | (102.0)  | 120      | 175   | 43                | (7)                  | 0.09   | (0.041)   | G4A191         |
|         | 4                             | (102.0)  | 120      | 250   | 62                | (10)                 | 0.09   | (0.041)   | G4A40          |
|         | 4                             | (102.0)  | 240      | 250   | 62                | (10)                 | 0.09   | (0.041)   | G4A87          |
|         | 4                             | (102.0)  | 120      | 300   | 74                | (11)                 | 0.09   | (0.041)   | G4A94          |
|         | 4                             | (102.0)  | 240      | 300   | 74                | (11)                 | 0.09   | (0.041)   | G4A95          |
|         | 4                             | (102.0)  | 120      | 400   | 99                | (15)                 | 0.09   | (0.041)   | G4A48          |
|         | 4                             | (102.0)  | 240      | 400   | 99                | (15)                 | 0.09   | (0.041)   | G4A44          |
|         | 4                             | (102.0)  | 240      | 450   | 109               | (17)                 | 0.09   | (0.041)   | G4A64          |
|         | 4                             | (102.0)  | 120      | 500   | 123               | (17)                 | 0.09   | (0.041)   | G4A96          |
|         | 4                             | (102.0)  | 240      | 500   | 123               | (19)                 | 0.09   | (0.041)   | G4A90<br>G4A92 |
|         |                               | (102.0)  | <u> </u> | 300   | 120               | (13)                 | 0.08   | (0.041)   | CONTIN         |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| Diameter | Sheat                         | h Length |            |            | Watt              | Density              | Approx | . Net Wt. |                |
|----------|-------------------------------|----------|------------|------------|-------------------|----------------------|--------|-----------|----------------|
| in.      | in.                           | (mm)     | Volts      | Watts      | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs    | (kg)      | Part Numbe     |
|          | 4                             | (102.0)  | 120        | 550        | 134               | (21)                 | 0.09   | (0.041)   | G4A200         |
| 3/8      | 41/4                          | (102.0)  | 240        | 300        | 67                | (10)                 | 0.09   | (0.041)   | G4E25          |
|          | 4 /4 4 4 1/4                  | (108.0)  | 240        | 750        | 167               | (26)                 | 0.09   | (0.041)   | G4E25          |
|          | 41/2                          | (114.0)  | 120        | 300        | 65                | (10)                 | 0.10   | (0.041)   | G4J54          |
|          | 41/2                          | (114.0)  | 240        | 300        | 65                | (10)                 | 0.10   | (0.045)   | G4J33          |
|          | 41/2                          | (114.0)  | 120        | 500        | 108               | (17)                 | 0.10   | (0.045)   | G4J55          |
|          | 41/2                          | (114.0)  | 240        | 500        | 108               | (17)                 | 0.10   | (0.045)   | G4J37          |
|          | 5                             | (127.0)  | 120        | 150        | 29                | (4)                  | 0.10   | (0.043)   | G5A68          |
|          | 5                             | (127.0)  | 240        | 150        | 29                | (4)                  | 0.11   | (0.050)   | G5A56          |
|          | 5                             | (127.0)  | 120        | 300        | 58                | (9)                  | 0.11   | (0.050)   | G5A69          |
|          | 5                             | (127.0)  | 240        | 300        | 58                | (9)                  | 0.11   | (0.050)   | G5A70          |
|          | 5                             | (127.0)  | 120        | 500        | 96                | (15)                 | 0.11   | (0.050)   | G5A38          |
|          | 5                             | (127.0)  | 240        | 500        | 96                | (15)                 | 0.11   | (0.050)   | G5A71          |
|          | 5                             | (127.0)  | 240        | 750        | 144               | (22)                 | 0.11   | (0.050)   | G5A67          |
|          | 5                             | (127.0)  | 240        | 1000       | 192               | (30)                 | 0.11   | (0.050)   | G5A115         |
|          | 5 <sup>1</sup> /4             | (127.0)  | 240        | 200        | 45                | (30)                 | 0.11   | (0.050)   | G5E16          |
|          | 51/2                          | (140.0)  | 240        | 600        | 104               | (16)                 | 0.12   | (0.054)   | G5J36          |
|          | 5 <sup>1</sup> / <sub>2</sub> | (140.0)  | 240        | 1000       | 173               | (27)                 | 0.12   | (0.054)   | G5J36<br>G5J45 |
|          |                               |          | 120        | 200        | 31                |                      |        |           | G6A80          |
|          | 6                             | (152.0)  |            |            | 39                | (5)                  | 0.13   | (0.059)   | G6A40          |
|          | 6                             | (152.0)  | 120<br>240 | 250<br>250 | 39                | (6)                  | 0.13   | (0.059)   |                |
|          |                               | (152.0)  |            |            |                   | (6)                  | 0.13   | (0.059)   | G6A92          |
|          | 6                             | (152.0)  | 120        | 400        | 63                | (10)                 | 0.13   | (0.059)   | G6A81          |
|          | 6                             | (152.0)  | 240        | 400        | 63                | (10)                 | 0.13   | (0.059)   | G6A82          |
|          | 6                             | (152.0)  | 120        | 500        | 79                | (12)                 | 0.13   | (0.059)   | G6A125         |
|          | 6                             | (152.0)  | 240        | 500        | 79                | (12)                 | 0.13   | (0.059)   | G6A59          |
|          | 6                             | (152.0)  | 120        | 600        | 94                | (15)                 | 0.13   | (0.059)   | G6A56          |
|          | 6                             | (152.0)  | 240        | 600        | 94                | (15)                 | 0.13   | (0.059)   | G6A51          |
|          | 6                             | (152.0)  | 240        | 750        | 117               | (18)                 | 0.13   | (0.059)   | G6A46          |
|          | 6                             | (152.0)  | 240        | 1000       | 157               | (24)                 | 0.13   | (0.059)   | G6A83          |
|          | 6 <sup>1</sup> / <sub>2</sub> | (165.0)  | 240        | 600        | 86                | (13)                 | 0.14   | (0.064)   | G6J23          |
|          | 6 <sup>1</sup> /2             | (165.0)  | 240        | 1000       | 144               | (22)                 | 0.14   | (0.064)   | G6J33          |
|          | 7                             | (178.0)  | 120        | 250        | 33                | (5)                  | 0.14   | (0.064)   | G7A40          |
|          | 7                             | (178.0)  | 240        | 250        | 33                | (5)                  | 0.14   | (0.064)   | G7A32          |
|          | 7                             | (178.0)  | 240        | 500        | 65                | (10)                 | 0.14   | (0.064)   | G7A30          |
|          | 7                             | (178.0)  | 120        | 600        | 80                | (12)                 | 0.14   | (0.064)   | G7A41          |
|          | 7                             | (178.0)  | 240        | 600        | 80                | (12)                 | 0.14   | (0.064)   | G7A42          |
|          | 7                             | (178.0)  | 240        | 1000       | 133               | (21)                 | 0.14   | (0.064)   | G7A43          |
|          | 71/2                          | (191.0)  | 240        | 600        | 74                | (11)                 | 0.15   | (0.068)   | G7J27          |
|          | 71/2                          | (191.0)  | 240        | 1000       | 124               | (19)                 | 0.15   | (0.068)   | G7J28          |
|          | 8                             | (203.0)  | 120        | 300        | 34                | (5)                  | 0.16   | (0.073)   | G8A54          |
|          | 8                             | (203.0)  | 240        | 300        | 34                | (5)                  | 0.16   | (0.073)   | G8A47          |
|          | 8                             | (203.0)  | 120        | 400        | 45                | (7)                  | 0.16   | (0.073)   | G8A109         |
|          | 8                             | (203.0)  | 120        | 500        | 58                | (9)                  | 0.16   | (0.073)   | G8A81          |
|          | 8                             | (203.0)  | 240        | 500        | 58                | (9)                  | 0.16   | (0.073)   | G8A32          |
|          | 8                             | (203.0)  | 120        | 600        | 69                | (11)                 | 0.16   | (0.073)   | G8A53          |
|          | 8                             | (203.0)  | 240        | 600        | 69                | (11)                 | 0.16   | (0.073)   | G8A37          |
|          | 8                             | (203.0)  | 240        | 700        | 79                | (12)                 | 0.16   | (0.073)   | G8A98          |
|          | 8                             | (203.0)  | 240        | 1000       | 115               | (18)                 | 0.16   | (0.073)   | G8A45          |
|          | 9                             | (229.0)  | 240        | 1000       | 100               | (16)                 | 0.18   | (0.082)   | G9A37          |
|          | 91/2                          | (241.0)  | 240        | 600        | 57                | (9)                  | 0.19   | (0.086)   | G9J20          |
|          | 91/2                          | (241.0)  | 240        | 1000       | 96                | (15)                 | 0.19   | (0.086)   | G9J12          |
|          | 10                            | (254.0)  | 120        | 400        | 36                | (6)                  | 0.19   | (0.086)   | G10A48         |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



CONTINUED

### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| Diameter | Shea                          | th Length |       |       | Watt              | Density              | Approx | . Net Wt. |            |
|----------|-------------------------------|-----------|-------|-------|-------------------|----------------------|--------|-----------|------------|
| in.      | in.                           | (mm)      | Volts | Watts | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs    | (kg)      | Part Numbe |
| 3/8      | 10                            | (254.0)   | 120   | 600   | 54                | (8)                  | 0.19   | (0.086)   | G10A35     |
| 0/8      | 10                            | (254.0)   | 240   | 600   | 54                | (8)                  | 0.19   | (0.086)   | G10A31     |
|          | 10                            | (254.0)   | 240   | 1000  | 91                | (14)                 | 0.19   | (0.086)   | G10A32     |
|          | 12                            | (305.0)   | 120   | 400   | 30                | (5)                  | 0.13   | (0.100)   | G12A45     |
|          | 12                            | (305.0)   | 120   | 600   | 45                | (7)                  | 0.22   | (0.100)   | G12A29     |
|          | 12                            | (305.0)   | 240   | 600   | 45                | (7)                  | 0.22   | (0.100)   | G12A46     |
|          | 12                            | (305.0)   | 240   | 1000  | 75                | (12)                 | 0.22   | (0.100)   | G12A47     |
| 1,       | 1                             | (25.0)    | 120   | 50    | 65                | (10)                 | 0.06   | (0.100)   | J1A30      |
| 1/2      | 1                             | (25.0)    | 120   | 150   | 193               | (30)                 | 0.06   | (0.027)   | J1A31      |
|          | 1 <sup>1</sup> /4             | (32.0)    | 120   | 50    | 43                | (7)                  | 0.07   | (0.032)   | J1E50      |
|          | 11/4                          | (32.0)    | 120   | 125   | 107               | (17)                 | 0.07   | (0.032)   | J1E51      |
|          | 11/4                          | (32.0)    | 240   | 125   | 107               | (17)                 | 0.07   | (0.032)   | J1E58      |
|          | 11/4                          | (32.0)    | 240   | 200   | 172               | (27)                 | 0.07   | (0.032)   | J1E52      |
|          | 11/4                          | (32.0)    | 240   | 250   | 212               | (33)                 | 0.07   | (0.032)   | J1E88      |
|          | 11/2                          | (38.0)    | 120   | 50    | 32                | (3)                  | 0.08   | (0.036)   | J1J47      |
|          | 11/2                          | (38.0)    | 120   | 150   | 97                | (15)                 | 0.08   | (0.036)   | J1J48      |
|          | 1 <sup>1</sup> /2             | (38.0)    | 240   | 150   | 97                | (15)                 | 0.08   | (0.036)   | J1J96      |
|          | 11/2                          | (38.0)    | 120   | 200   | 128               | (20)                 | 0.08   | (0.036)   | J1J59      |
|          | 11/2                          | (38.0)    | 240   | 200   | 128               | (20)                 | 0.08   | (0.036)   | J1J38      |
|          | 2                             | (51.0)    | 120   | 75    | 32                | (5)                  | 0.09   | (0.041)   | J2A80      |
|          | 2                             | (51.0)    | 120   | 200   | 86                | (13)                 | 0.09   | (0.041)   | J2A49      |
|          | 2                             | (51.0)    | 240   | 200   | 86                | (13)                 | 0.09   | (0.041)   | J2A75      |
|          | 2                             | (51.0)    | 120   | 250   | 108               | (17)                 | 0.09   | (0.041)   | J2A85      |
|          | 2                             | (51.0)    | 240   | 250   | 108               | (17)                 | 0.09   | (0.041)   | J2A71      |
|          | 2                             | (51.0)    | 120   | 300   | 128               | (20)                 | 0.09   | (0.041)   | J2A95      |
|          | 2                             | (51.0)    | 240   | 300   | 128               | (20)                 | 0.09   | (0.041)   | J2A96      |
|          | 2                             | (51.0)    | 120   | 400   | 171               | (27)                 | 0.09   | (0.041)   | J2A81      |
|          | 2                             | (51.0)    | 240   | 400   | 171               | (27)                 | 0.09   | (0.041)   | J2A82      |
|          | 21/4                          | (57.0)    | 120   | 75    | 28                | (4)                  | 0.10   | (0.045)   | J2E86      |
|          | 21/4                          | (57.0)    | 120   | 125   | 46                | (7)                  | 0.10   | (0.045)   | J2E87      |
|          | 21/4                          | (57.0)    | 120   | 250   | 92                | (14)                 | 0.10   | (0.045)   | J2E56      |
|          | 21/4                          | (57.0)    | 240   | 250   | 92                | (14)                 | 0.10   | (0.045)   | J2E69      |
|          | 21/4                          | (57.0)    | 120   | 400   | 147               | (22)                 | 0.10   | (0.045)   | J2E114     |
|          | 21/4                          | (57.0)    | 240   | 400   | 147               | (22)                 | 0.10   | (0.045)   | J2E115     |
|          | 21/4                          | (57.0)    | 120   | 500   | 184               | (29)                 | 0.10   | (0.045)   | J2E64      |
|          | 21/4                          | (57.0)    | 240   | 500   | 184               | (29)                 | 0.10   | (0.045)   | J2E88      |
|          | 21/2                          | (64.0)    | 120   | 100   | 32                | (5)                  | 0.11   | (0.050)   | J2J67      |
|          | 21/2                          | (64.0)    | 240   | 100   | 32                | (5)                  | 0.11   | (0.050)   | J2J57      |
|          | 21/2                          | (64.0)    | 120   | 250   | 81                | (13)                 | 0.11   | (0.050)   | J2J68      |
|          | 21/2                          | (64.0)    | 240   | 250   | 81                | (13)                 | 0.11   | (0.050)   | J2J69      |
|          | 21/2                          | (64.0)    | 120   | 300   | 96                | (15)                 | 0.11   | (0.050)   | J2J109     |
|          | 21/2                          | (64.0)    | 240   | 300   | 96                | (15)                 | 0.11   | (0.050)   | J2J110     |
|          | 21/2                          | (64.0)    | 120   | 400   | 128               | (20)                 | 0.11   | (0.050)   | J2J81      |
|          | 21/2                          | (64.0)    | 240   | 400   | 128               | (20)                 | 0.11   | (0.050)   | J2J82      |
|          | 21/2                          | (64.0)    | 120   | 500   | 161               | (24)                 | 0.11   | (0.050)   | J2J66      |
|          | 21/2                          | (64.0)    | 240   | 500   | 161               | (24)                 | 0.11   | (0.050)   | J2J70      |
|          | 23/4                          | (70.0)    | 240   | 400   | 115               | (18)                 | 0.11   | (0.050)   | J2N43      |
|          | 2 <sup>3</sup> / <sub>4</sub> | (70.0)    | 120   | 400   | 115               | (18)                 | 0.11   | (0.050)   | J2N45      |
|          | 3                             | (76.0)    | 120   | 125   | 32                | (5)                  | 0.12   | (0.054)   | J3A108     |
|          | 3                             | (76.0)    | 240   | 125   | 32                | (5)                  | 0.12   | (0.054)   | J3A109     |
|          | 3                             | (76.0)    | 120   | 250   | 64                | (10)                 | 0.12   | (0.054)   | J3A107     |
|          | 3                             | (76.0)    | 240   | 250   | 64                | (10)                 | 0.12   | (0.054)   | J3A89      |
|          | 3                             | (76.0)    | 120   | 300   | 78                | (12)                 | 0.12   | (0.054)   | J3A65      |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



Next day shipment

### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| Diameter | She <u>at</u>                 | th Length          |            |            | Watt              | Density              | Approx       | . Net Wt.          |                |
|----------|-------------------------------|--------------------|------------|------------|-------------------|----------------------|--------------|--------------------|----------------|
| in.      | in.                           | (mm)               | Volts      | Watts      | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs          | (kg)               | Part Numbe     |
| 1/2      | 3                             | (76.0)             | 120        | 350        | 89                | (14)                 | 0.12         | (0.054)            | J3A173         |
| ./2      | 3                             | (76.0)             | 240        | 300        | 78                | (12)                 | 0.12         | (0.054)            | J3A73          |
|          | 3                             | (76.0)             | 120        | 400        | 104               | (16)                 | 0.12         | (0.054)            | J3A132         |
|          | 3                             | (76.0)             | 240        | 400        | 104               | (16)                 | 0.12         | (0.054)            | J3A29          |
|          | 3                             | (76.0)             | 120        | 500        | 129               | (20)                 | 0.12         | (0.054)            | J3A110         |
|          | 3                             | (76.0)             | 240        | 500        | 129               | (20)                 | 0.12         | (0.054)            | J3A111         |
|          | 3                             | (76.0)             | 120        | 600        | 154               | (24)                 | 0.12         | (0.054)            | J3A51          |
|          | 3                             | (76.0)             | 240        | 600        | 154               | (24)                 | 0.12         | (0.054)            | J3A127         |
|          | 3                             | (76.0)             | 120        | 750        | 193               | (30)                 | 0.12         | (0.054)            | J3A137         |
|          | 3                             | (76.0)             | 240        | 750        | 193               | (30)                 | 0.12         | (0.054)            | J3A112         |
|          | 3                             | (76.0)             | 120        | 1000       | 254               | (39)                 | 0.12         | (0.054)            | J3A79          |
|          | 3 <sup>1</sup> /2             | (89.0)             | 120        | 250        | 54                | (8)                  | 0.14         | (0.064)            | J3J44          |
|          | 31/2                          | (89.0)             | 240        | 250        | 54                | (8)                  | 0.14         | (0.064)            | J3J64          |
|          | 31/2                          | (89.0)             | 240        | 350        | 75                | (12)                 | 0.14         | (0.064)            | J3J65          |
|          | 31/2                          | (89.0)             | 120        | 500        | 107               | (17)                 | 0.14         | (0.064)            | J3J45          |
|          | 31/2                          | (89.0)             | 240        | 500        | 107               | (17)                 | 0.14         | (0.064)            | J3J46          |
|          | 31/2                          | (89.0)             | 240        | 750        | 162               | (25)                 | 0.14         | (0.064)            | J3J63          |
|          | 4                             | (102.0)            | 120        | 150        | 28                | (4)                  | 0.15         | (0.068)            | J4A117         |
|          | 4                             | (102.0)            | 240        | 150        | 28                | (4)                  | 0.15         | (0.068)            | J4A122         |
|          | 4                             | (102.0)            | 120        | 250        | 46                | (7)                  | 0.15         | (0.068)            | J4A118         |
|          | 4                             | (102.0)            | 240        | 250        | 46                | (7)                  | 0.15         | (0.068)            | J4A90          |
|          | 4                             | (102.0)            | 120        | 300        | 56                | (9)                  | 0.15         | (0.068)            | J4A63          |
|          | 4                             | (102.0)            | 240        | 300        | 56                | (9)                  | 0.15         | (0.068)            | J4A26          |
|          | 4                             | (102.0)            | 120        | 350        | 65                | (10)                 | 0.15         | (0.068)            | J4A1           |
|          | 4                             | (102.0)            | 240        | 350        | 65                | (10)                 | 0.15         | (0.068)            | J4A103         |
|          | 4                             | (102.0)            | 120        | 400        | 74                | (11)                 | 0.15         | (0.068)            | J4A139         |
|          | 4                             | (102.0)            | 240        | 400        | 74                | (11)                 | 0.15         | (0.068)            | J4A68          |
|          | 4                             | (102.0)            | 120        | 500        | 92                | (14)                 | 0.15         | (0.068)            | J4A16          |
|          | 4                             | (102.0)            | 120        | 550        | 100               | (16)                 | 0.15         | (0.068)            | J4A242         |
|          | 4                             | (102.0)            | 240        | 500        | 92                | (14)                 | 0.15         | (0.068)            | J4A92          |
|          | 4                             | (102.0)            | 120        | 750        | 138               | (21)                 | 0.15         | (0.068)            | J4A198         |
|          | 4                             | (102.0)            | 240        | 750        | 138               | (21)                 | 0.15         | (0.068)            | J4A119         |
|          | 4                             | (102.0)            | 240        | 1000       | 184               | (28)                 | 0.15         | (0.068)            | J4A73          |
|          | 41/2                          | (114.0)            | 120        | 500        | 80                | (12)                 | 0.17         | (0.077)            | J4J69          |
|          | 4 <sup>1</sup> /2             | (114.0)            | 240        | 500        | 80                | (12)                 | 0.17         | (0.077)            | J4J57          |
|          | 4 <sup>1</sup> /2             | (114.0)            | 120        | 750        | 120               | (19)                 | 0.17         | (0.077)            | J4J70          |
|          | 4 <sup>1</sup> / <sub>2</sub> | (114.0)            | 240<br>120 | 750<br>200 | 120               | (19)                 | 0.17         | (0.077)            | J4J32          |
|          | 5                             | (127.0)            | 240        | 200        | 29<br>29          | (4)                  | 0.19<br>0.19 | (0.086)<br>(0.086) | J5A85<br>J5A74 |
|          | 5<br>5                        | (127.0)<br>(127.0) | 120        | 350        | 50                | (4)<br>(8)           | 0.19         | (0.086)            | J5A74<br>J5A86 |
|          | 5                             | (127.0)            | 240        | 350        | 50                | (8)                  | 0.19         | (0.086)            | J5A63          |
|          | 5                             | (127.0)            | 120        | 400        | 58                | (9)                  | 0.19         | (0.086)            | J5A98          |
|          | 5                             | (127.0)            | 240        | 400        | 58                | (9)                  | 0.19         | (0.086)            | J5A96<br>J5A46 |
|          | 5                             | (127.0)            | 120        | 500        | 72                | (11)                 | 0.19         | (0.086)            | J5A52          |
|          | 5                             | (127.0)            | 240        | 500        | 72                | (11)                 | 0.19         | (0.086)            | J5A45          |
|          | 5                             | (127.0)            | 120        | 750        | 108               | (17)                 | 0.19         | (0.086)            | J5A121         |
|          | 5                             | (127.0)            | 240        | 750        | 108               | (17)                 | 0.19         | (0.086)            | J5A72          |
|          | 5                             | (127.0)            | 240        | 1000       | 143               | (22)                 | 0.19         | (0.086)            | J5A87          |
|          | 5 <sup>1</sup> / <sub>2</sub> | (140.0)            | 240        | 200        | 25                | (4)                  | 0.10         | (0.091)            | J5J38          |
|          | 5 <sup>1</sup> /2             | (140.0)            | 120        | 500        | 64                | (10)                 | 0.20         | (0.091)            | J5J43          |
|          | 5 <sup>1</sup> / <sub>2</sub> | (140.0)            | 240        | 500        | 64                | (10)                 | 0.20         | (0.091)            | J5J33          |
|          | 5 <sup>1</sup> /2             | (140.0)            | 240        | 650        | 83                | (13)                 | 0.20         | (0.091)            | J5J69          |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



Next day shipment

CONTINUED

### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| Diameter | Sheat                         | h Length |            |              | Watt              | Density | Approx       | . Net Wt. |                 |
|----------|-------------------------------|----------|------------|--------------|-------------------|---------|--------------|-----------|-----------------|
| in.      | in.                           | (mm)     | Volts      | Watts        | W/in <sup>2</sup> | (W/cm²) | lbs          | (kg)      | Part Numbe      |
| 1/2      | 5 <sup>1</sup> / <sub>2</sub> | (140.0)  | 120        | 750          | 97                | (15)    | 0.20         | (0.091)   | J5J44           |
| 12       | 5 <sup>1</sup> / <sub>2</sub> | (140.0)  | 240        | 750          | 97                | (15)    | 0.20         | (0.091)   | J5J45           |
|          | 5 <sup>3</sup> /4             | (146.0)  | 120        | 700          | 86                | (13)    | 0.20         | (0.091)   | J5N6            |
|          | 5 <sup>3</sup> /4             | (146.0)  | 240        | 700          | 86                | (13)    | 0.20         | (0.091)   | J5N8            |
|          | 6                             | (152.0)  | 120        | 250          | 29                | (4)     | 0.21         | (0.095)   | J6A114          |
|          | 6                             | (152.0)  | 240        | 250          | 29                | (4)     | 0.21         | (0.095)   | J6A171          |
|          | 6                             | (152.0)  | 240        | 300          | 35                | (6)     | 0.21         | (0.095)   | J6A66           |
|          | 6                             | (152.0)  | 240        | 350          | 41                | (7)     | 0.21         | (0.095)   | J6A119          |
|          | 6                             | (152.0)  | 120        | 500          | 59                | (9)     | 0.21         | (0.095)   | J6A115          |
|          | 6                             | (152.0)  | 240        | 500          | 59                | (9)     | 0.21         | (0.095)   | J6A94           |
|          | 6                             | (152.0)  | 120        | 750          | 88                | (14)    | 0.21         | (0.095)   | J6A99           |
|          | 6                             | (152.0)  | 240        | 750          | 88                | (14)    | 0.21         | (0.095)   | J6A90           |
|          | 6                             | (152.0)  | 120        | 1000         | 117               | (18)    | 0.21         | (0.095)   | J6A53           |
|          | 6                             | (152.0)  | 240        | 1000         | 117               | (18)    | 0.21         | (0.095)   | J6A36           |
|          | 61/2                          | (165.0)  | 240        | 500          | 54                | (8)     | 0.23         | (0.104)   | J6J45           |
|          | 61/2                          | (165.0)  | 240        | 1000         | 108               | (17)    | 0.23         | (0.104)   | J6J27           |
|          | 7                             | (178.0)  | 120        | 250          | 25                | (4)     | 0.24         | (0.109)   | J7A79           |
|          | 7                             | (178.0)  | 120        | 500          | 50                | (8)     | 0.24         | (0.109)   | J7A80           |
|          | 7                             | (178.0)  | 240        | 500          | 50                | (8)     | 0.24         | (0.109)   | J7A57           |
|          | 7                             | (178.0)  | 120        | 600          | 60                | (9)     | 0.24         | (0.109)   | J7A50           |
|          | 7                             | (178.0)  | 240        | 600          | 60                | (9)     | 0.24         | (0.109)   | J7A95           |
|          | 7                             | (178.0)  | 240        | 1000         | 99                | (15)    | 0.24         | (0.109)   | J7A81           |
|          | 71/2                          | (178.0)  | 240        | 500          | 46                | (7)     | 0.24         | (0.109)   | J7J25           |
|          | 71/2                          | (191.0)  | 240        | 1000         | 92                | (14)    | 0.26         | (0.118)   | J7J26           |
|          | 8                             | (203.0)  | 120        | 300          | 26                | (4)     | 0.28         | (0.118)   | J8A71           |
|          | 8                             | (203.0)  | 240        | 300          | 26                | (4)     | 0.28         | (0.127)   | J8A111          |
|          | 8                             | (203.0)  | 120        | 500          | 43                | (7)     | 0.28         | (0.127)   | J8A64           |
|          | 8                             |          | 240        | 500          | 43                |         | 0.28         |           | J8A66           |
|          | 8                             | (203.0)  | 120        | 1000         | 86                | (7)     |              | (0.127)   | J8A84           |
|          |                               | (203.0)  |            |              |                   | (13)    | 0.28         | (0.127)   |                 |
|          | 8                             | (203.0)  | 240<br>240 | 1000<br>1500 | 86<br>129         | (13)    | 0.28<br>0.28 | (0.127)   | J8A60<br>J8A100 |
|          |                               | (203.0)  |            |              |                   | (20)    |              | (0.127)   |                 |
|          | 8                             | (203.0)  | 240        | 2000         | 172               | (27)    | 0.28         | (0.127)   | J8A101          |
|          | 8 <sup>1</sup> / <sub>2</sub> | (216.0)  | 240        | 300          | 24                | (4)     | 0.29         | (0.132)   | J8J39           |
|          | 81/2                          | (216.0)  | 240        | 500          | 40                | (6)     | 0.29         | (0.132)   | J8J30           |
|          | 81/2                          | (216.0)  | 240        | 1000         | 80                | (12)    | 0.29         | (0.132)   | J8J28           |
|          | 9                             | (229.0)  | 240        | 500          | 38                | (6)     | 0.30         | (0.136)   | J9A35           |
|          | 9                             | (229.0)  | 240        | 1000         | 76                | (12)    | 0.30         | (0.136)   | J9A58           |
|          | 9 <sup>1</sup> / <sub>2</sub> | (241.0)  | 240        | 500          | 36                | (6)     | 0.32         | (0.145)   | J9J14           |
|          | 9 <sup>1</sup> / <sub>2</sub> | (241.0)  | 240<br>120 | 1000<br>500  | 72<br>34          | (11)    | 0.32         | (0.145)   | J9J12           |
|          |                               | (254.0)  |            |              |                   | (5)     | 0.33         | (0.150)   | J10A61          |
|          | 10                            | (254.0)  | 240        | 500          | 34                | (5)     | 0.33         | (0.150)   | J10A62          |
|          | 10                            | (254.0)  | 120        | 1000         | 68                | (11)    | 0.33         | (0.150)   | J10A63          |
|          | 10                            | (254.0)  | 240        | 1000         | 68                | (11)    | 0.33         | (0.150)   | J10A42          |
|          | 10                            | (254.0)  | 240        | 1500         | 102               | (16)    | 0.33         | (0.150)   | J10A33          |
|          | 10                            | (254.0)  | 240        | 2000         | 136               | (21)    | 0.33         | (0.150)   | J10A64          |
|          | 11                            | (279.0)  | 240        | 1000         | 61                | (9)     | 0.36         | (0.163)   | J11A60          |
|          | 12                            | (305.0)  | 120        | 500          | 28                | (4)     | 0.40         | (0.181)   | J12A63          |
|          | 12                            | (305.0)  | 240        | 500          | 28                | (4)     | 0.40         | (0.181)   | J12A76          |
|          | 12                            | (305.0)  | 120        | 1000         | 56                | (9)     | 0.40         | (0.181)   | J12A40          |
|          | 12                            | (305.0)  | 240        | 1000         | 56                | (9)     | 0.40         | (0.181)   | J12A49          |
|          | 12                            | (305.0)  | 240        | 1500         | 84                | (13)    | 0.40         | (0.181)   | J12A37          |
|          | 12                            | (305.0)  | 240        | 2000         | 112               | (17)    | 0.40         | (0.181)   | J12A89          |
|          | 14                            | (356.0)  | 240        | 1000         | 48                | (7)     | 0.48         | (0.218)   | J14A41          |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| iameter | Sheat                         | th Length |       |       | Watt              | Density              | Approx | . Net Wt. |            |
|---------|-------------------------------|-----------|-------|-------|-------------------|----------------------|--------|-----------|------------|
| in.     | in.                           | (mm)      | Volts | Watts | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs    | (kg)      | Part Numbe |
| 1/2     | 14                            | (356.0)   | 240   | 2300  | 110               | (17)                 | 0.48   | (0.218)   | J14A39     |
| .12     | 15                            | (381.0)   | 240   | 1500  | 66                | (10)                 | 0.50   | (0.227)   | J15A19     |
|         | 16                            | (406.0)   | 240   | 1000  | 41                | (7)                  | 0.52   | (0.236)   | J16A12     |
|         | 18                            | (457.0)   | 240   | 1500  | 55                | (9)                  | 0.57   | (0.259)   | J18A19     |
|         | 18                            | (457.0)   | 240   | 1700  | 62                | (9)                  | 0.57   | (0.259)   | J18A23     |
| 5/8     | 11/4                          | (32.0)    | 120   | 50    | 34                | (5)                  | 0.10   | (0.045)   | L1E26      |
| 7.6     | 11/4                          | (32.0)    | 120   | 200   | 137               | (21)                 | 0.10   | (0.045)   | L1E24      |
|         | 11/4                          | (32.0)    | 120   | 250   | 171               | (27)                 | 0.10   | (0.045)   | L1E27      |
|         | 1 <sup>1</sup> /2             | (38.0)    | 120   | 250   | 128               | (20)                 | 0.11   | (0.050)   | L1J23      |
|         | 1 <sup>1</sup> /2             | (38.0)    | 240   | 250   | 128               | (20)                 | 0.11   | (0.050)   | L1J24      |
|         | 2                             | (51.0)    | 120   | 100   | 34                | (5)                  | 0.13   | (0.059)   | L2A48      |
|         | 2                             | (51.0)    | 120   | 200   | 68                | (11)                 | 0.13   | (0.059)   | L2A49      |
|         | 2                             | (51.0)    | 240   | 500   | 170               | (26)                 | 0.13   | (0.059)   | L2A54      |
|         | 2 <sup>1</sup> / <sub>4</sub> | (57.0)    | 120   | 100   | 29                | (4)                  | 0.14   | (0.064)   | L2E49      |
|         | 2 <sup>1</sup> /4             | (57.0)    | 120   | 250   | 73                | (11)                 | 0.14   | (0.064)   | L2E50      |
|         | 21/4                          | (57.0)    | 240   | 250   | 73                | (11)                 | 0.14   | (0.064)   | L2E12      |
|         | 21/4                          | (57.0)    | 120   | 350   | 103               | (16)                 | 0.14   | (0.064)   | L2E40      |
|         | 21/4                          | (57.0)    | 240   | 350   | 103               | (16)                 | 0.14   | (0.064)   | L2E51      |
|         | 3                             | (76.0)    | 120   | 150   | 31                | (5)                  | 0.20   | (0.091)   | L3A81      |
|         | 3                             | (76.0)    | 120   | 250   | 51                | (8)                  | 0.20   | (0.091)   | L3A82      |
|         | 3                             | (76.0)    | 240   | 250   | 51                | (8)                  | 0.20   | (0.091)   | L3A9       |
|         | 3                             | (76.0)    | 120   | 400   | 81                | (13)                 | 0.20   | (0.091)   | L3A94      |
|         | 3                             | (76.0)    | 120   | 500   | 102               | (16)                 | 0.20   | (0.091)   | L3A113     |
|         | 3                             | (76.0)    | 240   | 500   | 103               | (16)                 | 0.20   | (0.091)   | L3A33      |
|         | 3                             | (76.0)    | 240   | 750   | 154               | (24)                 | 0.20   | (0.091)   | L3A71      |
|         | 33/4                          | (95.0)    | 120   | 525   | 82                | (13)                 | 0.24   | (0.109)   | L3N12      |
|         | 33/4                          | (95.0)    | 240   | 525   | 82                | (13)                 | 0.24   | (0.109)   | L3N1       |
|         | 4                             | (102.0)   | 120   | 250   | 37                | (6)                  | 0.26   | (0.118)   | L4A99      |
|         | 4                             | (102.0)   | 240   | 250   | 37                | (6)                  | 0.26   | (0.118)   | L4A104     |
|         | 4                             | (102.0)   | 240   | 400   | 58                | (9)                  | 0.26   | (0.118)   | L4A47      |
|         | 4                             | (102.0)   | 240   | 500   | 73                | (11)                 | 0.26   | (0.118)   | L4A53      |
|         | 4                             | (102.0)   | 240   | 600   | 88                | (14)                 | 0.26   | (0.118)   | L4A44      |
|         | 4                             | (102.0)   | 240   | 750   | 110               | (17)                 | 0.26   | (0.118)   | L4A100     |
|         | 4                             | (102.0)   | 240   | 1000  | 146               | (23)                 | 0.26   | (0.118)   | L4A71      |
|         | 5                             | (127.0)   | 120   | 250   | 28                | (4)                  | 0.29   | (0.132)   | L5A76      |
|         | 5                             | (127.0)   | 240   | 250   | 28                | (4)                  | 0.29   | (0.132)   | L5A107     |
|         | 5                             | (127.0)   | 240   | 500   | 57                | (9)                  | 0.29   | (0.132)   | L5A24      |
|         | 5                             | (127.0)   | 240   | 750   | 86                | (13)                 | 0.29   | (0.132)   | L5A31      |
|         | 5                             | (127.0)   | 240   | 1000  | 114               | (18)                 | 0.29   | (0.132)   | L5A77      |
|         | 6                             | (152.0)   | 120   | 300   | 28                | (4)                  | 0.34   | (0.154)   | L6A28      |
|         | 6                             | (152.0)   | 240   | 300   | 28                | (4)                  | 0.34   | (0.154)   | L6A64      |
|         | 6                             | (152.0)   | 240   | 500   | 47                | (7)                  | 0.34   | (0.154)   | L6A73      |
|         | 6                             | (152.0)   | 240   | 750   | 70                | (11)                 | 0.34   | (0.154)   | L6A70      |
|         | 6                             | (152.0)   | 240   | 1000  | 93                | (14)                 | 0.34   | (0.154)   | L6A71      |
|         | 6                             | (152.0)   | 120   | 1500  | 139               | (22)                 | 0.34   | (0.154)   | L6A163     |
|         | 6                             | (152.0)   | 240   | 1500  | 140               | (22)                 | 0.34   | (0.154)   | L6A94      |
|         | 61/2                          | (165.0)   | 120   | 500   | 43                | (7)                  | 0.38   | (0.172)   | L6J43      |
|         | 61/2                          | (165.0)   | 240   | 500   | 43                | (7)                  | 0.38   | (0.172)   | L6J55      |
|         | 7                             | (178.0)   | 120   | 500   | 39                | (6)                  | 0.40   | (0.181)   | L7A42      |
|         | 7                             | (178.0)   | 240   | 500   | 39                | (6)                  | 0.40   | (0.181)   | L7A15      |
|         | 7                             | (178.0)   | 240   | 1000  | 79                | (12)                 | 0.40   | (0.181)   | L7A37      |
|         | 7                             | (178.0)   | 240   | 1500  | 118               | (18)                 | 0.40   | (0.181)   | L7A12      |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| Diameter | Shea                          | th Length          |       |             | Watt              | Density | Approx       | . Net Wt.          |                |
|----------|-------------------------------|--------------------|-------|-------------|-------------------|---------|--------------|--------------------|----------------|
| in.      | in.                           | (mm)               | Volts | Watts       | W/in <sup>2</sup> | (W/cm²) | lbs          | (kg)               | Part Numbe     |
| 5/8      | 8                             | (203.0)            | 120   | 500         | 34                | (5)     | 0.47         | (0.213)            | L8A96          |
| 9/8      | 8                             | (203.0)            | 240   | 500         | 34                | (5)     | 0.47         | (0.213)            | L8A46          |
|          | 8                             | (203.0)            | 240   | 850         | 58                | (9)     | 0.47         | (0.213)            | L8A115         |
|          | 8                             | (203.0)            | 240   | 1000        | 68                | (10)    | 0.47         | (0.213)            | L8A10          |
|          | 8                             | (203.0)            | 240   | 1500        | 102               | (16)    | 0.47         | (0.213)            | L8A37          |
|          | 8                             | (203.0)            | 240   | 2000        | 137               | (21)    | 0.47         | (0.213)            | L8A80          |
|          | 10                            | (254.0)            | 120   | 500         | 27                | (4)     | 0.53         | (0.240)            | L10A51         |
|          | 10                            | (254.0)            | 240   | 500         | 27                | (4)     | 0.53         | (0.240)            | L10A40         |
|          | 10                            | (254.0)            | 240   | 750         | 40                | (6)     | 0.53         | (0.240)            | L10A69         |
|          | 10                            | (254.0)            | 240   | 1000        | 54                | (8)     | 0.53         | (0.240)            | L10A52         |
|          | 10                            | (254.0)            | 480   | 1000        | 54                | (8)     | 0.53         | (0.240)            | L10A193        |
|          | 10                            | (254.0)            | 240   | 1500        | 81                | (13)    | 0.53         | (0.240)            | L10A8          |
|          | 10                            | (254.0)            | 240   | 2000        | 108               | (17)    | 0.53         | (0.240)            | L10A50         |
|          | 12                            | (305.0)            | 120   | 500         | 22                | (3)     | 0.66         | (0.300)            | L12A81         |
|          | 12                            | (305.0)            | 240   | 500         | 22                | (3)     | 0.66         | (0.300)            | L12A80         |
|          | 12                            | (305.0)            | 240   | 900         | 40                | (6)     | 0.66         | (0.300)            | L12A102        |
|          | 12                            | (305.0)            | 120   | 1000        | 45                | (7)     | 0.66         | (0.300)            | L12A82         |
|          | 12                            | (305.0)            | 240   | 1000        | 45                | (7)     | 0.66         | (0.300)            | L12A34         |
|          | 12                            | (305.0)            | 120   | 1500        | 66                | (10)    | 0.66         | (0.300)            | L12A147        |
|          | 12                            | (305.0)            | 240   | 1500        | 67                | (10)    | 0.66         | (0.300)            | L12A39         |
|          | 12                            | (305.0)            | 240   | 2000        | 89                | (14)    | 0.66         | (0.300)            | L12A63         |
|          | 14                            | (356.0)            | 240   | 3700        | 140               | (22)    | 0.79         | (0.358)            | L14A21         |
|          | 15                            | (381.0)            | 240   | 750         | 27                | (4)     | 0.73         | (0.381)            | L15A35         |
|          | 15                            | (381.0)            | 240   | 2400        | 84                | (13)    | 0.84         | (0.381)            | L15A20         |
|          | 15                            | (381.0)            | 480   | 2500        | 88                | (14)    | 0.84         | (0.381)            | L15A88         |
|          | 15                            | (381.0)            | 240   | 4000        | 141               | (22)    | 0.84         | (0.381)            | L15A41         |
|          | 16                            | (406.0)            | 240   | 2500        | 82                | (13)    | 0.91         | (0.412)            | L16A33         |
|          | 16                            | (406.0)            | 240   | 4500        | 148               | (23)    | 0.91         | (0.412)            | L16A40         |
|          | 18                            | (457.0)            | 240   | 1500        | 44                | (7)     | 1.03         | (0.412)            | L18A32         |
|          | 18                            | (457.0)            | 240   | 3000        | 87                | (13)    | 1.03         | (0.467)            | L18A34         |
|          | 18                            | (457.0)            | 240   | 4700        | 137               | (21)    | 1.03         | (0.467)            | L18A36         |
|          | 20                            | (508.0)            | 240   | 1500        | 40                | (6)     | 1.25         | (0.467)            | L20A19         |
|          | 20                            | (508.0)            | 240   | 3500        | 92                | (14)    | 1.25         | (0.567)            | L20A13         |
|          | 20                            | (508.0)            | 480   | 3500        | 92                | (14)    | 1.25         | (0.567)            | L20A13         |
|          | 20                            | (508.0)            | 240   | 4700        | 123               | (14)    | 1.25         | (0.567)            | L20A90         |
|          | 24                            | (610.0)            | 240   | 2000        | 44                | (7)     | 1.47         | (0.667)            | L24A19         |
|          | 24                            | (610.0)            | 240   | 4700        | 102               | (15)    | 1.47         | (0.667)            | L24A14         |
|          | 36                            | (914.0)            | 240   | 3000        | 43                | (7)     | 2.30         | (1.04)             | L36A8          |
| 3/4      | 2 <sup>1</sup> / <sub>4</sub> | (57.0)             | 120   | 200         | 49                | (8)     | 0.19         | (0.086)            | N2E8           |
| 74       | 3                             | (76.0)             | 120   | 250         | 43                | (7)     | 0.19         | (0.000)            | N3A11          |
|          | 3                             | (76.0)             | 240   | 500         | 85                | (13)    | 0.24         | (0.109)            | N3A12          |
|          | 4                             | (102.0)            | 120   | 250         | 31                |         | 0.24         |                    | N4A16          |
|          | 4                             |                    | 240   |             | 61                | (5)     |              | (0.141)            | N4A16<br>N4A17 |
|          |                               | (102.0)            | 240   | 500         |                   | (9)     | 0.31         | (0.141)            |                |
|          | 5                             | (102.0)<br>(127.0) | 120   | 1000<br>300 | 122<br>28         | (19)    | 0.31<br>0.38 | (0.141)<br>(0.172) | N4A15<br>N5A19 |
|          |                               |                    |       |             |                   | (4)     |              |                    | N5A19<br>N5A12 |
|          | 5                             | (127.0)            | 240   | 500         | 47                | (7)     | 0.38         | (0.172)            |                |
|          | 5                             | (127.0)            | 240   | 1000        | 95                | (15)    | 0.38         | (0.172)            | N5A20          |
|          | 6                             | (152.0)            | 120   | 500         | 39                | (6)     | 0.44         | (0.200)            | N6A19          |
|          | 6                             | (152.0)            | 240   | 500         | 39                | (6)     | 0.44         | (0.200)            | N6A20          |
|          | 6                             | (152.0)            | 240   | 1000        | 78                | (12)    | 0.44         | (0.200)            | N6A21          |
|          | 6                             | (152.0)            | 480   | 1000        | 78                | (12)    | 0.44         | (0.200)            | N6A225         |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



### **FIREROD Cartridge Heaters**

#### **Heater Part Numbers**

| Diameter | Shea | th Length |       |       | Watt              | Density              | Approx | . Net Wt. |             |
|----------|------|-----------|-------|-------|-------------------|----------------------|--------|-----------|-------------|
| in.      | in.  | (mm)      | Volts | Watts | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbsw   | (kg)      | Part Number |
| 3/4      | 6    | (152.0)   | 240   | 1500  | 116               | (18)                 | 0.44   | (0.200)   | N6A82       |
| / -      | 6    | (152.0)   | 240   | 2000  | 155               | (24)                 | 0.44   | (0.200)   | N6A22       |
|          | 7    | (178.0)   | 120   | 500   | 33                | (5)                  | 0.51   | (0.231)   | N7A15       |
|          | 7    | (178.0)   | 240   | 500   | 33                | (5)                  | 0.51   | (0.231)   | N7A1        |
|          | 7    | (178.0)   | 240   | 1000  | 66                | (10)                 | 0.51   | (0.231)   | N7A16       |
|          | 8    | (203.0)   | 120   | 500   | 28                | (4)                  | 0.58   | (0.263)   | N8A19       |
|          | 8    | (203.0)   | 240   | 500   | 28                | (4)                  | 0.58   | (0.263)   | N8A20       |
|          | 8    | (203.0)   | 240   | 1000  | 57                | (9)                  | 0.58   | (0.263)   | N8A21       |
|          | 8    | (203.0)   | 240   | 2000  | 114               | (17)                 | 0.58   | (0.263)   | N8A22       |
|          | 10   | (254.0)   | 240   | 1000  | 45                | (7)                  | 0.72   | (0.327)   | N10A15      |
|          | 10   | (254.0)   | 240   | 2000  | 90                | (14)                 | 0.72   | (0.327)   | N10A14      |
|          | 12   | (305.0)   | 240   | 1000  | 37                | (6)                  | 0.84   | (0.381)   | N12A15      |
|          | 12   | (305.0)   | 240   | 2000  | 74                | (11)                 | 0.84   | (0.381)   | N12A24      |
|          | 12   | (305.0)   | 480   | 2000  | 74                | (11)                 | 0.84   | (0.381)   | N12A198     |
|          | 12   | (305.0)   | 240   | 4000  | 148               | (23)                 | 0.84   | (0.381)   | N12A25      |
|          | 13   | (330.0)   | 240   | 1000  | 34                | (5)                  | 0.93   | (0.422)   | N13A26      |
|          | 14   | (356.0)   | 240   | 1250  | 40                | (6)                  | 1.03   | (0.467)   | N14A22      |
|          | 14   | (356.0)   | 240   | 2500  | 79                | (12)                 | 1.03   | (0.467)   | N14A20      |
|          | 14   | (356.0)   | 240   | 4500  | 142               | (22)                 | 1.03   | (0.467)   | N14A21      |
|          | 15   | (381.0)   | 240   | 1500  | 44                | (7)                  | 1.09   | (0.494)   | N15A26      |
|          | 16   | (406.0)   | 240   | 1800  | 49                | (8)                  | 1.14   | (0.517)   | N16A26      |
|          | 16   | (406.0)   | 240   | 4700  | 129               | (20)                 | 1.14   | (0.517)   | N16A18      |
|          | 18   | (457.0)   | 240   | 2000  | 49                | (8)                  | 1.25   | (0.567)   | N18A13      |
|          | 18   | (457.0)   | 240   | 5000  | 122               | (19)                 | 1.25   | (0.567)   | N18A15      |
|          | 20   | (508.0)   | 240   | 1150  | 25                | (4)                  | 1.40   | (0.635)   | N20A21      |
|          | 20   | (508.0)   | 240   | 2250  | 49                | (8)                  | 1.40   | (0.635)   | N20A22      |
|          | 20   | (508.0)   | 240   | 5250  | 115               | (18)                 | 1.40   | (0.635)   | N20A10      |
|          | 24   | (610.0)   | 240   | 1375  | 25                | (4)                  | 1.80   | (0.816)   | N24A24      |
|          | 24   | (610.0)   | 240   | 2750  | 50                | (8)                  | 1.80   | (0.816)   | N24A23      |
|          | 24   | (610.0)   | 480   | 2750  | 50                | (8)                  | 1.80   | (0.816)   | N24A78      |
|          | 24   | (610.0)   | 240   | 5500  | 100               | (16)                 | 1.80   | (0.816)   | N24A13      |
|          | 36   | (914.0)   | 240   | 2500  | 30                | (6)                  | 2.50   | (1.13)    | N36A4       |

RAPID SHIP heaters are manufactured to standard specifications. 12 inch crimped on GGS leads supplied unless otherwise specified.



• Next day shipment

### **Metric FIREROD Cartridge Heaters**

The Watlow FIREROD not only sets the industry standard for cartridge heaters, but continues to make improvements in construction and design. Among those improvements is the metric FIREROD, a variation of the FIREROD cartridge heater built to meet the exact specifications of the global market.

Like its counterpart, the metric FIREROD consistently outperforms other cartridge heaters with its design solutions such as its exclusive resistance wire winding and swaging process. These processes bring the resistance wire closer to the sheath and compacts the MgO insulation to maximize heat transfer. The end result is longer service life and better efficiency.

#### **Performance Capabilities**

- Part temperatures up to 760°C (1400°F) on alloy 800 sheath
- Watt densities up to 50 W/cm<sup>2</sup> (330 W/in<sup>2</sup>)

#### **Features and Benefits**

#### Nickel-chromium resistance wire

 Assures even and efficient distribution of heat to the sheath because the wire is precisely wound and centered in the heater

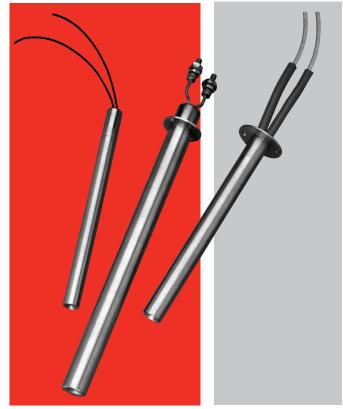
#### **Conductor pins**

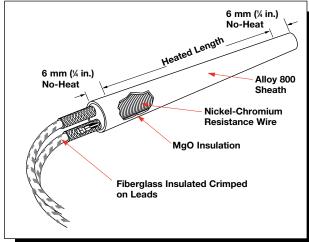
 Ensures a trouble-free electrical connection because of the metallurgical bond between the conductor pins and resistance wire

## Magnesium oxide insulation of specific grain and purity

 Results in high dielectric strength and contributes to faster heat-up

#### Alloy 800 sheath


 Resists oxidation and corrosion from many chemicals, heat or atmospheres


## Minimal spacing between the element wire and sheath

- Results in lower internal temperature
- Accommodates a design with fewer or smaller heaters operating at higher watt densities

#### **UL®** and CSA approved flexible stranded wires

Insulates the wires to temperatures of 250°C (480°F)





#### **Typical Applications**

- Semiconductor chamber heating
- Semiconductor wafer lead connection
- Semiconductor wire and die bonding
- Freeze protection and deicing of equipment in cold climates or applications
- Humidity control
- Patient comfort heating used in medical devices
- Mold die and platen heating
- Seal bars used in packaging equipment
- Test sample heating in gas chromatography equipment

### **Metric FIREROD Cartridge Heaters**

#### Applications and Technical Data

The Electrical Data table will assist you in selecting the correct metric FIREROD heater for your application, according to available voltage, amperage and wattage.

#### **Electrical Data**

| Heater Diameter (mm)   | 6.5                  | 8                    | 10    | 12.5  | 16                   | 20    |
|------------------------|----------------------|----------------------|-------|-------|----------------------|-------|
| Nominal Diameter (in.) | 0.256                | 0.315                | 0.394 | 0.492 | 0.630                | 0.787 |
| Max. Voltage           | 250                  | 250                  | 250   | 400   | 480                  | 480   |
| Crimped on Leads       |                      |                      |       |       |                      |       |
| Max. Amperes           | 7.2                  | 7.2                  | 16.1  | 16.1  | 21                   | 21    |
| Max. Wattage @ 230V    | 1650                 | 1650                 | 3700  | 3700  | 4830                 | 4830  |
| Max. Wattage @ 400V    |                      |                      |       | 6440  | 8400                 | 8400  |
| Swaged-in Leads        |                      |                      |       |       |                      |       |
| Max. Amperes           | 5.2/7.2 <sup>①</sup> | 5.2/7.2 <sup>①</sup> | 12.6  | 12.6  | 12.6/21 <sup>①</sup> | 21    |
| Max. Wattage @ 230V    | 1190/1650            | 1190/1650            | 2890  | 2890  | 2890/4830            | 4830  |
| Max. Wattage @ 400V    | <b>—</b>             | _                    | _     | 5040  | 5040/8400            | 8400  |

<sup>&</sup>lt;sup>®</sup>On certain lead constructions, maximum amperes are 5.2 or 12.6. In these instances, amperes are determined by internal construction and current carrying capacity of internal parts to the lead wire. For more information about these amperes restrictions or higher current requirements, please contact your Watlow representative.

49

#### **Tolerances**

Diameter: -0.02 mm, -0.08 mm (-0.0008 in., -0.0031 in.)

**Length:**  $\pm 2\%$  with  $\pm 2.4$  mm ( $\pm 3/32$  in.) min.

Wattage: +10%, -5%, wattage decreases approximately 5% with temperature. Wattage tolerances are for heaters

at operating temperature.

Resistance: +5%, -10%, resistance is measured at room

temperature following first heater operation.

Camber: 0.25 mm (0.01 in.) max. on any length to

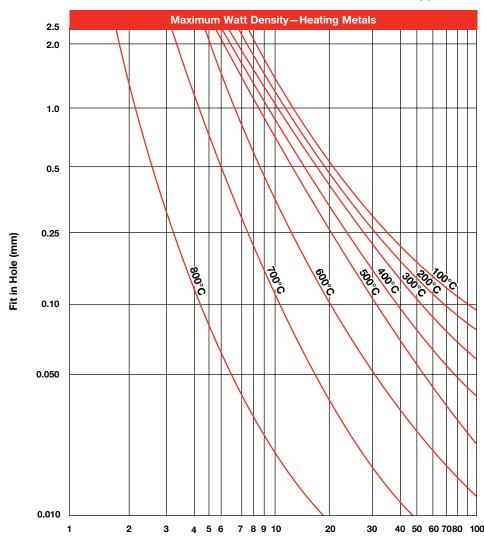
300 mm (12 in.). For lengths over 300 mm:

[Heater Length (mm)]<sup>2</sup> 182,900

### **Metric FIREROD Cartridge Heaters**

#### Maximum Allowable Watt Density

The following four graphs detail maximum allowable watt densities for applications involving metal heating or steam, air and gas heating. Please review these respective graphs and applicable data to determine the correct watt density for the application.


#### **Heating Metals**

The Maximum Watt Density—Heating Metals graph will show either the maximum hole fit or recommended watt density of the heater. Enter the chart with either known variable, part fit in hole dimension or watt density. Then, find the application temperature by reading up or over on the chart.

If the fit of the heater in the hole dimension is not known, it is easily determined. Subtract the minimum diameter of the metric FIREROD (nominal diameter minus tolerance) from the maximum hole diameter. For example, take a hole diameter of 16.1 mm minus a heater diameter of 16 mm - 0.08 mm. The hole fit would be 0.18 mm. For metric FIREROD heaters in square holes or grooves, contact your Watlow representative for fit in hole dimension.

#### **Correction Factors:**

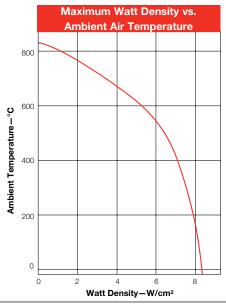
Also note, the *Maximum Watt Density—Heating Metals* graph depicts metric FIRERODs used in steel parts. Therefore, for either stainless steel, aluminum or brass, refer to applicable correction factors <sup>①</sup> and <sup>②</sup>.



<sup>&</sup>lt;sup>①</sup> For SS, enter the graph with a fit 0.04 mm (0.0015 in.) larger than actual.

Watt Density-W/cm<sup>2</sup>

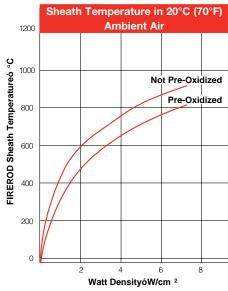
<sup>&</sup>lt;sup>②</sup> For aluminum and brass, enter the graph with a temperature 55°C (100°F) above actual temperature.


### **Metric FIREROD Cartridge Heaters**

Maximum Allowable Watt Density (Continued)

#### Watt Density vs. Ambient Air

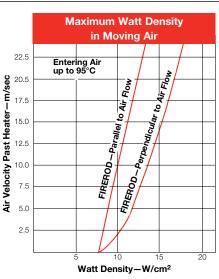
The Watt Density vs. Ambient Air Temperature graph shows the maximum allowable watt density when one metric FIREROD heater is operated in air or similar gas.


For metric FIRERODs grouped in a single row, with no less than one diameter between elements, multiply value from graph by 0.95. When a reflector is placed behind the heaters, multiply the maximum allowable watt density value from the graph by 0.85.



#### **Sheath Temperature in Ambient Air**

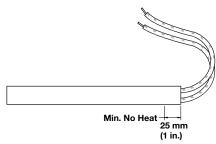
The Sheath Temperature in Ambient Air graph indicates the watt density required to bring a metric FIREROD heater to a given sheath temperature when operated in 20°C (70°F) ambient air.


At 7 W/cm² (44 W/in²), the sheath temperature will be 790°C (1450°F). At this temperature, one year of heater life would be expected, provided cycling is not too frequent. Higher temperatures would result in reduced heater life.



#### **Watt Density in Moving Air**

The Watt Density in Moving Air graph gives the maximum allowable watt density of a metric FIREROD heater in moving air.


If the volumetric flow rate of air is known in  $m^3/s$  (or CFM), divide this value by the net free area in  $m^2$  (or  $ft^2$ ) around the heater to determine air flow velocity. The net free area is the total area of the enclosure minus the area occupied by the heater.



### **Metric FIREROD Cartridge Heaters**

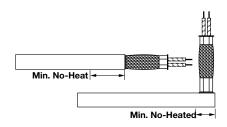
#### **Termination Options**

#### **Swaged-in Flexible Leads**



Swaged-in flexible leads, with silicone-fiberglass insulation, are recommended for applications in which the leads must be bent at the exit point from the heater. Unless longer length is specified, 250 mm (10 in.) leads are supplied.

Heaters 150 mm (6 in.) or shorter generally have a 6 mm (1/4 in.) no-heat section. Heaters up to 250 mm (10 in.) require a 25 mm (1 in.) no-heat section. Heaters greater than 250 mm may require more than a 25 mm no-heat section. To order, please specify **swaged-in flexible leads**.


#### **Right Angle Leads**



Right angle leads are used in applications with a high degree of flexing and when space limitations are critical. Lead wires exit at a 90° angle through the side of the heater sheath. Right angle tube may be necessary on certain constructions. To order, specify **right angle leads** and lead length.

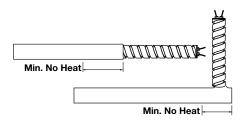
| Metric FIREROD<br>Diameter<br>mm | Min<br>No-Heat Length<br>mm (in.)    |
|----------------------------------|--------------------------------------|
| 6.5                              | 15 ( <sup>9</sup> / <sub>16</sub> )  |
| 8.0                              | 15 ( <sup>9</sup> / <sub>16</sub> )  |
| 10.0                             | 17 ( <sup>2</sup> / <sub>3</sub> )   |
| 12.5                             | 18 ( <sup>11</sup> / <sub>16</sub> ) |
| 16.0                             | 20 (3/4)                             |
| 20.0                             | 21 (13/16)                           |

#### **Stainless Steel Braid**



A stainless steel braid is designed to protect leads from abrasion against sharp edges. It is the most flexible of Watlow's protective lead arrangements.

When the leads exit straight out, the braid is swaged into the no-heat section of the heater. When the leads exit at a right angle, a crimp connector is used to attach the braids.

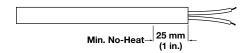

Unless otherwise specified, leads are 250 mm (10 in.) and the braid is 200 mm (8 in.) long. To order, specify either **straight or right angle stainless steel braid**, lead length and no-heat section.

| Metric           | Min. No-Heat Length                 |                                      |  |  |  |  |
|------------------|-------------------------------------|--------------------------------------|--|--|--|--|
| FIREROD Diameter | Straight                            | Right Angle                          |  |  |  |  |
| mm               | mm (in.)                            | mm (in.)                             |  |  |  |  |
| 6.5              | 30 (1 <sup>1</sup> /8)              | N/A                                  |  |  |  |  |
| 8.0              | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 15 ( <sup>9</sup> /16)               |  |  |  |  |
| 10.0             | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 17 ( <sup>2</sup> /3)                |  |  |  |  |
| 12.5             | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 18 ( <sup>11</sup> /16)              |  |  |  |  |
| 16.0             | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 20 ( <sup>3</sup> / <sub>4</sub> )   |  |  |  |  |
| 20.0             | 30 (1 <sup>1</sup> /8)              | 21 ( <sup>13</sup> / <sub>16</sub> ) |  |  |  |  |

### **Metric FIREROD Cartridge Heaters**

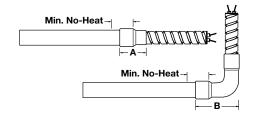
**Termination Options** (Continued)

#### **Stainless Steel Hose**




Stainless steel hose provides the best protection against abrasion from sharp edges or abrasive equipment. It also offers ease of handling and wiring in abrasive environments.

When the leads exit at a right angle to the heater, the hose is silver soldered to the sheath. Unless otherwise specified, leads are 250 mm (10 in.) long and the hose is 200 mm (8 in.) long. To order, specify **stainless steel hose**, lead length and no-heat section.

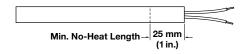

| Metric FIREROD | Min. No-H                           | eat Length                           | SS Hose                              |  |
|----------------|-------------------------------------|--------------------------------------|--------------------------------------|--|
| Diameter<br>mm | Straight<br>mm (in.)                | Right Angle<br>mm (in.)              | O.D.<br>mm (in.)                     |  |
| 6.5            | 30 (1 <sup>1</sup> / <sub>8</sub> ) | N/A                                  | 4.7 ( <sup>3</sup> /16)              |  |
| 8.0            | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 15 ( <sup>9</sup> /16)               | 5.7 ( <sup>7</sup> /32)              |  |
| 10.0           | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 17 ( <sup>2</sup> / <sub>3</sub> )   | 7.6 ( <sup>3</sup> /10)              |  |
| 12.5           | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 18 ( <sup>11</sup> / <sub>16</sub> ) | 9.5 ( <sup>3</sup> / <sub>8</sub> )  |  |
| 16.0           | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 20 (3/4)                             | 12.7 ( <sup>1</sup> / <sub>2</sub> ) |  |
| 20.0           | 30 (1 <sup>1</sup> / <sub>8</sub> ) | 21 ( <sup>13</sup> / <sub>16</sub> ) | 15.8 ( <sup>5</sup> /8)              |  |

#### **PTFE Seal and Leads**



PTFE seal and leads protect the heater against moisture and contamination from lubricating oil, cleaning solvents, plastic material or fumes and organic tapes. This seal is effective to 200°C (400°F) under continuous operation. Please note, when ordering this option, that a 25 mm (1 in.) minimum no-heat section is required to allow construction. Additional no-heat area may be required to keep the seal below effective temperatures. To order, specify **PTFE seal and leads** and lead length.

#### **Galvanized Conduit**




Galvanized conduit equals stainless steel hose in its abrasion protection.

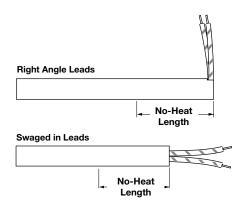
The conduit is attached with a 90° elbow copper coupler, which overlaps the heater sheath. Unless specified, 200 mm (8 in.) conduit is supplied, leads are 50 mm longer than the conduit. To order, specify **galvanized conduit**, lead length and no-heat section.

| Metric<br>FIREROD<br>Diameter<br>mm | Min.<br>No-Heat<br>Length<br>mm (in.) | Dimension<br>A<br>mm (in.)          | Dimension<br>B<br>mm (in.)           | Galvanized<br>Conduit<br>O.D.<br>mm (in.) |
|-------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------|
| 6.5                                 | 12 ( <sup>7</sup> /16)                | 22 ( <sup>7</sup> /8)               | 29 (1 <sup>1</sup> /8)               | 10 ( <sup>3</sup> /8)                     |
| 8.0                                 | 12 ( <sup>7</sup> /16)                | 22 ( <sup>7</sup> /8)               | 29 (1 <sup>1</sup> / <sub>8</sub> )  | 10 ( <sup>3</sup> /8)                     |
| 10.0                                | 12 ( <sup>7</sup> /16)                | 22 ( <sup>7</sup> /8)               | 29 (1 <sup>1</sup> / <sub>8</sub> )  | 10 ( <sup>3</sup> /8)                     |
| 12.5                                | 12 ( <sup>7</sup> /16)                | 28 (1 <sup>1</sup> / <sub>8</sub> ) | 30 (1 <sup>3</sup> / <sub>16</sub> ) | 14 ( <sup>1</sup> / <sub>2</sub> )        |
| 16.0                                | 12 ( <sup>7</sup> /16)                | 28 (1 <sup>1</sup> / <sub>8</sub> ) | 34 (1 <sup>5</sup> / <sub>16</sub> ) | 14 ( <sup>1</sup> / <sub>2</sub> )        |
| 20.0                                | 12 ( <sup>7</sup> /16)                | 29 (1 <sup>1</sup> / <sub>8</sub> ) | 36 (1 <sup>7</sup> /16)              | 16 ( <sup>5</sup> /8)                     |

#### Silicone Rubber Seal and Leads

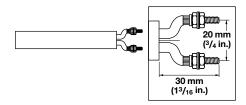


Silicone rubber seals and leads protect the heater against moisture and contamination from lubricating oil, cleaning solvents, plastic material or fumes and organic tapes. This seal is effective to 230°C (450°F) under continuous operation. Epoxy potting for up to 260°C (500°F) for continuous operation is available upon request.


Please note, when ordering this option, a 25 mm (1 in.) minimum no-heat section is required to allow for construction. Additional no-heat may be required to keep the seal below effective temperatures. To order, specify silicone or epoxy seal and leads and lead length.

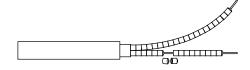
WATLOW® \_\_\_\_\_ 53

### **Metric FIREROD Cartridge Heaters**


#### **Termination Options** (Continued)

#### **No-Heat Section**




No-heat sections are recommended in applications where leads may be exposed to excessive heat, thus requiring a cooler lead end. Also use when heat is not required along the entire length of the metric FIREROD. No-heat extensions are available on all diameters with both pin style and swaged-in leads. To order, specify **no-heat** section and length of no-heat.

#### **Post Terminals**



Post terminals provide a quick, secure connection with ring or fork connectors or bus bars. Threaded M4 x 12 mm studs are soldered to the solid power pins. Nuts and washers are provided. This termination is available on 16 and 20 mm (0.63 and 0.79 in.) diameter units. To order, specify **post terminals.** 

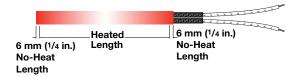
#### **Ceramic Bead Insulation**



Ceramic bead insulation protects the leads from high temperature ambients above 450°C (840°F). The beads fit over solid conductors and are extended long enough to reach a cooler area where flexible wires can be attached. To order, specify **ceramic beads** and length, and additional lead length.

4 **\_\_\_\_\_WATLOW**®

### **Metric FIREROD Cartridge Heaters**


#### **Options**

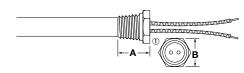
#### **Accessories**

#### **WATLUBETM**

WATLUBE™ is an electrically non-conductive lubricant acting as a barrier against high-temperature oxidation, thus making heater removal easier. In addition, it aids in the transfer of heat from the metric FIREROD to the block. However, do not use it as a substitute for proper hole fit. WATLUBE is packaged in 118 ml (4 oz) bottles. To order, specify **WATLUBE**.

#### **Distributed Wattage**




Distributed wattage varies the watt density along the length of the heater. This construction technique is used to compensate for heat losses along the edges of heated parts. To order, specify **distributed wattage** and give the length and wattage for each section.

#### **Dual Voltage**

When the metric FIREROD requires the flexibility of operating on two voltages, use this internal construction. Dual voltage is available on 12.5, 16 and 20 mm (0.5, 0.6 and 0.8 in.) diameter units. If not specified, 250 mm (9.8 in.) crimped on leads will be supplied. To order, specify **dual voltage**, voltage requirements and length of crimped on leads.

#### **Threaded Fittings**

#### **DIN Thread Size**



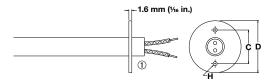
| Metric<br>FIREROD<br>Diameter | Min.<br>No-Heat<br>Length            | Thread<br>Size<br>DIN 13 | A mm (in )                           | B<br>mm (in)                         | Length of<br>Threaded<br>Section     |
|-------------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| mm                            | mm (in.)                             | טווע וס                  | mm (in.)                             | mm (in.)                             | Section                              |
| 6.5                           | 16 ( <sup>5</sup> /8)                | M10 X 1.0                | 10.0 ( <sup>3</sup> / <sub>8</sub> ) | 12 ( <sup>7</sup> /16)               | 6.0 ( <sup>1</sup> / <sub>4</sub> )  |
| 8.0                           | 16 ( <sup>5</sup> /8)                | M12 X 1.0                | 11.0 ( <sup>7</sup> /16)             | 14 ( <sup>1</sup> / <sub>2</sub> )   | 6.5 ( <sup>1</sup> / <sub>4</sub> )  |
| 10.0                          | 18 ( <sup>11</sup> / <sub>16</sub> ) | M14 X 1.5                | 11.5 ( <sup>7</sup> /16)             | 17 ( <sup>5</sup> /8)                | 6.5 ( <sup>1</sup> / <sub>4</sub> )  |
| 12.5                          | 19 ( <sup>3</sup> / <sub>4</sub> )   | M16 X 1.5                | 12.0 ( <sup>7</sup> /16)             | 19 ( <sup>3</sup> / <sub>4</sub> )   | 6.5 ( <sup>1</sup> / <sub>4</sub> )  |
| 16.0                          | 20 (3/4)                             | M20 X 1.5                | 15.0 ( <sup>3</sup> / <sub>5</sub> ) | 24 ( <sup>15</sup> / <sub>16</sub> ) | 9.0 ( <sup>3</sup> / <sub>8</sub> )  |
| 20.0                          | 22 ( <sup>7</sup> /8)                | M26 X 1.5                | 16.0 ( <sup>5</sup> /8)              | 30 (1%)                              | 10.0 ( <sup>3</sup> / <sub>8</sub> ) |

<sup>&</sup>lt;sup>①</sup>Swaged-in unit pictured.

#### **National Pipe Thread (NPT) Thread Size**

Threaded fittings allow for fast, water-tight installation of the heater into a threaded hole. These fittings can be ordered in either brass or stainless steel. Double threaded fittings are also available. See dimensions noted on the *DIN Thread Size and NPT Thread Size* charts or contact your Watlow representative if application exceeds limitations shown.

To order, specify stainless steel threaded fittings.


| Metric<br>FIREROD<br>Diameter<br>mm | Min.<br>No-Heat<br>Length<br>mm (in.) | Thread<br>Size<br>NPT<br>(in.) | A<br>mm (in.)                          | B<br>mm (in.)                          | Length of<br>Threaded<br>Section     |
|-------------------------------------|---------------------------------------|--------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|
| 6.5                                 | 19 ( <sup>3</sup> / <sub>4</sub> )    | ( <sup>1</sup> /8)             | 13.5 ( <sup>11</sup> / <sub>20</sub> ) | 11.0 ( <sup>7</sup> /16)               | 9.5 ( <sup>3</sup> / <sub>8</sub> )  |
| 8.0                                 | 22 ( <sup>7</sup> /8)                 | (1/4)                          | 17.0 ( <sup>5</sup> /8)                | 14.0 ( <sup>1</sup> / <sub>2</sub> )   | 13.0 ( <sup>1</sup> / <sub>2</sub> ) |
| 10.0                                | 22 ( <sup>7</sup> /8)                 | (1/4)                          | 17.0 ( <sup>5</sup> /8)                | 14.0 ( <sup>1</sup> / <sub>2</sub> )   | 13.0 ( <sup>1</sup> / <sub>2</sub> ) |
| 12.5                                | 25 (1)                                | (3/8)                          | 20.0 ( <sup>7</sup> / <sub>8</sub> )   | 17.5 ( <sup>11</sup> / <sub>16</sub> ) | 14.0 (11/20)                         |
| 16.0                                | 28 (1 <sup>1</sup> / <sub>8</sub> )   | (1/2)                          | 23.0 ( <sup>9</sup> / <sub>10</sub> )  | 22.0 ( <sup>15</sup> / <sub>16</sub> ) | 16.0 ( <sup>5</sup> / <sub>8</sub> ) |
| 20.0                                | 32 (11/4)                             | (3/4)                          | 26.0 (1)                               | 29.0 (1 <sup>1</sup> / <sub>8</sub> )  | 19.0 ( <sup>3</sup> / <sub>4</sub> ) |

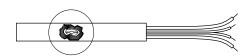
WATLOW® \_\_\_\_\_ 55

### **Metric FIREROD Cartridge Heaters**

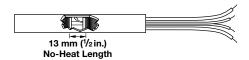
**Options** (Continued)

#### **Flanges**




Stainless steel flanges are a convenient mounting method as well as a way to position a heater within an application. These flanges can be located in any no-heat section of the heater sheath. To order, specify **flange**, flange size and location.

| Metric<br>FIREROD<br>Diameter<br>mm | Flange<br>Size | D<br>mm (in.)                         | C<br>mm (in.)                         | H<br>mm (in.)                         |
|-------------------------------------|----------------|---------------------------------------|---------------------------------------|---------------------------------------|
| 6.5, 8, 10,12.5, 16 <sup>2</sup>    | FS             | 25.4 (1)                              | 19.1 ( <sup>3</sup> / <sub>4</sub> )  | 3.7 ( <sup>9</sup> / <sub>64</sub> )  |
| 6.5, 8, 10, 12.5, 16, 20            | FM             | 38.1 (1 <sup>1</sup> / <sub>2</sub> ) | 28.6 (1 <sup>1</sup> / <sub>8</sub> ) | 4.3 ( <sup>3</sup> /16)               |
| 16, 20                              | FL             | 51.0 (2)                              | 38.1 (1 <sup>1</sup> / <sub>2</sub> ) | 5.3 ( <sup>13</sup> / <sub>64</sub> ) |


<sup>&</sup>lt;sup>①</sup> Swaged-in unit pictured.

#### **Internal Thermocouple Sensors**

#### Style A



#### Style B



#### Style C



The **Style A** internal thermocouple can be used to evaluate heat transfer efficiency of an application, a measure enabling a customer to cut energy costs and increase heater life.

The **Style B** internal thermocouple gives a good approximation of part temperature. The thermocouple junction is in contact with the inside of the heater sheath, located in the 13 mm ( $^{1}/_{2}$  in.) no-heat section anywhere along the heater length.

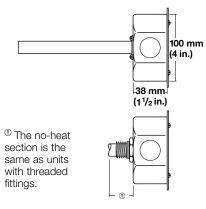
A **Style C** internal thermocouple is useful in applications where material flows past the end of the heater, as in plastic molding. This junction is embedded in a special end disc. Style C is not available on 20 mm (0.8 in.) diameter units. Unless requested, the disc end is not mechanically sealed.

To order, specify **internal thermocouple Style A, B** or **C** and thermocouple **Type J** or **K**. If not specified, 250 mm (10 in.) thermocouple leads are supplied.

#### **Thermocouple Types**

| ISA  | Conductor C                | haracteristics               | Temperat    | ure Range   |
|------|----------------------------|------------------------------|-------------|-------------|
| Code | Positive                   | Negative                     | °C          | (°F)        |
| J    | Iron<br>(Magnetic)         | Constantan<br>(Non-magnetic) | -20 to 760  | (0 to 1400) |
| K    | Chromel®<br>(Non-magnetic) | Alumel®<br>(Magnetic)        | -20 to 1260 | (0 to 2300) |

For other thermocouple types, contact your Watlow representative.


<sup>&</sup>lt;sup>2</sup> FS flange for 16 mm diameter is without holes.



## **Extended Capabilities For Metric FIREROD Cartridge Heaters**

#### **Options**

#### **Terminal Box**



NEMA 1, NEMA 4 (moisture-proof) and NEMA 7 (explosion-proof) octagonal terminal boxes can be mounted to a flange or threaded fitting on the 12.5, 16 and 20 mm diameter units. These 100 mm (4 in.) terminal boxes have conduit knockouts to protect electrical connections.

Aluminum and macrolon plastic terminal boxes are also available in the following sizes:

- 50 x 50 x 30 mm nominal size for heaters to 10 mm (0.4 in.) in diameter;
- 80 x 80 x 55 mm nominal size for heaters 12.5 mm (9.8 in.) or larger in diameter.

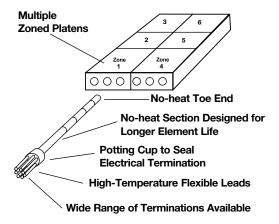
To order, specify **terminal box**, NEMA type and/or material type.

#### **Individually Controlled Heat Zones**

Individually controlled heat zones give the flexibility of controlling temperature by zones, along the length of the metric FIREROD. This is an advantage for heating requirements of certain applications, like seal bars. This internal construction can be ordered on 12.5, 16 and 20 mm diameter units. If not specified, 250 mm crimped on leads will be supplied. To order, specify **individually controlled heat zones** as well as length and wattage per zone and length of crimped on leads.

#### External Finishing—Centerless Grinding

Centerless grinding can be used to furnish precision diameters, thus permitting closer heater-to-part fit. Therefore, higher watt densities can be used. For centerless ground heaters, the heater must either have PTFE leads and seal (maximum 12 in. (305 mm) lead length) or have crimped on leads. Longer lead lengths are available, but require external connection. The length of a FIREROD available for centerless grinding is dependent on the construction, please contact your Watlow representative for assistance. To order, specify centerless grinding.


WATLOW<sup>®</sup> \_\_\_\_\_\_ 57

#### **MULTICELL™** Heaters

The advanced design of the MULTICELL<sup>TM</sup> insertion heater from Watlow offers three major advantages: extreme process temperature capability, independent zone control for precise temperature uniformity and loose fit design for easy insertion and removal.

#### **Performance Capabilities**

- Engineered to achieve sheath temperatures up to 2050°F (1120°C)
- Up to six independently controllable zones



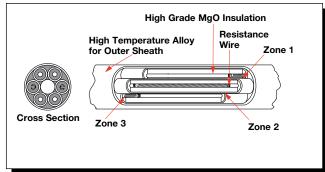
#### **Features and Benefits**

#### Multiple, independently controllable zones

 Allows process temperature uniformity not possible with any other single-sheathed heater

#### Radiant design of heater

- Allows for loose insertion in boiling holes and piping holes
- Permits easy removal and replacement with minimal down time since it will not bind or seize in the hole


#### Oxidized sheath

 Provides high emissivity and improves the heater's performance as oxidation increases

## Individual metal-sheathed coils swaged into a larger, high-temperature alloy outer sheath

 Provides maximum protection against element burnout through the outer sheath





For detailed product and technical data, see the full MULTICELL product section located on pages 425 through 430.

| Tubular Heaters           | Sheath Materials    |      | perating<br>ratures<br>°C |    | al Max.<br>ensities<br>W/cm² | Page |
|---------------------------|---------------------|------|---------------------------|----|------------------------------|------|
| WATROD™                   | Alloy 800/840       | 1600 | 870                       | 45 | 6.9                          |      |
| Single-Ended Double-Ended | Stainless steel     | 1200 | 650                       | 60 | 9.3                          | 1    |
| Double-Eliaea             | Steel               | 750  | 400                       | 45 | 6.9                          | 61   |
|                           | Alloy 600           | 1800 | 982                       | 45 | 6.9                          | 1    |
| High-Temperature          | Alloy 600           | 1800 | 982                       | 45 | 6.9                          | 87   |
| MULTICOIL™                | Alloy 800           | 1400 | 760                       | 45 | 6.9                          |      |
|                           | 304 stainless steel | 1200 | 650                       | 45 | 6.9                          | 89   |
|                           | 316 stainless steel | 1200 | 650                       | 45 | 6.9                          | 1    |
| Milled Groove             | 304 stainless steel | 1200 | 650                       | 60 | 9.3                          |      |
|                           | Alloy 800           | 1600 | 870                       | 60 | 9.3                          | 91   |
| FIREBAR®                  | Alloy 800           | 1400 | 760                       | 60 | 9.3                          |      |
| Single-Ended Double-Ended | 304 stainless steel | 1200 | 650                       | 60 | 9.3                          | 93   |
| FINBAR™<br>Single-Ended   | 304 stainless steel | 1200 | 650                       | 50 | 7.7                          | 112  |



WATLOW® \_\_\_\_\_\_ 59



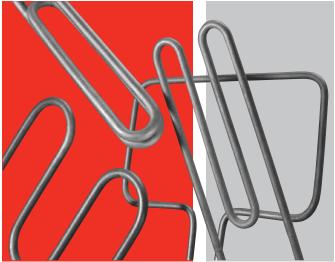
### WATROD™ Single/Double-Ended Heaters

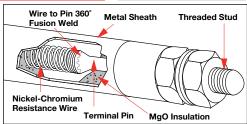
Available in single- or double-ended termination styles, the versatile and economical WATROD™ tubular heating element from Watlow® lends itself to virtually the entire range of immersion and air heating applications.

The single-ended WATROD tubular design has both terminals at one end. The opposite end is sealed. Flexible lead wires are 12 in. (305 mm) crimp connected to the terminal pin and have silicone-impregnated fiberglass oversleeves.

The double-ended WATROD, with its round cross-sectional geometry, is highly adaptable for bending—especially when bending is performed in the field. Watlow's double-ended MULTICOIL™ tubular elements offer various combinations of resistor coils and thermocouples inside one sheath. They have the ability to sense the heater's internal temperature accurately every time, or offer three-phase capability in one element.

Both single- and double-ended WATRODs share many construction features delivering long life—the resistance wire is centered in the heater sheath and electrically insulated with compacted, high-grade magnesium oxide for superior heating performance.


WATROD heating elements have a variety of mounting and termination options making them highly popular among industrial customers.


## Single-Ended WATROD Performance Capabilities

- Watt densities up to 45 W/in<sup>2</sup> (6.9 W/cm<sup>2</sup>)
- UL® and CSA component recognition up to 240VAC
- Alloy 800/840 and stainless steel sheath temperatures up to 1200°F (650°C)

## **Double-Ended WATROD Performance Capabilities**

- Watt densities up to 120 W/in<sup>2</sup> (18.6 W/cm<sup>2</sup>)
- UL® and CSA component recognition up to 600VAC
- Alloy 800/840 sheath temperatures up to 1600°F (870°C)
- Stainless steel sheath temperatures up to 1200°F (650°C)
- Steel sheath temperatures up to 750°F (400°C)
- Alloy 800 sheath temperatures up to 1800°F (982°C)





#### **Features and Benefits**

#### Precision wound nickel-chromium resistance wire

• Distributes heat evenly to the sheath for optimum heater performance

#### Silicone resin seals

 Protects against moisture contamination and is rated to 221°F (105°C)

#### MgO insulation filled sheath

• Maximizes dielectric strength, heat transfer and life

#### Standard sheath materials

 Steel, 304 and 316 stainless steel, alloy 800/840 and alloy 600

#### 53 standard bend formations

Allows forming the heating element to the application.
 Spirals, compound bends and multi-axis and multi-plane configurations

#### Stainless steel studs

• Fusion welded to terminal pins for mechanical strength

Popular termination, mounting and moisture seal options available

### **WATROD Single/Double-Ended Heaters**

### **Specifications**

#### **Double-Ended**

### Single-Ended

|                                        |                                                                                   | 5                                                                                                       |                                                                               |               |                                  | 35                 |                                         |                           |
|----------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------|----------------------------------|--------------------|-----------------------------------------|---------------------------|
| Applications                           | Direct immersion                                                                  | on                                                                                                      | Vacuums                                                                       |               | Platens                          |                    |                                         |                           |
|                                        | Hot runner mo                                                                     | ld (manifold)                                                                                           | Semiconductor                                                                 |               | Forced air                       |                    |                                         |                           |
|                                        | Forced air                                                                        |                                                                                                         |                                                                               |               | Deicing ante                     | ennas              |                                         |                           |
|                                        | Ovens                                                                             |                                                                                                         |                                                                               |               | Plastic wrap                     | cutting            |                                         |                           |
|                                        | Radiant                                                                           |                                                                                                         |                                                                               |               | Seal bars                        |                    |                                         |                           |
|                                        | Clamp-on                                                                          |                                                                                                         |                                                                               |               |                                  |                    |                                         |                           |
| Watt Density                           | Catalog P/N:                                                                      |                                                                                                         | up to 60                                                                      | (9.3)         | Catalog P/N                      | l:                 | up to 20                                | (3.1)                     |
| W/in² (W/cm²)                          | Standard:                                                                         |                                                                                                         | up to 120                                                                     | (18.6)        | Standard:                        |                    | up to 45                                | (6.9)                     |
| Element Diameters                      | Dia.                                                                              | in²                                                                                                     | Dia. (mm)                                                                     | cm²           | Dia.                             | <u>in</u> ²        | Dia. (mm)                               | . , ,                     |
| in. (mm)                               | 0.210                                                                             | 0.660                                                                                                   | (5.33)                                                                        | (4.26)        | 0.375                            | <u></u><br>1.178   | (9.53)                                  | (7.600)                   |
| and Surface Area per Linear            | 0.260                                                                             | 0.817                                                                                                   | (6.60)                                                                        | (5.27)        | 0.430                            | 1.351              | (10.92)                                 | (8.717)                   |
| in² (cm²)                              | 0.315                                                                             | 0.990                                                                                                   | (8.00)                                                                        | (6.38)        | 0.475                            | 1.492              | (12.07)                                 | (9.626)                   |
| Diameter Tolerance                     | 0.375                                                                             | 1.178                                                                                                   | (9.53)                                                                        | (7.60)        | 0.170                            | 1.102              | (12.01)                                 | (0.020)                   |
| ± 0.005 in. (0.13 mm)                  | 0.430                                                                             | 1.351                                                                                                   | (10.92)                                                                       | (8.72)        |                                  |                    |                                         |                           |
| ± 0.000 m. (0.10 mm)                   | 0.475                                                                             | 1.492                                                                                                   | (12.07)                                                                       | (9.63)        |                                  |                    |                                         |                           |
| Sheath Materials                       | Standard:                                                                         |                                                                                                         | 1600°F                                                                        | . ,           | Standard:                        | Allow 200/0        | 1200°F                                  | (650°C)                   |
|                                        | Standard:                                                                         | Alloy 800/840                                                                                           |                                                                               | (870°C)       | Standard:                        | Alloy 800/84       |                                         | (650°C)                   |
| Max. Operating                         |                                                                                   | 316 SS                                                                                                  | 1200°F                                                                        | (650°C)       |                                  | 316 SS             | 1200°F                                  | (650°C)                   |
| Temperature                            |                                                                                   | Steel                                                                                                   | 750°F                                                                         | (400°C)       |                                  | 304 SS             | 1200°F                                  | (650°C)                   |
|                                        |                                                                                   | 304 SS                                                                                                  | 1200°F                                                                        | (650°C)       |                                  |                    |                                         |                           |
|                                        |                                                                                   | Alloy 600                                                                                               | 1800°F                                                                        | (980°C)       |                                  |                    |                                         |                           |
| Sheath Length By Diameter              |                                                                                   | Sheath                                                                                                  |                                                                               | Sheath        |                                  | Sheath             |                                         | Sheath                    |
| in. (mm)                               | <u>Dia.</u>                                                                       | Length (in.)                                                                                            | <u>Dia. (mm)</u>                                                              | Length (mm)   | <u>Dia.</u>                      | Length (in.)       | Dia. (mm)                               | Length (mm)               |
|                                        | Standard:                                                                         |                                                                                                         |                                                                               |               | Standard:                        |                    |                                         |                           |
|                                        | 0.210                                                                             | 9 to 130                                                                                                | (5.33)                                                                        | (230 to 3300) | 0.375                            | 11 to 125          | (9.53)                                  | (280 to 3175)             |
|                                        | 0.260                                                                             | 9 to 270                                                                                                | (6.60)                                                                        | (230 to 6858) | 0.430                            | 11 to 106          | (10.92)                                 | (280 to 2690)             |
|                                        | 0.315                                                                             | 9 to 270                                                                                                | (8.00)                                                                        | (230 to 6858) | 0.475                            | 11 to 125          | (12.07)                                 | (280 to 3175)             |
|                                        | 0.375                                                                             | 11 to 360                                                                                               | (9.53)                                                                        | (280 to 9144) |                                  |                    |                                         |                           |
|                                        | 0.430                                                                             | 11 to 360                                                                                               | (10.92)                                                                       | (280 to 9144) |                                  |                    |                                         |                           |
|                                        | 0.475                                                                             | 11 to 275                                                                                               | (12.07)                                                                       | (280 to 6985) |                                  |                    |                                         |                           |
| Min. No-Heat Length                    | Sheath                                                                            | No-Heat                                                                                                 | Sheath                                                                        | No-Heat       | Sheath                           | No-Heat            | Sheath                                  | No-Heat                   |
| in. (mm)                               | <u>Length</u>                                                                     | <u>Length</u>                                                                                           | <u>Length</u>                                                                 | <u>Length</u> | <u>Length</u>                    | <u>Length</u>      | <u>Length</u>                           | <u>Length</u>             |
|                                        | 11 to 20                                                                          | 1                                                                                                       | (280 to 510)                                                                  | (25)          | 11 to 20                         | 1 <sup>1</sup> /2  | (280 to 5100)                           | (38)                      |
|                                        | 21 to 50                                                                          | 1 <sup>1</sup> /4                                                                                       | (535 to 1270)                                                                 | (32)          | 21 to 50                         | 13/4               | (533 to 1270)                           | (44)                      |
|                                        | 51 to 80                                                                          | 11/2                                                                                                    | (1295 to 2030)                                                                | (38)          | 51 to 80                         | 21/8               | (1295 to 2030)                          | (54)                      |
|                                        | 81 to 110                                                                         | 1 <sup>5</sup> /8                                                                                       | (2055 to 2795)                                                                | (42)          | 81 to 110                        | 23/8               | (2055 to 2795)                          | (60)                      |
|                                        | 111 to 140                                                                        | 13/4                                                                                                    | (2820 to 3555)                                                                | (44)          | 111 to 125                       | 2 <sup>5</sup> /8  | (2820 to 3175)                          | (67)                      |
|                                        | 111 10 140                                                                        | 1 /4                                                                                                    | (2020 to 0000)                                                                |               |                                  |                    |                                         |                           |
|                                        | 141 to 170                                                                        | 2                                                                                                       | (3580 to 4320)                                                                | (51)          |                                  |                    |                                         |                           |
|                                        |                                                                                   |                                                                                                         | ,                                                                             | , ,           |                                  |                    |                                         |                           |
|                                        | 141 to 170                                                                        | 2                                                                                                       | (3580 to 4320)                                                                | (51)          | ½ in. (13 m                      | nm) No-heat le     | ength on all blunt e                    | ends                      |
| Max. Voltage/Amperage                  | 141 to 170<br>171 to 200                                                          | 2<br>2 <sup>1</sup> / <sub>4</sub>                                                                      | (3580 to 4320)<br>(4345 to 5080)                                              | (51)<br>(57)  | ½ in. (13 m                      | · ·                | ength on all blunt e<br><u>/olts</u>    | ends<br>Ampere            |
|                                        | 141 to 170<br>171 to 200<br>201 & up                                              | 2<br>2 <sup>1</sup> / <sub>4</sub><br>2 <sup>1</sup> / <sub>2</sub>                                     | (3580 to 4320)<br>(4345 to 5080)<br>(5105 & up)                               | (51)<br>(57)  | Dia.                             | <u>v</u>           |                                         |                           |
| By Dia.                                | 141 to 170<br>171 to 200<br>201 & up<br><b>Dia.</b><br>0.260 (6.6)                | 2<br>2 <sup>1</sup> / <sub>4</sub><br>2 <sup>1</sup> / <sub>2</sub><br><b>Volts</b><br>250VAC           | (3580 to 4320)<br>(4345 to 5080)<br>(5105 & up)<br><u>Amperes</u>             | (51)<br>(57)  | <b>Dia.</b> 0.375 (              | 9.53) <sup>2</sup> | Volts<br>480VAC                         | Ampere<br>30              |
| By Dia.                                | 141 to 170<br>171 to 200<br>201 & up<br><b>Dia.</b><br>0.260 (6.6)<br>0.315 (8.0) | 2<br>2 <sup>1</sup> / <sub>4</sub><br>2 <sup>1</sup> / <sub>2</sub><br><b>Volts</b><br>250VAC<br>480VAC | (3580 to 4320)<br>(4345 to 5080)<br>(5105 & up)<br><b>Amperes</b><br>15       | (51)<br>(57)  | <b>Dia.</b> 0.375 (0.430 (1.430) | 9.53) 4<br>0.92) 4 | V <mark>olts</mark><br>180VAC<br>180VAC | Ampere                    |
| Max. Voltage/Amperage By Dia. in. (mm) | 141 to 170<br>171 to 200<br>201 & up<br><b>Dia.</b><br>0.260 (6.6)                | 2<br>2 <sup>1</sup> / <sub>4</sub><br>2 <sup>1</sup> / <sub>2</sub><br><b>Volts</b><br>250VAC           | (3580 to 4320)<br>(4345 to 5080)<br>(5105 & up)<br><b>Amperes</b><br>15<br>30 | (51)<br>(57)  | <b>Dia.</b> 0.375 (0.430 (1.430) | 9.53) 4<br>0.92) 4 | Volts<br>480VAC                         | <b>Ampere</b><br>30<br>30 |

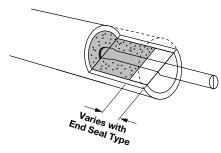
### **WATROD Single/Double-Ended Heaters**

**Specifications** (Continued)

#### **Double-Ended**

### Single-Ended




| Ohms Per Heated Inch   | Dia.          | Min.                 | Max.            |            | Dia.         | Min.                    | Max.      |            |
|------------------------|---------------|----------------------|-----------------|------------|--------------|-------------------------|-----------|------------|
| By Dia.                | 0.210         | 0.130Ω               | 14Ω             |            | 0.375        | 0.150Ω                  | 25Ω       |            |
| in.                    | 0.260         | 0.080Ω               | 16Ω             |            | 0.430        | 0.150Ω                  | 24Ω       |            |
|                        | 0.315         | 0.050Ω               | 25Ω             |            | 0.475        | 0.150Ω                  | 22Ω       |            |
|                        | 0.375         | 0.030Ω               | 20Ω             |            |              |                         |           |            |
|                        | 0.430         | 0.030Ω               | 25Ω             |            |              |                         |           |            |
|                        | 0.475         | $0.035\Omega$        | 25Ω             |            |              |                         |           |            |
| Terminations           | Standard:     | Threaded stud        |                 |            | Standard:    | Flexible lead wires     |           |            |
|                        |               | Screw lug (plate     | e)              |            |              | Rubber overmolds        |           |            |
|                        |               | Quick connect        | (spade)         |            |              |                         |           |            |
|                        |               | Flexible lead wi     | res             |            |              |                         |           |            |
| Seals                  | Standard:     | Silicone resin       | 221°F           | (105°C)    | Standard:    | Silicone resin          | 221°F     | (105°C)    |
|                        |               | Ceramic base         | 2800°F          | (1535°C)   |              | Silicone rubber (RTV)   | 500°F     | (260°C)    |
|                        |               | Ceramic-to-me        | tal 482°F       | (250°C)    |              | Epoxy resin             | 194/356°F | (90/180°C) |
|                        |               | Silicone rubber      | (RTV) 392°F     | (200°C)    |              |                         |           |            |
|                        |               | Silicone resin       | 392°F           | (200°C)    |              |                         |           |            |
|                        |               | Epoxy resin          | 194/356°F       | (90/180°C) |              |                         |           |            |
| Mounting Options       | Threaded bul  | kheads               |                 |            | Threaded bu  | Threaded bulkhead       |           |            |
|                        | Mounting bra  | ckets                |                 |            | Locator was  | shers                   |           |            |
|                        | Locator wash  | iers                 |                 |            |              |                         |           |            |
| Surface Finish Options | Oxide anneal  |                      |                 |            | Oxide annea  | al                      |           |            |
|                        | Bright anneal |                      |                 |            | Bright annea | al                      |           |            |
|                        | Passivation   |                      |                 |            | Passivation  |                         |           |            |
| Agency Recognition     | UL® Compon    | ent to 480VAC (File  | # E52951/E56488 | 3)         | UL® Compo    | nent to 240VAC (File #  | E52951)   |            |
|                        | CSA Compor    | nent to 600VAC (File | e # 31388)      |            | CSA Compo    | onent to 240VAC (File # | 31388) ①  |            |

 $<sup>\</sup>ensuremath{\textcircled{1}}$  Not applicable to 0.375 inch diameter single-ended WATROD.

#### **WATROD Single/Double-Ended Heaters**

#### **Options**

#### **Moisture Resistant Seals**



WATROD's MgO insulating material is hygroscopic. To control the rate of moisture entering the heater, an appropriate moisture seal must be used. Choosing the correct seal is important to the life and performance of the heater. All materials have varying rates of gas vapor transmission. Be sure the maximum continuous use temperature is not exceeded at the seal location. Most end seals are applied with a small cavity in the end of the heater. The seal will also help prevent arcing at the terminal ends

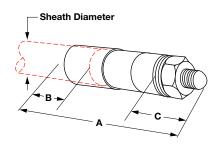
#### **Zoned Heaters**

Single zone heaters are only available.

#### **External Finishes**

#### **Bright Annealing**

Bright annealing is a process that produces a smooth, metallic finish. It is a special annealed finish created in a non-oxidizing atmosphere. This finish is popular in the pharmaceutical and food and beverage markets.


To order, specify bright annealing.

#### **Passivation**

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode, produce rust spots and/or contaminate the process. For critical sheath applications, passivation will remove free iron from the sheath.

To order, specify passivation.

#### Ceramic-to-Metal End-Seal



Ceramic-to-metal end-seals with threaded stud terminations provide an air-tight seal for continuous terminal temperatures up to 500°F (260°C). Watlow does not recommend this seal if terminations are exposed to temperatures exceeding 500°F (260°C).

| She<br>Diam<br>in. | eath<br>neter<br>(mm) | A<br>in. (mm)                          | B<br>in. (mm)                    | C<br>in. (mm)                         | Thread<br>Size |
|--------------------|-----------------------|----------------------------------------|----------------------------------|---------------------------------------|----------------|
| 0.260              | (6.6)                 | 1 <sup>11</sup> / <sub>16</sub> (42.9) | <sup>1</sup> / <sub>2</sub> (13) | <sup>13</sup> / <sub>32</sub> (10.32) | #8-32          |
| 0.315              | (8.0)                 | 1 <sup>7</sup> /8 (47.6)               | <sup>1</sup> / <sub>2</sub> (13) | <sup>13</sup> /32 (10.32)             | #10-32         |
| 0.430              | (10.9)                | 2 <sup>1</sup> /8 (54.0)               | <sup>1</sup> / <sub>2</sub> (13) | <sup>13</sup> / <sub>32</sub> (10.32) | #¼-28          |

### **WATROD Single/Double-Ended Heaters**

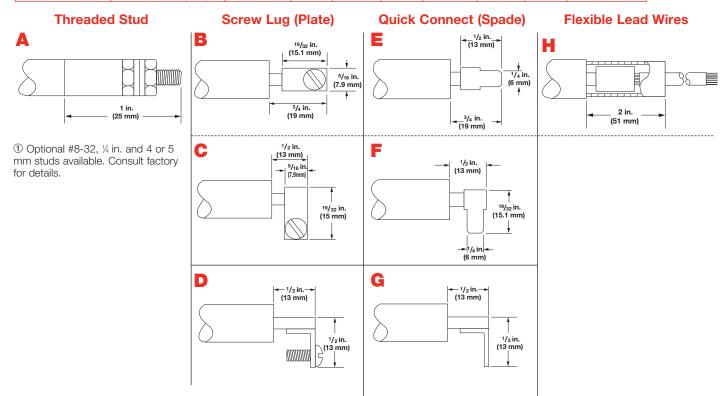
**Options** (Continued)

### **End-Seal Options**

|                     | Part   |            | UL®         | Max. Cont. Use  |                                                              |
|---------------------|--------|------------|-------------|-----------------|--------------------------------------------------------------|
| End-Seal            | Number | Color      | Recognition | Temperature     | Typical or General Usage/Application                         |
| Standard Epoxy      | EC     | Cream      | Yes         | 194°F (90°C)    | Long term stable insulation resistance                       |
| Intermediate Epoxy  | EB     | Gray       | Yes         | 356°F (180°C)   | Long term stable insulation resistance                       |
| High-Temp. Epoxy    | HTE    | Amber      | No          | 450°F (232°C)   | Long term stable insulation resistance                       |
| Silicone Resin      | SR     | Clear      | Yes         | 221°F (105°C)   | General usage on tubular products - porous                   |
| Silicone Fluid      | SF     | Clear      | No          | 392°F (200°C)   | Moisture resistance of the MgO, or high temperature          |
|                     |        |            |             |                 | ceramic seal (storage only) - porous                         |
| Lavacone            | LC     | Dark Brown | Yes         | 221°F (105°C)   | Porous seal for the FIREBAR                                  |
| Silicone Rubber RTV | RTV    | Red-Orange | Yes         | 392°F (200°C)   | General usage on FIREBAR applications - porous               |
| High-Temperature    | HTC    | White      | Yes         | 2800°F (1538°C) | Very high-temperature applications - for extremely low vapor |
| Ceramic             |        |            |             |                 | transmission rate                                            |

### **WATROD Single/Double-Ended Heaters**

#### **Terminations**


Double-ended WATROD elements are available with a variety of terminations. Single-ended WATROD elements are available with only flexible lead wires.

The following table and illustrations detail the terminations available with double- or single-ended WATRODs—for each available sheath diameter.

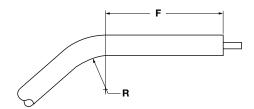
Flexible lead wires are 12 in. (305 mm), Sil-A-Blend™ 390°F (200°C) unless otherwise specified. Insulation options include TGGT 480°F (250°C) plus other temperature ratings. Contact your Watlow representative.

Overmolds are available for flexible lead wires only. Available in silicone rubber 390°F (200°C) and neoprene 212°F (90°C). Contact your Watlow representative.

| WATROD       | Sheath<br>Diameter |        | Threaded<br>Stud <sup>①</sup> | Screw Lug<br>(Plate) |     |     | Quick Connect<br>(Spade) |     |     | Flexible<br>Lead Wires |
|--------------|--------------------|--------|-------------------------------|----------------------|-----|-----|--------------------------|-----|-----|------------------------|
| Element      | in.                | (mm)   | Α                             | В                    | С   | D   | Е                        | F   | G   | Н                      |
| Double-Ended | 0.260              | (6.6)  | #6-32                         | Yes                  | Yes | Yes | Yes                      | Yes | Yes | Yes                    |
|              | 0.315              | (8.0)  | #10-32                        | Yes                  | Yes | Yes | Yes                      | Yes | Yes | Yes                    |
|              | 0.375              | (9.5)  | #10-32                        | Yes                  | Yes | Yes | Yes                      | Yes | Yes | Yes                    |
|              | 0.430              | (10.9) | #10-32                        | Yes                  | Yes | Yes | Yes                      | Yes | Yes | Yes                    |
|              | 0.475              | (12.1) | #10-32                        | Yes                  | Yes | Yes | Yes                      | Yes | Yes | Yes                    |
|              | 0.490              | (12.5) | #10-32                        | Yes                  | Yes | Yes | Yes                      | Yes | Yes | Yes                    |
| Single-Ended | 0.375              | (9.53) | No                            | No                   | No  | No  | No                       | No  | No  | Yes                    |
|              | 0.430              | (10.9) | No                            | No                   | No  | No  | No                       | No  | No  | Yes                    |
|              | 0.475              | (12.1) | No                            | No                   | No  | No  | No                       | No  | No  | Yes                    |
|              | 0.490              | (12.5) | No                            | No                   | No  | No  | No                       | No  | No  | Yes                    |



### **WATROD Single/Double-Ended Heaters**


#### **Bend Formations**

#### **Double-Ended WATROD Bend Formations**

Double-ended WATROD heating elements can be formed into spirals, compounds, multi-axis and multi-planes from 36 common bend configurations. Custom bending with tighter tolerances can be made to meet specific application needs.

Formation is limited by the minimum bend radius (R) and the straight length (F) required beyond the bend. In order to locate the end of a heated length within a bend, the radius must be 3 in. (76 mm) or larger. Additionally, overall length tolerance (T) must be included in one or more of the straight lengths.

Minimum radius for various sheath diameters and lengths are shown in the *Bend Formations* chart below. Illustrated on pages 67 to 76 are the 51 common bend configurations available on both stock and made-to-order WATROD heating elements.

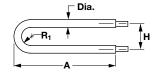


| WATROD Length Tolerance (T) |             |                    |       |  |  |  |
|-----------------------------|-------------|--------------------|-------|--|--|--|
| Sheat                       | h Length    | Length Tolerance   |       |  |  |  |
| in.                         | (mm)        | in.                | (mm)  |  |  |  |
| 11-50                       | (280-1270)  | ± <sup>1</sup> /8  | (±3)  |  |  |  |
| 51-110                      | (1295-2795) | ± <sup>3</sup> /16 | (±5)  |  |  |  |
| 111-170                     | (2820-4320) | ±1/4               | (±6)  |  |  |  |
| 171-200                     | (4345-5080) | ± <sup>3</sup> /8  | (±10) |  |  |  |
| 201 & up                    | (5105 & up) | ±1/2               | (±13) |  |  |  |

#### Single-Ended WATROD Bend Formations

Watlow does not recommend field bending single-ended WATROD elements. Formation is limited by the minimum radius of a bend (R) and the straight length (F) beyond the bend. The radius must be 3 in. (75 mm) or more for the heated length's end to be inside a bend.

Additionally, the overall length tolerance (T) must be provided for in one or more of the specified lengths.


The four common bend configurations available for standard and made-to-order single-ended WATROD elements are Figures 1, 6, 22 and 28.

To order a common bend formation, specify the **bend figure number**, dimensions and critical tolerances.

| WATROD Minimum Radius |         |         |                     |                 |                   |                          |        |  |
|-----------------------|---------|---------|---------------------|-----------------|-------------------|--------------------------|--------|--|
| Sheath Diameter       |         | Field E | Bend R <sup>①</sup> | Facto           | ry R <sup>①</sup> | F <sup>2</sup> Dimension |        |  |
| in.                   | (mm)    | in.     | (mm)                | in.             | (mm)              | in.                      | (mm)   |  |
| 0.260                 | (6.6)   | 3/4     | (19.0)              | <sup>3</sup> /8 | (9.5)             | 1/2                      | (13.0) |  |
| 0.315                 | (8.0)   | 3/4     | (19.0)              | 1/2             | (13.0)            | 1/2                      | (13.0) |  |
| 0.375                 | (9.52)  | 1       | (25.0)              | 1/2             | (13.0)            | 1/2                      | (13.0) |  |
| 0.430                 | (10.92) | 1       | (25.0)              | 1/2             | (13.0)            | 3/4                      | (19.0) |  |
| 0.475                 | (12.07) | 1       | (25.0)              | 5/8             | (15.9)            | 1                        | (25.0) |  |
| 0.490                 | (12.45) | 1       | (25.0)              | <sup>5</sup> /8 | (15.9)            | 1                        | (25.0) |  |

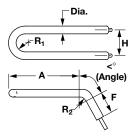
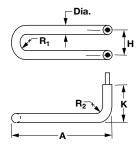

- ① R is the inside radius of a bend.
- ② F is the distance from the sheath's end to the start of the first bend.

Figure 1



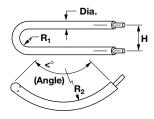
 $SL = 2A + 1.14R_1 - 0.43$  Dia. (For pricing, use 1 bend)

Figure 2



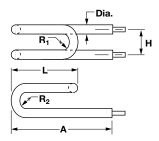

 $SL = 2A + 2F + 1.14R_1 + 0.0175 (<^{\circ})$ ( $2R_2 + Dia.$ ) - 0.43 Dia. (For pricing, use 3 bends)

### **WATROD Single/Double-Ended Heaters**


#### **Bend Formations** (Continued)

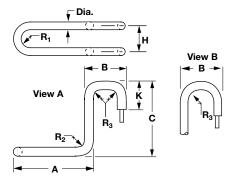
#### Figure 3




 $SL = 2K - 0.86R_2 - 2.86 Dia. + 2A + 1.14R_1$  (For pricing, use 3 bends)

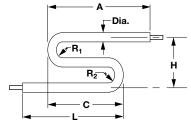
#### Figure 5




 $SL = 0.0175(<^{\circ}) (2R_2 + Dia.) +1.14R_1 + 0.43 Dia.$ (For pricing, use 3 bends)

#### Figure 7




 $SL = 2A + 2.28R_2 - 1.29 Dia. + 2L + 1.14R_1$ (For pricing, use 3 bends)

#### Figure 4



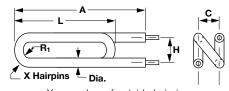
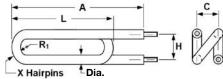

 $\label{eq:View A: SL = 2K-1.72R_3 - 7.72 Dia. + 2C} $$-0.86R_2 + 2A + 1.14R_1$$ View B: SL = 2K-2.28R_3 - 3.72 Dia. + 2C $$-0.86R_2 + 2A + 1.14R_1$$ (For pricing, use 5 bends)$ 

Figure 6




 $SL = L + 1.14R_2 - 0.86 Dia. + C + 1.14R_1 + A$  (For pricing, use 2 bends)

#### Figure 8



$$\label{eq:schrodinger} \begin{split} X &= \text{number of outside hairpins} \\ \text{SL} &= 2\text{A} + 3.42\text{R}_1 - 1.29 \text{ Dia.} + 2\text{L} \\ \text{(For pricing, use 5 bends)} \end{split}$$

#### Figure 8 Reverse



X = number of outside hairpins SL = 2A + 3.42R<sub>1</sub> - 1.29 Dia. + 2L (For pricing, use 5 bends)

### **WATROD Single/Double-Ended Heaters**

#### **Bend Formations** (Continued)

#### Figure 9

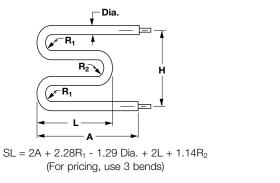



Figure 11

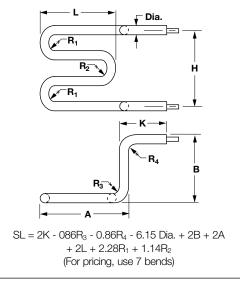
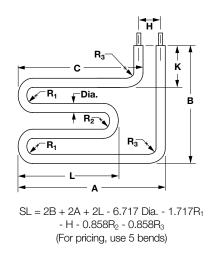
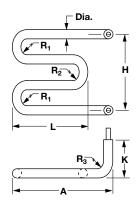
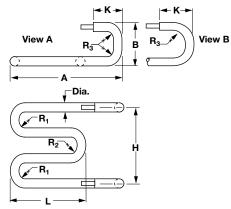





Figure 13




#### Figure 10



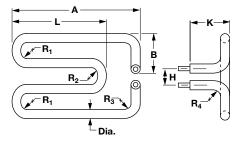
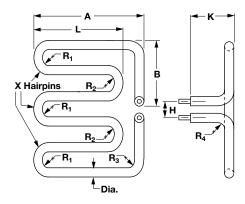

$$\begin{split} SL &= 2 \text{K - } 0.86 \text{R}_3 \text{ - } 3.72 \text{ Dia. } + 2 \text{A} + 2 \text{L} \\ &+ 2.28 \text{R}_1 + 1.14 \text{R}_2 \\ &\text{(For pricing, use 5 bends)} \end{split}$$

Figure 12



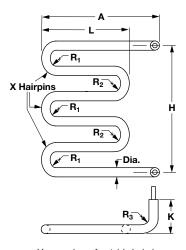
 $\label{eq:View A: SL = 2K + 2B + 2A + 2L + 2.28R_1 + 1.14R_2 - 1.72R_3 - 6.15 Dia.}$   $\label{eq:View B: SL = 2K + 2A + 2L + 2.28R_1 + 1.14R_2 - 2.28R_3 - 2.15 Dia.}$   $\label{eq:View B: SL = 2K + 2A + 2L + 2.28R_1 + 1.14R_2 - 2.28R_3 - 2.15 Dia.}$   $\label{eq:View B: SL = 2K + 2B + 2A + 2L + 2.28R_1 + 1.14R_2 - 2.28R_3 - 2.15 Dia.}$ 

Figure 14



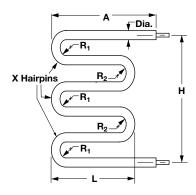

SL+2K+2A+2L+2.28R<sub>1</sub>+1.14R<sub>2</sub>+2B -6.15 Dia. -0.86R<sub>3</sub>+0.86R<sub>4</sub> (For pricing use 7 bends)

### **WATROD Single/Double-Ended Heaters**


#### **Bend Formations** (Continued)

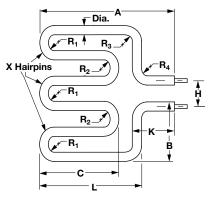
#### Figure 15




 $\begin{array}{l} X = \text{number of outside hairpins} \\ SL = 2K + 2A + 2K(X - 1) + 2B - 0.86R_3 - \\ 0.86R_4 + 1.14R_1 (X) + 1.14R_2 (X - 1) - \\ 4.86 \ \text{Dia.} - (2X - 1) \ 0.43 \ \text{Dia.} \\ \text{(For pricing, use 9 bends if X = 3 hairpins)} \\ \end{array}$ 

#### Figure 17



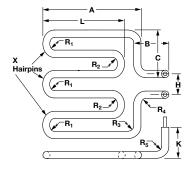

X = number of outside hairpins  $SL = 1.14R_2X - 0.88 \text{ Dia. } X - 1.14R_2 - 2 \text{ Dia.}$   $+ 1.14R_1X - 0.86R_3 + 2LX - 2L + 2A + 2K$  (For pricing, use 7 bends if X = 3 hairpins)

#### Figure 16



$$\begin{split} X &= \text{number of outside hairpins} \\ SL &= 2A + 0.43 \text{ Dia. } (1 - 2X) + 2L (X - 1) + 1.14R_1 \\ &\quad + 1.14R_2 (X - 1) \\ \text{(For pricing, use 5 bends if X = 3 hairpins)} \end{split}$$

#### Figure 18




$$\begin{split} X &= \text{number of outside hairpins} \\ SL &= 2L + 2K + 2B + 2C (X - 1) - 0.86R_3 \\ &- 0.86R_4 - 4.86 \text{ Dia.} + 1.14R_1 (X) \\ &+ 1.14R_2 (X - 1) - (2X - 1) 0.43 \text{ Dia.} \\ \text{(For pricing, use 9 bends if X = 3 hairpins)} \end{split}$$

### **WATROD Single/Double-Ended Heaters**

#### **Bend Formations** (Continued)

#### Figure 19



 $\begin{array}{c} X = \text{number of outside hairpins} \\ SL = 2K + 2A + 2B + 2C + 2L (X - 1) + 1.14R_1 \\ (X) + 1.14R_2 (X - 1) - 0.86R_3 - 0.86R_4 \\ - 0.86R_5 - 7.29 \ \text{Dia.} - (2X - 1) \ 0.43 \ \text{Dia.} \\ \text{(For pricing, use 11 bends if X = 3 hairpins)} \end{array}$ 

#### Figure 21

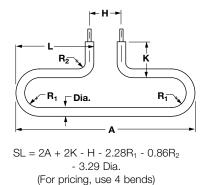
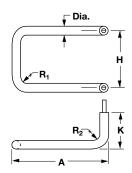
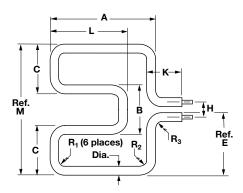
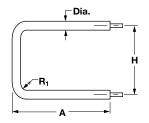




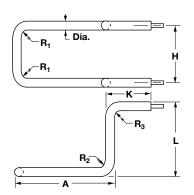

Figure 23




 $SL = 2K - 0.86R_2 - 3.86 \ Dia. + 2A - 0.86R_1 + H$  (For pricing, use 4 bends)

#### Figure 20



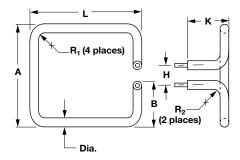

 $SL = 2K + 2C + B + 2A + 2L - 2.58R_1 - 0.86R_2 - \\ 0.86R_3 - 12.15 \ Dia.$  (For pricing, use 10 bends)

#### Figure 22



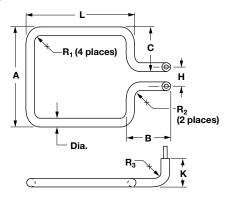
 $SL = 2A - 0.86R_1 - 1.43 Dia. + H$ (For pricing, use 2 bends)

#### Figure 24



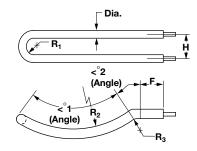

 $SL = 2K + 2L + H - 0.86R_1 - 0.86R_2 - 0.86R_3 \\ - 7.29 \ Dia. \\ \mbox{(For pricing, use 6 bends)}$ 

### **WATROD Single/Double-Ended Heaters**


#### **Bend Formations** (Continued)

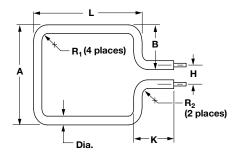
#### Figure 25




 $SL = 2K + 2A + 2L - H - 1.72R_1 - 0.86R_2$ - 6.92 Dia. (For pricing, use 6 bends)

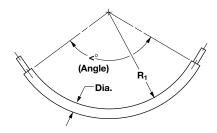
#### Figure 27




 $SL = 2K + 2A + 2L + 2B - H - 1.72R_1 \\ - 1.72R_2 - 8.72 Dia. \\ \text{(For pricing, use 8 bends)}$ 

#### Figure 29




$$\begin{split} SL &= 0.0175 <^\circ 1 \; (2R_2 + \text{Dia.}) + 2F + 1.14R_1 \\ &+ 0.0175 <^\circ 2 \; (2R_3 + \text{Dia.}) - 0.43 \; \text{Dia.} \\ & (\text{For pricing, use 5 bends}) \end{split}$$

#### Figure 26



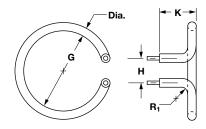
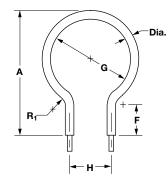

 $SL = 2K + 2A + 2L - H - 1.72R_1 - 0.86R_2$ - 6.29 Dia. (For pricing, use 6 bends)

Figure 28



 $SL = 0.0175 <^{\circ} (R_1 + 0.5 Dia.)$ (For pricing, use 1 bend)

Figure 30




 $SL = (G + Dia.) 3.14 + 1.14R_1 + 2K + 3.28 Dia. - H$ (For pricing, use 4 bends)

## **WATROD Single/Double-Ended Heaters**

## **Bend Formations** (Continued)

### Figure 31



 $SL = (G + Dia.) \ 3.14 + 1.14R_1 + 2F \\ + 3.71 \ Dia. - H \\ (For pricing, use 4 bends)$ 

### Figure 37

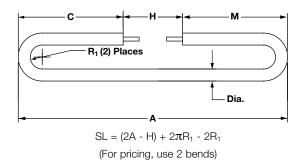
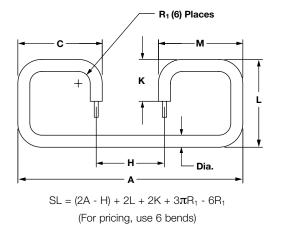
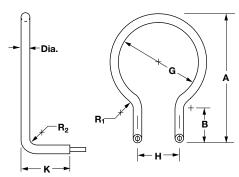





Figure 39

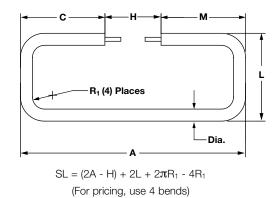
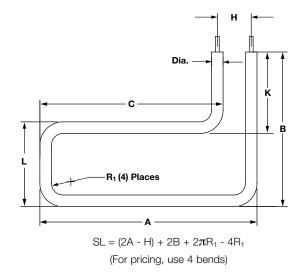


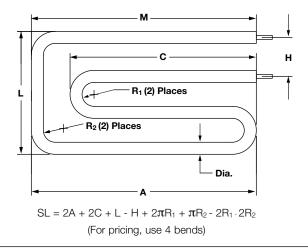
### Figure 32



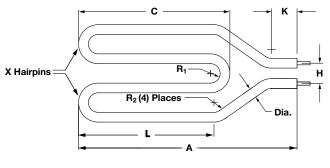
$$SL = (G + Dia.) \ 3.14 + 1.14R_1 + 2B + 1.14R_2 + \\ 2K + 3.28 \ Dia. - H$$
 (For pricing, use 6 bends)

### Figure 38

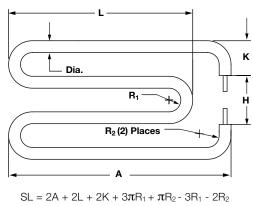


Figure 40




## **WATROD Single/Double-Ended Heaters**

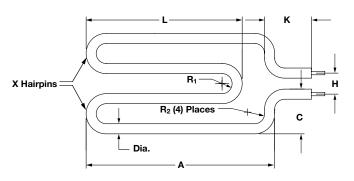
### Bend Formations (Continued)

### Figure 41



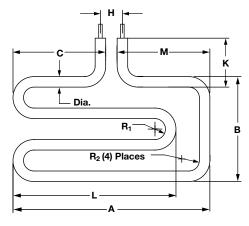

### Figure 43




 $SL = 2A + (\#)C + (\# \ of \ R_1) \ \pi + 2\pi R_2 - (\# \ of \ R_1) \ R_1 - 4R_2$  (For pricing, use 7 bends if X = 2)

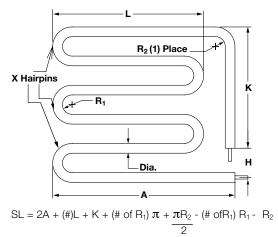
### Figure 45




 $SL = 2A + 2L + 2K + 3\pi R_1 + \pi R_2 - 3R_1 - 2R_2$ (For pricing, use 5 bends)

### Figure 42




 $SL = 2A + (\#)L + 2K + 2C + 2\pi R_2 + (\# \ of \ R_1) \ \pi R_1 - (\# \ of \ R_1) \ R_1$  (For pricing, use 7 bends if X = 2)

### Figure 44



 $SL = 2A + 2L + B + 2K + 2\pi R_2 + 3\pi R_1 - 4R_2 - 3R_1$  (For pricing, use 7 bends)

### Figure 46



(For pricing, use 6 bends if X = 3)

## **WATROD Single/Double-Ended Heaters**

### **Bend Formations** (Continued)

### Figure 47

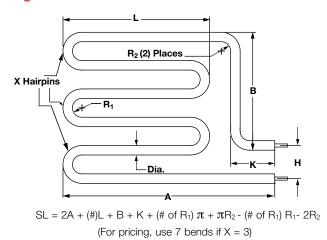
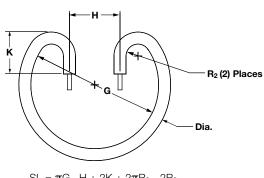
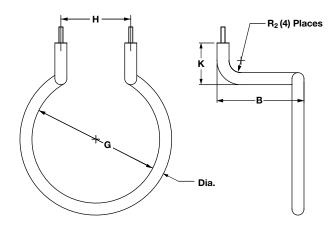





Figure 49



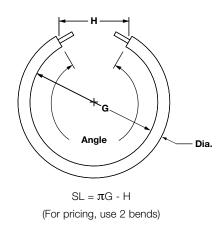
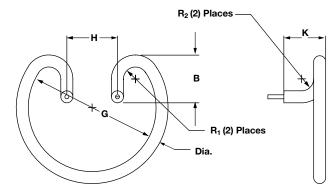
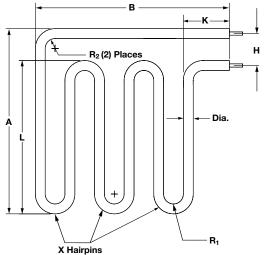

 $SL = \pi G - H + 2K + 2\pi R_2 - 2R_2$  (For pricing, use 4 bends)

Figure 51




 $SL = \pi G - H + 2B + 2K + 2\pi R_2 - 4R_2$  (For pricing, use 6 bends)

### Figure 48

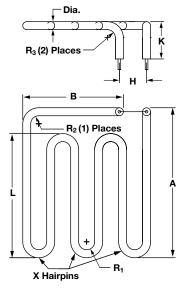



### Figure 50



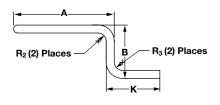
 $SL = \pi G - H + 2B + 2K + \pi R_2 + 2\pi R_1 - 2R_1 - 2R_2$ (For pricing, use 6 bends)

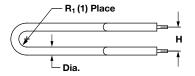
### Figure 52




 $SL = 2A + B + (\#)L - H + (\# \ of \ R_1) \ \pi + \pi R_2 - (\# \ of \ R_1) \ R_1 - 2R_2$  (For pricing, use 7 bends if X = 3)

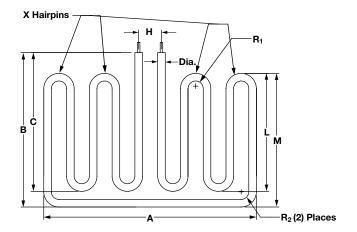
## **WATROD Single/Double-Ended Heaters**


### **Bend Formations** (Continued)


### Figure 53

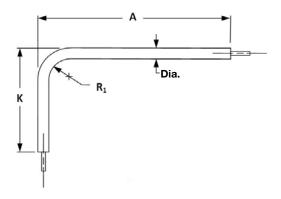


 $SL = 2A + (\#)L + B + 2K + (\# \ of \ R_1) \ \pi + 2 \ \underline{(\pi R_3)}{2} - (\# \ of \ R_1) \ R_1 - 2R_3 - R_2$  (For pricing, use 8 bends if X = 3)


### Figure 54





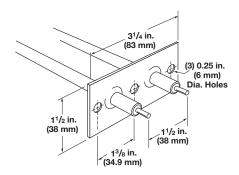

 $SL = 2A + 2B + 2K + \pi R_1 + 2\pi R_2 - R_1 - 4R_2$  (For pricing, use 5 bends)

### Figure 55



 $SL = A + 2C + 2M + (\#)L + (\# \text{ of } R_1)\pi + \pi R_2 - (\# \text{ of } R_1) R_1 - 2R_2$  (For pricing, use 10 bends if X = 4)

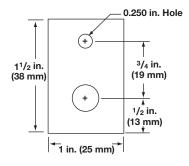
### Figure 56




 $SL = A + K - 0.86R_1$  (For pricing, use 1 bend)

## **WATROD Single/Double-Ended Heaters**

### **Mounting Methods**


### **Brackets**



A 0.065 in. (1.7 mm) thick stainless steel bracket provides element mounting in non-pressurized applications. Attached to the heater sheath, these brackets are not suited for liquid-tight mountings. The bracket is located  $^{1}/_{2}$  in. (13 mm) from the sheath's end, unless otherwise specified.

To order, specify mounting bracket.

### **Single Leg Bracket**



A  $1^{1}/2$  in. (38 mm) x 1 in. (25 mm) wide x 16 gauge stainless steel bracket with one element hole and one mounting hole  $^{1}/_{2}$  in. (13 mm) from end.

To order, specify single leg bracket.

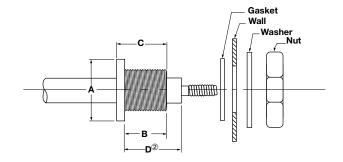
### **Locator Washers**



Stainless steel locator washers retain the heated area of the sheath in the work zone, while allowing for expansion and contraction during cycling.

To order, specify **locator washer**, along with dimension from the heater's end.

WATLOW<sup>®</sup> 27


### **WATROD Single/Double-Ended Heaters**

Mounting Methods (Continued)

### **Threaded Bulkheads**

A threaded bushing with flange on the heater sheath provides rigid, leak-proof mounting through the walls of tanks. A gasket, plated steel washer and hex nut are included. The threaded end of the bushing is flush with the sheath's end unless otherwise specified. Threaded bulkheads are available in brass, steel or stainless steel as indicated in the table.

To order, specify **threaded bulkheads** and the specifications from the table.



### **Threaded Bulkhead Specifications**

| Eleme<br>Diame | nt     |          | Thread                   | A ①<br>Flange<br>Size/Style              | B<br>Threaded<br>Length            | C<br>Overall<br>Length               |
|----------------|--------|----------|--------------------------|------------------------------------------|------------------------------------|--------------------------------------|
| in.            | (mm)   | Material | Size                     | in. (mm)                                 | in. (mm)                           | in. (mm)                             |
| 0.260          | (6.6)  | Brass    | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> / <sub>4</sub> Round (19.0) | <sup>5</sup> /8 (15.9)             | <sup>3</sup> /4 (19.0)               |
| 0.260          | (6.6)  | SS       | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> / <sub>4</sub> Round (19.0) | <sup>5</sup> /8 (15.9)             | <sup>3</sup> / <sub>4</sub> (19.0)   |
| 0.315          | (8.0)  | Brass    | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> / <sub>4</sub> Round (19.0) | <sup>5</sup> /8 (15.9)             | <sup>3</sup> / <sub>4</sub> (19.0)   |
| 0.315          | (8.0)  | Steel    | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> / <sub>4</sub> Hex (19.0)   | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>15</sup> / <sub>16</sub> (23.8) |
| 0.315          | (8.0)  | SS       | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> / <sub>4</sub> Round (19.0) | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>27</sup> /32 (21.4)             |
| 0.375          | (9.5)  | Brass    | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> / <sub>4</sub> Round (19.0) | <sup>5</sup> /8 (15.9)             | <sup>3</sup> / <sub>4</sub> (19.0)   |
| 0.375          | (9.5)  | Steel    | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> / <sub>4</sub> Hex (19.0)   | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>15</sup> /16 (23.8)             |
| 0.375          | (9.5)  | SS       | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> / <sub>4</sub> Round (19.0) | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>27</sup> /32 (21.4)             |
| 0.430          | (10.9) | Brass    | <sup>5</sup> /8 - 18 UNF | <sup>7</sup> /8 Hex (22.2)               | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>15</sup> / <sub>16</sub> (23.8) |
| 0.430          | (10.9) | Steel    | <sup>5</sup> /8 - 18 UNF | <sup>7</sup> /8 Round (22.2)             | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>15</sup> / <sub>16</sub> (23.8) |
| 0.430          | (10.9) | SS       | <sup>5</sup> /8 - 18 UNF | 1 Round (25.0)                           | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>15</sup> / <sub>16</sub> (23.8) |
| 0.475          | (12.1) | Brass    | <sup>5</sup> /8 - 18 UNF | <sup>7</sup> /8 Round (22.2)             | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>15</sup> / <sub>16</sub> (23.8) |
| 0.475          | (12.1) | Steel    | <sup>5</sup> /8 - 18 UNF | 1 Round (25.0)                           | 1 (25.0)                           | 1 <sup>1</sup> /8 (28.6)             |
| 0.475          | (12.1) | SS       | <sup>5</sup> /8 - 18 UNF | 1 Round (25.0)                           | <sup>3</sup> / <sub>4</sub> (19.0) | <sup>15</sup> /16 (23.8)             |

① Designates the dimension across flats for hex flange style and outside diameter for round flange style.

<sup>2</sup> Equal to "B" dimension unless otherwise specified.



# **Extended Capabilities For WATROD Single/Double-Ended Heaters**

### **Options**

### **Terminal Enclosures**

General purpose terminal enclosures, without thermostats, are standard on all screw plug immersion heaters. To meet specific application requirements, Watlow offers the following optional terminal enclosures:

- General purpose with single or double pole thermostat
- Moisture-resistant or corrosion resistant—available with optional single or double pole thermostat
- Explosion-resistant class 1, groups B, C and D explosion resistant—available with optional single or double-pole thermostat.
- Explosion and moisture-resistant combination available with optional single- or double-pole thermostat

### **Zoned Heaters**

Multiple zone heaters with up to (5) zones are available.

### **Features and Benefits**

### Standard sheath materials

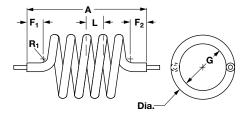
 Optional materials available which include titanium, alloy 20, Hastelloy C276, 321 SS and alloy 400

### **Specifications**

#### Double-Ended

### Single-Ended

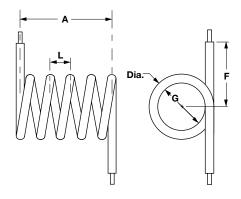
|                                              |                              |                        | 9 &                |               |                                  | 35                     |                           |               |
|----------------------------------------------|------------------------------|------------------------|--------------------|---------------|----------------------------------|------------------------|---------------------------|---------------|
| Element Diameters                            | Dia.                         | <u>in</u> ²            | Dia. (mm)          | <u>cm</u> ²   | <u>Dia.</u>                      | <u>in</u> ²            | Dia. (mm)                 | <u>cm</u> ²   |
| in. (mm)                                     | 0.490                        | 1.539                  | (12.45)            | (9.93)        | 0.490                            | 1.539                  | (12.45)                   | (9.930)       |
| and Surface Area per Linear                  |                              |                        |                    |               |                                  |                        |                           |               |
| in² (cm²)                                    |                              |                        |                    |               |                                  |                        |                           |               |
| Diameter Tolerance                           |                              |                        |                    |               |                                  |                        |                           |               |
| ± 0.005 in. (0.13 mm)                        |                              |                        |                    |               |                                  |                        |                           |               |
| Sheath Materials                             | Extended:                    | Alloy 400              | Contact W          |               | Extended:                        | Alloy 600              | 1800°F (980°C)            |               |
| Max. Operating                               |                              | Titanium               | Contact W          |               | Steel                            | 750°F                  | (400°C)                   |               |
| Temperature                                  |                              |                        |                    |               |                                  |                        |                           |               |
| Sheath Length By Diameter                    |                              | Sheath                 |                    | Sheath        |                                  | Sheath                 |                           | Sheath        |
| in. (mm)                                     | <b>Dia.</b><br>Extended:     | Length (in.)           | <u>Dia. (mm)</u>   | Length (mm)   | <b>Dia.</b><br>Extended:         | Length (in.)           | <u>Dia. (mm)</u>          | Length (mm)   |
|                                              | 0.490                        | 11 to 265              | (12.45)            | (280 to 6731) | 0.490                            | 11 to 125              | (12.45)                   | (280 to 3175) |
| Max. Voltage/Amperage<br>By Dia.<br>in. (mm) | <b>Dia.</b><br>0.490 (12.45) | <b>Volts</b><br>600VAC | Ampere<br>40       |               | <b><u>Dia.</u></b> 0.490 (12.45) | <u>Volts</u><br>480VAC | Ampere<br>30              |               |
| Ohms Per Heated Inch<br>By Dia.              | <b>Dia.</b><br>0.490         | <b>Min.</b><br>0.035Ω  | <b>Max.</b><br>21Ω |               | <b>Dia.</b><br>0.490             | <b>Min.</b><br>0.150Ω  | <u><b>Max.</b></u><br>24Ω |               |


WATLOW® \_\_\_\_\_\_ 79



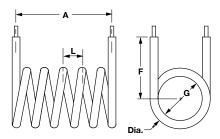
# **Extended Capabilities For WATROD Single/Double-Ended Heaters**

### **Bend Formations**


### Figure 33



 $SL = [(G + Dia.) (3.14) (Number of 360°'s)] \\ + F1 + F2 \\ (For pricing, contact Watlow)$ 


Figure 35

80



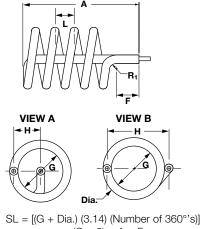

 $SL = [(G + Dia.) (3.14) (Number of 360°'s)] \\ + 2F \\ (For pricing, contact Watlow)$ 

Figure 34



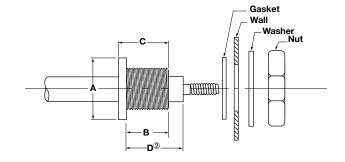
SL = [(G + Dia.) (3.14) (Number of 360°'s)] + 2F (For pricing, contact Watlow)

### Figure 36



SL = [(G + Dia.) (3.14) (Number of 360°s + (G ÷ 2) + A + F(For pricing, contact Watlow)




# **Extended Capabilities For WATROD Single/Double-Ended Heaters**

### **Mounting Methods**

### **Threaded Bulkheads**

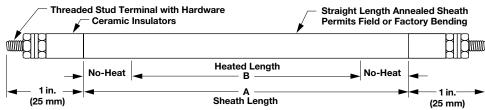
A threaded bushing with flange on the heater sheath provides rigid, leak-proof mounting through the walls of tanks. A gasket, plated steel washer and hex nut are included. The threaded end of the bushing is flush with the sheath's end unless otherwise specified. Threaded bulkheads are available in brass, steel or stainless steel as indicated in the table.

To order, specify **threaded bulkheads** and the specifications from the table.



### **Threaded Bulkhead Specifications**

| Element<br>Diameter |        |          | Thread                   | A ①<br>Flange<br>Size/Styl |        |     | B<br>eaded<br>ength |                   | C<br>/erall<br>ength |
|---------------------|--------|----------|--------------------------|----------------------------|--------|-----|---------------------|-------------------|----------------------|
| in.                 | (mm)   | Material | Size                     | in.                        | (mm)   | in. | (mm)                | in.               | (mm)                 |
| 0.260               | (6.6)  | Steel    | <sup>1</sup> /2 - 20 UNF | <sup>3</sup> /4 Hex        | (19.0) | 5/8 | (15.9)              | 3/4               | (19.0)               |
| 0.430               | (10.9) | Titanium | <sup>5</sup> /8 - 18 UNF | 1 Round                    | (25.0) | 3/4 | (19.0)              | <sup>15</sup> /16 | (23.8)               |
| 0.490               | (12.5) | Brass    | <sup>3</sup> /4 - 16 UNF | 1 Round                    | (25.0) | 3/4 | (19.0)              | 1                 | (25.0)               |
| 0.490               | (12.5) | Steel    | <sup>3</sup> /4 - 16 UNF | 1 Hex                      | (25.0) | 3/4 | (19.0)              | 1                 | (25.0)               |
| 0.490               | (12.5) | SS       | <sup>3</sup> /4 - 16 UNF | 1 Round                    | (25.0) | 3/4 | (19.0)              | 1                 | (25.0)               |


 $<sup>\</sup>bigcirc$  Designates the dimension across flats for hex flange style and outside diameter for round flange style.

WATLOW® 81

<sup>2</sup> Equal to "B" dimension unless otherwise specified.

## **WATROD Single/Double-Ended Heaters**

### **Double-Ended WATROD**



|                                                                                                              |                                                                                                                                      |                                                          | '                                                                                    | (25 mn                                                   | 1)                                   |                                                       | Sheath Length                                                                                  | - 1 -                                                                                          | (25 m                           |                                           |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| WATROD<br>Description                                                                                        |                                                                                                                                      | neath<br>mension                                         |                                                                                      | ated<br>ension                                           | Watts                                |                                                       | Part Number                                                                                    |                                                                                                |                                 | . Net<br>Vt.                              |
|                                                                                                              | in.                                                                                                                                  | (mm)                                                     | in.                                                                                  | (mm)                                                     |                                      | 120VAC                                                | 240VAC                                                                                         | 480VAC                                                                                         | lbs                             | (kg)                                      |
| Applications                                                                                                 | : Medi                                                                                                                               | um-We                                                    | ight, N                                                                              | Ion-Circ                                                 | ulating C                            | il, Heat-Transf                                       | er Oil                                                                                         |                                                                                                |                                 |                                           |
| 15 W/in <sup>2</sup><br>0.475 in. Dia.<br>Steel<br>(2.3 W/cm <sup>2</sup> )                                  | 29 <sup>7</sup> /8<br>38 <sup>3</sup> /8<br>44 <sup>3</sup> /4<br>53 <sup>3</sup> /8                                                 | (758.8)<br>(974.7)<br>(1137.0)<br>(1355.7)               | 22 <sup>3</sup> /8<br>29 <sup>7</sup> /8<br>37 <sup>1</sup> /4<br>44 <sup>3</sup> /4 | (568.4)<br>(758.8)<br>(946.0)<br>(1137.0)                | 500<br>667<br>833<br>1000            |                                                       | RGSS29R10S<br>RGSS38G10S<br>RGSS44G10S<br>RGSS53G10S                                           | RGSS38G11S<br>RGSS44G11S<br>RGSS53G11S                                                         | 1.0<br>1.3<br>1.7<br>1.9        | (0.5)<br>(0.6)<br>(0.8)<br>(0.9)          |
| (12 mm)                                                                                                      | 142 <sup>7</sup> /8                                                                                                                  | (1736.7)<br>(2117.7)<br>(2498.7)<br>(3057.5)<br>(3629.1) | 111 <sup>7</sup> /8                                                                  | (1514.4)<br>(1892.0)<br>(2273.0)<br>(2841.6)<br>(3410.0) | 1333<br>1667<br>2000<br>2500<br>3000 |                                                       | RGSS68G10S<br>RGSS83G10S<br>RGSS98G10S<br>RGSS120G10S <sup>①</sup><br>RGSS142R10S <sup>①</sup> | RGSS68G11S<br>RGSS83G11S<br>RGSS98G11S<br>RGSS120G11S <sup>①</sup><br>RGSS142R11S <sup>①</sup> | 2.1<br>2.5<br>3.0<br>3.9<br>4.1 | (1.0)<br>(1.1)<br>(1.4)<br>(1.8)<br>(1.9) |
| Application:<br>20 W/in <sup>2</sup><br>0.430 in. Dia.<br>Alloy 840<br>(3.1 W/cm <sup>2</sup> )<br>(10.9 mm) | 48 <sup>3</sup> / <sub>4</sub><br>58 <sup>3</sup> / <sub>4</sub><br>73 <sup>3</sup> / <sub>4</sub><br>91 <sup>3</sup> / <sub>4</sub> | (1238.0)<br>(1492.0)<br>(1873.0)<br>(2330.0)             | 63 <sup>3</sup> / <sub>4</sub><br>81 <sup>3</sup> / <sub>4</sub>                     | (984.0)<br>(1238.0)<br>(1619.0)<br>(2076.0)              | 1000<br>1250<br>1667<br>2083         |                                                       | RCN48N10S<br>RCN58N10S                                                                         | RCN48N11S<br>RCN58N11S<br>RCN73N11S<br>RCN91N11S                                               | 1.0<br>1.1<br>1.4<br>1.7        | (0.5)<br>(0.5)<br>(0.7)<br>(0.8)          |
| Applications                                                                                                 |                                                                                                                                      |                                                          |                                                                                      |                                                          |                                      |                                                       |                                                                                                |                                                                                                |                                 |                                           |
| 23 W/in <sup>2</sup><br>0.315 in. Dia.<br>Alloy 800<br>(3.6 W/cm <sup>2</sup> )<br>(8 mm)                    | 29<br>40<br>51                                                                                                                       | (737.0)<br>(1016.0)<br>(1296.0)                          | 22<br>33<br>44                                                                       | (559.0)<br>(839.0)<br>(1118.0)                           | 500<br>750<br>1000                   | RBN291S<br>RBN401S<br>RBN511S                         |                                                                                                |                                                                                                | 0.4<br>0.5<br>0.7               | (0.2)<br>(0.3)<br>(0.4)                   |
| 23 W/in <sup>2</sup><br>0.475 in. Dia.<br>Alloy 800<br>(3.6 W/cm <sup>2</sup> )<br>(12 mm)                   | 39<br>54<br>69<br>84<br>99                                                                                                           | (991.0)<br>(1372.0)<br>(1753.0)<br>(2134.0)<br>(2515.0)  | 27<br>42<br>57<br>72<br>87                                                           | (686.0)<br>(1067.0)<br>(1448.0)<br>(1829.0)<br>(2210.0)  | 1000<br>1500<br>2000<br>2500<br>3000 | RGNA391S                                              | RGNA3910S<br>RGNA5410S<br>RGNA6910S<br>RGNA8410S<br>RGNA9910S                                  | RGNA3911S<br>RGNA5411S<br>RGNA6911S<br>RGNA8411S<br>RGNA9911S                                  | 1.2<br>1.6<br>2.1<br>2.5<br>3.0 | (0.6)<br>(0.8)<br>(1.0)<br>(1.2)<br>(1.4) |
|                                                                                                              | 106<br>132<br>157                                                                                                                    | (2692.0)<br>(3353.0)<br>(3988.0)                         | 94<br>120<br>145                                                                     | (2388.0)<br>(3048.0)<br>(3683.0)                         | 2778<br>4167<br>5000                 |                                                       | RGNA13210S <sup>①</sup><br>RGNA15710S <sup>①</sup>                                             | RGNA10611S <sup>①</sup> RGNA13211S <sup>①</sup> RGNA15711S <sup>①</sup>                        | 3.2<br>4.0<br>4.7               | (1.5)<br>(1.8)<br>(2.2)                   |
| Applications                                                                                                 |                                                                                                                                      |                                                          | ı                                                                                    |                                                          |                                      | I                                                     | 1                                                                                              |                                                                                                |                                 | 4=                                        |
| 23 W/in <sup>2</sup><br>0.315 in. Dia.<br>Steel<br>(3.6 W/cm <sup>2</sup> )<br>(8 mm)                        | 16<br>18<br>21<br>23 <sup>3</sup> /8<br>28 <sup>7</sup> /8                                                                           | (406.0)<br>(457.0)<br>(533.0)<br>(593.7)<br>(733.4)      | 12<br>14<br>17<br>19 <sup>3</sup> /8<br>24 <sup>7</sup> /8                           | (305.0)<br>(356.0)<br>(432.0)<br>(492.1)<br>(631.8)      | 250<br>250<br>350<br>375<br>500      | RBS161S<br>RBS181S<br>RBS211S<br>RBS23G1S<br>RBS28R1S | RBS1610S<br>RBS2110S                                                                           |                                                                                                | 0.2<br>0.3<br>0.3<br>0.3<br>0.4 | (0.1)<br>(0.2)<br>(0.2)<br>(0.2)<br>(0.2) |
|                                                                                                              | 29<br>42<br>54<br>77                                                                                                                 | (737.0)<br>(1067.0)<br>(1372.0)<br>(1956.0)              | 24<br>37<br>49<br>72                                                                 | (610.0)<br>(940.0)<br>(1245.0)<br>(1829.0)               | 500<br>750<br>1000<br>1500           | RBS291S<br>RBS421S<br>RBS541S<br>RBS771S              | RBS2910S<br>RBS4210S<br>RBS5410S<br>RBS7710S                                                   |                                                                                                | 0.4<br>0.6<br>0.7<br>1.0        | (0.2)<br>(0.3)<br>(0.4)<br>(0.5)          |
|                                                                                                              |                                                                                                                                      |                                                          |                                                                                      |                                                          |                                      |                                                       |                                                                                                |                                                                                                | CON                             | TINUED                                    |

RAPID SHIP

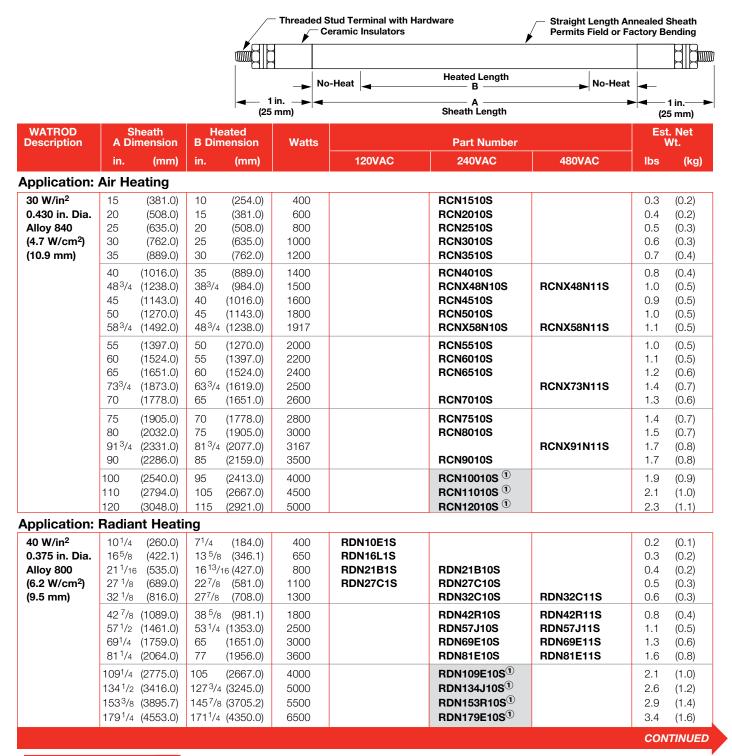
Truck Shipment only

Next day shipment up to 15 pieces

## **WATROD Single/Double-Ended Heaters**

Double-Ended WATROD (Continued)

| Sheath<br>A Dimension            |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Watts                                        |                               | Part Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t. Net<br>Wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in.                              | (mm)                                                                                                                                                      | in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | 120VAC                        | 240VAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 480VAC                                                               | lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Light                            | Oils, G                                                                                                                                                   | rease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s, Heat-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Transfer                                     | Oils                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23<br>31<br>39                   | (584)<br>(787)<br>(991)                                                                                                                                   | 14<br>22<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (356)<br>(559)<br>(686)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500<br>750<br>1000                           | RGS231S<br>RGS311S<br>RGS391S | RGS2310S<br>RGS3110S<br>RGS3910S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RGS3911S                                                             | 0.7<br>1.0<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.4)<br>(0.5)<br>(0.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 45<br>54                         | (1143)<br>(1372)                                                                                                                                          | 36<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (914)<br>(1067)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1250<br>1500                                 | RGS451S<br>RGS541S            | RGS4510S<br>RGS5410S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RGS5411S                                                             | 1.4<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.7)<br>(0.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 69<br>84<br>99                   | (1753)<br>(2134)<br>(2515)<br>(2692)                                                                                                                      | 57<br>72<br>87<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1448)<br>(1829)<br>(2210)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000<br>2500<br>3000<br>2778                 | RGS691S<br>RGS841S            | RGS6910S<br>RGS8410S<br>RGS9910S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RGS6911S<br>RGS8411S<br>RGS9911S                                     | 2.1<br>2.5<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.0)<br>(1.2)<br>(1.4)<br>(1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 132<br>144<br>157                | (3353)<br>(3658)<br>(3988)                                                                                                                                | 120<br>128<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3048)<br>(3251)<br>(3683)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4167<br>3889<br>5000                         |                               | RGS13210S <sup>①</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RGS13211S <sup>①</sup> RGS14411S <sup>①</sup> RGS15711S <sup>①</sup> | 4.0<br>4.3<br>4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.8)<br>(2.0)<br>(2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Air He                           | ating                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20<br>25<br>30<br>35<br>40       | (508)<br>(635)<br>(762)<br>(889)<br>(1016)                                                                                                                | 15<br>20<br>25<br>30<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (381)<br>(508)<br>(635)<br>(762)<br>(889)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400<br>500<br>600<br>800<br>900              |                               | RAN2010S<br>RAN2510S<br>RAN3010S<br>RAN3510S<br>RAN4010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | 0.2<br>0.3<br>0.3<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.1)<br>(0.2)<br>(0.2)<br>(0.2)<br>(0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50<br>55<br>60<br>65             | (1270)<br>(1397)<br>(1524)<br>(1651)                                                                                                                      | 45<br>50<br>55<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1016)<br>(1143)<br>(1270)<br>(1397)<br>(1524)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1200<br>1200<br>1200<br>1400<br>1600         |                               | RAN5010S<br>RAN5510S<br>RAN6010S<br>RAN6510S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      | 0.5<br>0.6<br>0.6<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.3)<br>(0.3)<br>(0.3)<br>(0.3)<br>(0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 70<br>75<br>80                   | (1778)<br>(1905)<br>(2032)                                                                                                                                | 65<br>70<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1651)<br>(1778)<br>(1905)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1800<br>1800<br>2000                         |                               | RAN7010S<br>RAN7510S<br>RAN8010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      | 0.7<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.4)<br>(0.4)<br>(0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15<br>20<br>25<br>30<br>35       | (381)<br>(508)<br>(635)<br>(762)<br>(889)                                                                                                                 | 10<br>15<br>20<br>25<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (254)<br>(381)<br>(508)<br>(635)<br>(762)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300<br>400<br>600<br>800<br>900              |                               | RBN1510S<br>RBN2010S<br>RBN2510S<br>RBN3010S<br>RBN3510S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | 0.2<br>0.3<br>0.4<br>0.4<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.1)<br>(0.2)<br>(0.2)<br>(0.2)<br>(0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 40<br>45<br>50<br>55<br>60<br>65 | (1016)<br>(1143)<br>(1270)<br>(1397)<br>(1524)<br>(1651)                                                                                                  | 35<br>40<br>45<br>50<br>55<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (889)<br>(1016)<br>(1143)<br>(1270)<br>(1397)<br>(1524)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000<br>1200<br>1400<br>1600<br>1800<br>1800 |                               | RBN4010S<br>RBN4510S<br>RBN5010S<br>RBN5510S<br>RBN6010S<br>RBN6510S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | 0.5<br>0.6<br>0.7<br>0.7<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.3)<br>(0.3)<br>(0.4)<br>(0.4)<br>(0.4)<br>(0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 70<br>75<br>80<br>90<br>100      | (1778)<br>(1905)<br>(2032)<br>(2286)<br>(2540)                                                                                                            | 65<br>70<br>75<br>85<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1651)<br>(1778)<br>(1905)<br>(2159)<br>(2413)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000<br>2200<br>2400<br>2600<br>3000         |                               | RBN7010S<br>RBN7510S<br>RBN8010S<br>RBN9010S<br>RBN10010S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      | 0.9<br>1.0<br>1.0<br>1.2<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.5)<br>(0.5)<br>(0.5)<br>(0.6)<br>(0.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  | A Direction.  Light  23 31 39 45 54 69 84 99 106 132 144 157  Air He  20 25 30 35 40 45 50 65 70 75 80 15 20 25 30 35 40 45 50 65 77 75 80 65 70 75 80 90 | in. (mm)  Light Oils, G  23 (584) 31 (787) 39 (991) 45 (1143) 54 (1372) 69 (1753) 84 (2134) 99 (2515) 106 (2692) 132 (3353) 144 (3658) 157 (3988)  Air Heating  20 (508) 25 (635) 30 (762) 35 (889) 40 (1016) 45 (1143) 50 (1270) 55 (1397) 60 (1524) 65 (1651) 70 (1778) 75 (1905) 80 (2032) 15 (381) 20 (508) 25 (635) 30 (762) 35 (889) 40 (1016) 45 (1143) 50 (1270) 55 (1397) 60 (1524) 65 (635) 30 (762) 35 (889) 40 (1016) 45 (1143) 50 (1270) 55 (1397) 60 (1524) 65 (1651) 70 (1778) 75 (1905) 80 (2032) 40 (1016) 45 (1143) 50 (1270) 55 (1397) 60 (1524) 65 (1651) 70 (1778) 75 (1905) 80 (2032) 90 (2286) | A Dimension   In.   In | Name                                         | Color                         | A Dimension   In.   In | A Dimension   B Dimension   Watts   120VAC   240VAC                  | A Dimension   In.   (mm)   In | A Dimension   B Dimension   In.   (mm)   I |


Truck Shipment only

Next day shipment up to 15 pieces① - Manufacturing lead times

**WATLOW®** 

### **WATROD Single/Double-Ended Heaters**

**Double-Ended WATROD** (Continued)



<u>RAPID SHIP</u>

Truck Shipment only

<sup>•</sup> Next day shipment up to 15 pieces

<sup>• 1 -</sup> Manufacturing lead times

## **WATROD Single/Double-Ended Heaters**

**Double-Ended WATROD** (Continued)

### Special 208VAC and 277VAC Voltages

| WATROD<br>Description        |                                 | eath<br>iension | Hea<br>B Dime        |        | Watts | Part Number           |                       | Est. Net<br>Wt. |       |  |  |
|------------------------------|---------------------------------|-----------------|----------------------|--------|-------|-----------------------|-----------------------|-----------------|-------|--|--|
|                              | in.                             | (mm)            | in.                  | (mm)   |       | 208VAC                | 277VAC                | lbs             | (kg)  |  |  |
| Application: Radiant Heating |                                 |                 |                      |        |       |                       |                       |                 |       |  |  |
| 40 W/in <sup>2</sup>         | 21 <sup>1</sup> / <sub>16</sub> | (535)           | 16 <sup>13</sup> /16 | (427)  | 800   | RDN21B2S <sup>1</sup> | RDN21B4S <sup>1</sup> | 0.4             | (0.2) |  |  |
| 0.375 in. Dia.               | 27 <sup>1</sup> /8              | (689)           | 22 <sup>7</sup> /8   | (581)  | 1100  | RDN27C2S <sup>1</sup> | RDN27C4S <sup>1</sup> | 0.5             | (0.3) |  |  |
| Alloy 800                    | 42 <sup>7</sup> /8              | (1089)          | 38 <sup>5</sup> /8   | (981)  | 1800  | RDN42R2S <sup>1</sup> | RDN42R4S <sup>1</sup> | 0.8             | (0.4) |  |  |
| (6.2 W/cm <sup>2</sup> )     | 57 <sup>1</sup> /2              | (1461)          | 53 <sup>1</sup> /4   | (1353) | 2500  | RDN57J2S <sup>1</sup> | RDN57J4S <sup>1</sup> | 1.1             | (0.5) |  |  |
| (9.5 mm)                     | 69 <sup>1</sup> /4              | (1759)          | 65                   | (1651) | 3000  | RDN69E2S <sup>1</sup> | RDN69E4S <sup>1</sup> | 1.3             | (0.6) |  |  |
|                              | 81 <sup>1</sup> /4              | (2064)          | 77                   | (1956) | 3600  | RDN81E2S <sup>1</sup> | RDN81E4S <sup>1</sup> | 1.6             | (0.8) |  |  |

| WATROD<br>Description    |        | heath<br>mension |       | ated<br>nension | Watts    |         | Part Number |                         |     | t. Net<br><i>N</i> t. |
|--------------------------|--------|------------------|-------|-----------------|----------|---------|-------------|-------------------------|-----|-----------------------|
|                          | in.    | (mm)             | in.   | (mm)            |          | 120VAC  | 240VAC      | 480VAC                  | lbs | (kg)                  |
| pplication:              | Proce  | ss Wate          | er    |                 |          |         |             |                         |     |                       |
| 48 W/in <sup>2</sup>     | 23     | (584)            | 14    | (356)           | 1000     | RGN231S | RGN2310S    | RGN2311S                | 0.7 | (0.4)                 |
| 0.475 in. Dia.           | 30     | (762)            | 21    | (533)           | 1500     | RGN301S | RGN3010S    | RGN3011S                | 0.9 | (0.5)                 |
| Alloy 800                | 39     | (991)            | 27    | (686)           | 2000     | RGN391S | RGN3910S    | RGN3911S                | 1.2 | (0.6)                 |
| (7.4 W/cm²)              | 44     | (1118)           | 35    | (889)           | 2500     | RGN441S | RGN4410S    | RGN4411S                | 1.3 | (0.6)                 |
| (12 mm)                  | 54     | (1372)           | 42    | (1067)          | 3000     |         | RGN5410S    | RGN5411S                | 1.6 | (8.0)                 |
|                          | 69     | (1753)           | 57    | (1448)          | 4000     |         | RGN6910S    | RGN6911S                | 2.1 | (1.0)                 |
|                          | 84     | (2134)           | 72    | (1829)          | 5000     |         | RGN8410S    | RGN8411S                | 2.5 | (1.2)                 |
|                          | 92     | (2337)           | 76    | (1930)          | 5556     |         |             | RGN9211S                | 2.8 | (1.3)                 |
|                          | 99     | (2515)           | 87    | (2210)          | 6000     |         | RGN9910S    | RGN9911S                | 3.0 | (1.4)                 |
|                          | 149    | (3785)           | 133   | (3378)          | 9722     |         |             | RGN14911S <sup>1)</sup> | 4.5 | (2.1)                 |
| pplication:              | Hot R  | unner M          | lolds | (Manifold       | ds)      |         |             |                         |     |                       |
| 60 W/in²                 | 35     | (889)            | 25    | (635)           | 1500     |         | RBR3510S    |                         | 0.2 | (0.1)                 |
| 0.315 in. Dia.           | 44     | (1118)           | 34    | (864)           | 2000     |         | RBR4410S    |                         | 0.3 | (0.2)                 |
| 316 SS                   | 52     | (1321)           | 42    | (1067)          | 2500     |         | RBR5210S    |                         | 0.3 | (0.2)                 |
| (9.3 W/cm²)              | 60     | (1524)           | 50    | (1270)          | 3000     |         | RBR6010S    |                         | 0.4 | (0.2)                 |
| (8 mm)                   | 69     | (1753)           | 59    | (1499)          | 3500     |         | RBR6910S    |                         | 0.4 | (0.2)                 |
|                          | 77     | (1956)           | 67    | (1702)          | 4000     |         | RBR7710S    |                         | 0.5 | (0.3)                 |
|                          | 85     | (2159)           | 75    | (1905)          | 4500     |         | RBR8510S    |                         | 0.6 | (0.3)                 |
| pplications              | : Deio | nized W          | ater, | Deminer         | alized W | ater    |             |                         |     |                       |
| 60 W/in <sup>2</sup>     | 20     | (508)            | 11    | (279)           | 1000     | RGR201S | RGR2010S    | RGR2011S                | 0.6 | (0.3)                 |
| 0.475 in. Dia.           | 26     | (660)            | 17    | (432)           | 1500     | RGR261S | RGR2610S    | RGR2611S                | 0.8 | (0.4)                 |
| 316 SS                   | 34     | (864)            | 22    | (559)           | 2000     |         | RGR3410S    | RGR3411S                | 1.0 | (0.5)                 |
| (9.3 W/cm <sup>2</sup> ) | 40     | (1016)           | 28    | (711)           | 2500     |         | RGR4010S    | RGR4011S                | 1.2 | (0.6)                 |
| (12 mm)                  | 47     | (1194)           | 31    | (787)           | 2778     |         |             | RGR4711S                | 1.4 | (0.7)                 |
|                          | 46     | (1168)           | 34    | (864)           | 3000     |         | RGR4610S    | RGR4611S                | 1.4 | (0.7)                 |
|                          | 57     | (1448)           | 45    | (1143)          | 4000     |         | RGR5710S    | RGR5711S                | 1.7 | (0.8)                 |
|                          | 68     | (1727)           | 56    | (1422)          | 5000     |         | RGR6810S    | RGR6811S                | 2.1 | (1.0)                 |
|                          | 79     | (2007)           | 67    | (1702)          | 6000     |         | RGR7910S    | RGR7911S                | 2.4 | (1.1)                 |
|                          | 105    | (2667)           | 93    | (2362)          | 8333     |         |             | RGR10511S <sup>1</sup>  | 3.2 | (1.5)                 |
|                          |        |                  |       |                 |          |         |             |                         | CON | TINUE                 |

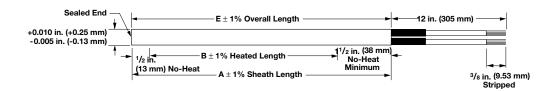
<u>RAPID SHI</u>P

Truck Shipment only

WATLOW® 85

<sup>•</sup> Next day shipment up to 15 pieces

 <sup>1 -</sup> Manufacturing lead times


### **WATROD Single/Double-Ended Heaters**

### Single-Ended WATROD

### **Application Hints**

The single-ended WATROD heater's construction limits its usefulness in some applications. The following are some guides to follow when considering a single-ended WATROD.

- When single-ended termination simplifies application wiring.
- The application requires lower wattage or a smaller package.
- Do not locate the end of the heated length within a bend, unless the radius is 3 in. (75 mm) or more. Field bending is not recommended.
- Bending is limited to bend Figures 1, 6, 22 and 28 (see pages 67 to 72 for details).
- Ensure termination temperatures do not exceed 390°F (200°C) or the seal's maximum rating.
- Keep terminations clean, dry and tight.



### **WATROD Double-Ended Heaters**

### High-Temperature Tubular Heaters

Watlow manufactures high-temperature tubular heaters to bridge the gap between standard tubular heaters and Watlow MULTICELL™ heaters. This tubular is well suited for process air heating applications in excess of 1300°F (704°C), resulting in a maximum sheath temperature of 1800°F (983°C). Controlled lab testing between the new design and current tubular designs show an increase in life of approximately 50 percent.

The high-temperature tubular consists of an engineered tubing with an outer sheath of alloy 600 and a special internal construction. The outer sheath offers high temperature capabilities, reduced oxidation as well as corrosion resistance.

The tubular offering is available in 0.430 and 0.375 inch diameters that are configurable either as formed tubulars or process heaters. The heaters can also be welded to flanges and plates for mounting purposes. Maximum sheath length available is 275 inches for the 0.430 inch and 0.375 inch diameters. The factory should be contacted for longer sheath lengths.

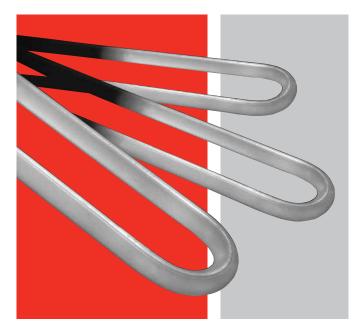
### **Features and Benefits**

## Alloy 600 sheath material and a special internal construction

Assures high temperature performance and corrosion protection in tough applications

### 0.430 inch diameters\*

 Allows heater to be configured to existing tubular designs that may be experiencing short life


\*Note: 0.375 diameters are available in Watlow's extended capabilities, contact your Watlow representative for details.

### **Dual-ended termination**

 Installs into flanges and screw plugs similarly to standard product configurations

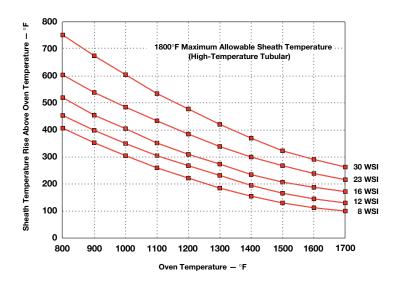
### Bendable in standard formations

 Makes the heater easy to apply in a wide variety of applications



### **Typical Applications**

- High temperature ovens and furnaces
- Radiant heating
- Drying
- Environmental—VOC abatement
- Process air heating: duct heaters, circulation heaters
- Vacuum applications
- Flue gas cleaning (desulphurization)
- Fluidized beds


WATLOW<sup>®</sup> 87

### **WATROD Double-Ended Heaters**

### High-Temperature Tubular Heaters

# **Sheath Temperature Versus Oven Temperature at Various Watt Densities**

This chart is used to verify the correct watt density for an oven application assuming no air flow. To use the chart, first select the oven process temperature on the X axis, using the chosen watt density read the sheath temperature rise above oven temperature from the Y axis. This number should then be added to oven temperature. If this number is greater than 1800°F (982°C), a lower watt density should be chosen.



### **Heater Life Estimate Service**

Watlow now provides an industry first service with the offering of the high-temperature tubular. By providing operating parameters, Watlow provides customers with the estimated life of the heater. To get this information, the following information should be provided:

- Heater voltage
- Heater wattage
- Heater diameter (0.430 or 0.375 in.)
- Heated length
- Bend configuration and dimensions (number of bends and radius)
- · Application including process temperature
- Power switching device and cycle time (SCR, etc.)

### **High-Temperature Heater Comparisons**



<sup>\*</sup>Assuming normal design practices.



## **WATROD Single/Double-Ended Heaters**

# Extended Capabilities For MULTICOIL™ Tubular Heaters

The tubular element with multiple coils and/or thermocouples inside one sheath from Watlow answers the need for a versatile, innovative tubular heater. Watlow's patented method of packaging a thermocouple inside of a heater with one or more resistance coils, gives the ability to sense a heaters' internal temperature accurately, every time.

Moreover, this is the first tubular heater in the industry with three-phase capability. The three coil, three-phase heater will offer a compact package solution while delivering the full power required in a compact heater package. Previously three separate heaters would have been required to do the same job; therefore Watlow's MULTICOIL<sup>TM</sup> heater capabilities save money.

### **Performance Capabilities**

- Watt densities up to 60 W/in<sup>2</sup> (9.3 W/cm<sup>2</sup>)
- Sheath temperatures up to 1600°F (870°C)
- 304 and 316 stainless steel sheath temperatures up to 1200°F (650°C)

### **Features and Benefits**

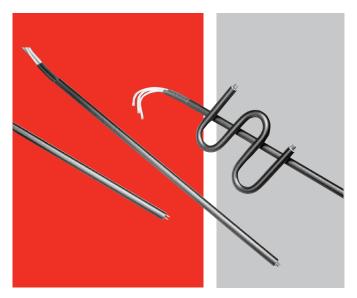
### Three-phase capability

• Results in one element versus three, lower amperage, reduced installation time and lower overall cost

### Single-ended

- Allows for mounting in a <sup>1</sup>/<sub>2</sub> inch NPT or <sup>3</sup>/<sub>4</sub> inch NPT fitting with three-phase capability
- · Sensor is not available

### Multiple coil operations


Reduces inventory by allowing dual voltage capability

### Versatile forming capabilities

Forms into many configurations

### Internal construction with sensor

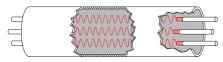
 Allows space savings because drilling and tapping of flange is unnecessary; plus, the interior thermocouple eliminates contamination buildup around the external sensing tip, reducing the possibility of false readings



### **Typical Applications**

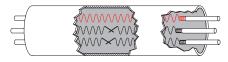
- Foodservice
- Process
- Medical
- Milled groove
- Plastics
- Plating
- Oven heating
- Semiconductor

WATLOW® 89



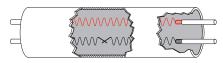

### **WATROD Single/Double-Ended Heaters**

## Extended Capabilities For MULTICOIL Tubular Heaters


### **Options**

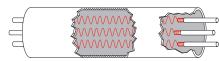
### **Option A**




3-phase tubular, 0.475 and 0.490 inch diameter.

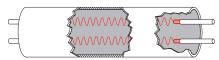
### **Option C**




1-phase tubular with one resistance wire and two thermocouples, 0.475 and 0.490 inch diameter.

### **Option D**




1-phase tubular with one resistance coil and one thermocouple, 0.375, 0.430, 0.475 and 0.490 inch diameter.

### **Option E**



1-phase tubular with three different one phase circuits, 0.475 and 0.490 inch diameter.

### **Option F**



1-phase tubular with two resistance coils, 0.375, 0.430, 0.475 and 0.490 inch diameter.

## **Specifications**

### **Termination Styles**

Lead wires 392°F (200°C)
 Sil-A-Blend® or 482°F (250°C) GGS.

### **Moisture Seals**

Moisture seals are required, options include:

- Epoxy with temperature rating to 356°F (180°C). Typical applications include water/oil immersion.
- Lavacone with temperature rating to 221°F (105°C).
   Typical application includes air heating.
- High-temperature ceramic rated to 2800°F (1538°C).
- Contact your Watlow representative for other moisture seal options.

### **Mounting options**

- Mounting brackets
- Locator washers
- Water-tight bulkheads

### **Maximum trim length**

• 237 in. (6020 mm), heater designs with trim length greater than 120 in. (3048 mm) must be reviewed with your Watlow representative.

### **Sheath materials**

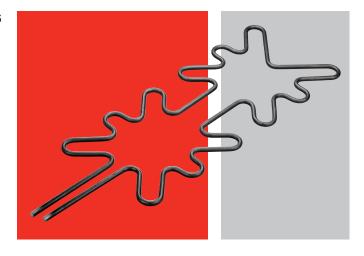
 Alloy 600, 800, 840, 304 and 316 stainless steel, contact your Watlow representative for other sheath material options.

### Internal thermocouple options

• Type K is used, contact your Watlow representative for Type J thermocouple options.



### **WATROD Single/Double-Ended Heaters**


# Extended Capabilities For Milled Groove Tubular Heaters

WATROD milled groove heaters are precision-formed and customized to your hot runner mold application. Even tight radius bends of 0.250 inch maintaining tolerances of  $\pm 0.062$  to  $\pm 0.002$  inch are possible. This capability not only allows you freedom to design for the optimum uniform heating pattern for your plastics process, but also guarantees quick and easy installation.

Simply send your groove dimensions in a detailed drawing or on CAD file. Depending on the formation requirements, the resulting CAD design will be transferred to either Watlow's CNC bending equipment or a highly skilled bending operator.

A variety of sheath materials are available including alloy 800, 304 stainless steel and 316 stainless steel; each offering unique advantages of long life in high temperature molds, rigidity to maintain shape during shipment and corrosion resistance.

Watlow not only delivers the heat fast to the process with efficient heat transfer, but guarantees the heater's fast delivery, too. While Watlow guarantees standard delivery within three to four weeks, tough delivery schedules are Watlow's specialty.



### **Features and Benefits**

### Precise conformity to customer specifications

 Ensures easy installation—bending tolerances as low as ± 0.002 in.

### **Common element diameters**

 Includes 0.260, 0.315, 0.375 and 0.430 in. (6.6, 8, 9.5 and 10.9 mm) diameters

### Alloy 800 sheath material

Corrosion resistant, capable in high-temperature environments

#### 304 stainless steel

• Excellent pliability, best choice for small bend radii

### Superior resistance coil design

Produces even heating

### Threaded stud or lead wire termination as required

• Provides robust options for challenging environments

### **Typical Applications**

- Hot runner molds
- Precise heat uniformity

WATLOW® \_\_\_\_\_\_ 91



### **WATROD Single/Double-Ended Heaters**

## Extended Capabilities For Milled Groove Tubular Heaters

Use the *Milled Groove Sheath Watt Density and Groove Fit* chart to find the recommended watt density or tightest groove fit. Optimum groove fit, without heat transfer cement, can be determined by plotting the intersect point between the required sheath watt density and the Delta temperature (T). If the Delta T is not known, simply subtract the mold temperature from the maximum 1000°F (540°C) sheath temperature. Any combination of watt density and groove fit which results in a Delta T below the recommended maximum will maximize heater life. Conversely, if the Delta T is greater, less heater life can be expected.



- Recommended maximum watt density = 40 to 70 W/in² (6.2 to 10.9 W/cm²)
- Recommended groove = 0.065 inch (1.65 mm) larger in diameter than sheath diameter and use heat transfer cement.
- Recommended heater sheath diameter = 0.315 in. (8 mm)
- Recommended maximum Delta T = 400°F (205°C)
- Maximum sheath temperature = 1000°F (540°C)
- Recommended sheath material = alloy 800

## FIREBAR® Single/Double-Ended Heaters

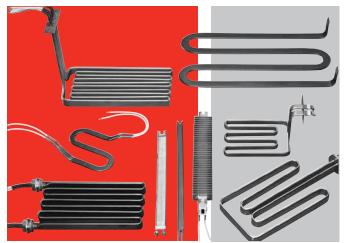
FIREBAR® heating elements provide added heating performance over standard round tubular heating elements—especially for immersion applications in petroleum based liquids requiring high kilowatts.

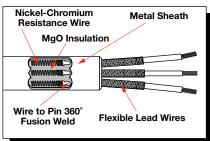
The FIREBAR's unique flat surface geometry packs more power in shorter elements and assemblies, along with a host of other performance improvements. These include:

- Minimizing coking and fluid degrading
- Enhancing the flow of fluid past the element's surface to carry heat from the sheath
- Improving heat transfer with a significantly larger boundary layer allowing much more liquid to flow up and across the sheath's surface

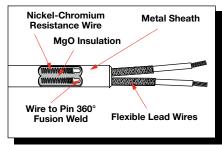
FIREBAR elements are available in single- and double-ended constructions with one inch or <sup>5</sup>/8 inch heights. These two configuration variables make it possible to use FIREBAR elements instead of round tubular elements in virtually all applications.

FINBAR™ is a special version of the one inch, single-ended FIREBAR. FINBAR is specially modified with fins to further increase surface area for air and gas heating applications. Details are contained in the *FINBAR* section, starting on page 112.


## **Double-Ended Performance Capabilities**


### One Inch

- Watt densities up to 120 W/in<sup>2</sup> (18.6 W/cm<sup>2</sup>)
- Sheath temperatures up to 1400°F (760°C)
- 304 stainless steel sheath temperatures up to 1200°F (650°C)
- Voltages up to 240VAC
- Amperages up to 48 amperes per heater or 16 amperes per coil


### 5/8 Inch

- Watt densities up to 90 W/in<sup>2</sup> (13.9 W/cm<sup>2</sup>)
- Alloy 800 sheath temperatures up to 1400°F (760°C)
- Voltages up to 240VAC
- Amperages up to 32 amperes per heater or 16 amperes per coil





One Inch Double-Ended FIREBAR Element and Lead Configurations



% Inch Double-Ended FIREBAR Element and Lead Configurations

### Single-Ended Performance Capabilities

#### One Inch

- Watt densities up to 60 W/in<sup>2</sup> (9.3 W/cm<sup>2</sup>)
- Alloy 800 sheath temperatures up to 1400°F (760°C)
- 304 stainless steel sheath temperatures up to 1200°F (650°C)
- Voltages up to 240VAC
- Amperages up to 48 amperes per heater or 16 amperes per coil

#### 5/8 Inch

- Watt densities up to 80 W/in<sup>2</sup> (12.4 W/cm<sup>2</sup>)
- Alloy 800 sheath temperatures up to 1400°F (760°C)
- Voltages up to 240VAC
- Amperages up to 16 amperes per heater

WATLOW® 93

## **FIREBAR Double-Ended Heaters**

### One Inch FIREBAR

### **% Inch FIREBAR**

| Specifications                                                                                                               | One Inch FIREBAR                                                                                                                                           | % Inch FIREBAR                                                                                                                                                                                                                                                 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| opcomodions -                                                                                                                | 308                                                                                                                                                        |                                                                                                                                                                                                                                                                |  |  |  |  |
| Applications                                                                                                                 | Direct immersion; water, oils, etc. Clamp-on; hoppers, griddles Forced air heating (Also see FINBAR, page 112) Radiant heating                             | Direct immersion; water, oils, etc.<br>Clamp-on; hoppers, griddles<br>Forced air heating<br>Radiant heating                                                                                                                                                    |  |  |  |  |
| Watt Density W/in² (W/cm²)                                                                                                   | Stock: up to 90 (13.9)<br>Made-to-Order (M-t-O): up to 120 (18.6)                                                                                          | Stock: up to 90 (13.9)  Made-to-Order (M-t-O) up to 90 (13.9)                                                                                                                                                                                                  |  |  |  |  |
| Surface Area Per Linear In. (cm)                                                                                             | 2.3 in <sup>2</sup> (14.8 cm <sup>2</sup> )                                                                                                                | 1.52 in² (9.80 cm²)                                                                                                                                                                                                                                            |  |  |  |  |
| Cross Section Height ± 0.015/0.010 in. (0.381/0.254 mm) Thickness ± 0.005/0.001 in. (0.127/0.025 mm)                         | 1.010 (25.7)<br>0.235 (5.9)                                                                                                                                | 0.650 (16.5)<br>0.235 (5.9)                                                                                                                                                                                                                                    |  |  |  |  |
| Sheath Material – Max. Operating temperature                                                                                 | Stock: Alloy 800 1400°F (760°C)<br>M-t-O: Alloy 800 1400°F (760°C)<br>304 SS 1200°F (650°C)                                                                | Stock: Alloy 800 1400°F (760°C)<br>M-t-O: Alloy 800 1400°F (760°C)<br>304 SS 1200°F (650°C)                                                                                                                                                                    |  |  |  |  |
| Sheath Length in. (mm)                                                                                                       | Stock: 15 to 114 (381 to 2896)<br>M-t-O: 11 to 180 (280 to 4572)                                                                                           | Stock: 15 to 51 (381 to 1295)<br>M-t-O: 11 to 115 (280 to 2920)                                                                                                                                                                                                |  |  |  |  |
| Straightness Tolerance Major axis in./ft (cm/m): Minor axis in./ft (cm/m):                                                   | 0.062 (0.52)<br>0.062 (0.52)                                                                                                                               | 0.062 (0.52)<br>0.062 (0.52)                                                                                                                                                                                                                                   |  |  |  |  |
| No-Heat Length                                                                                                               | 1 in. min., 12 in. max. (25/305 mm)                                                                                                                        | 1 in. min., 12 in. max. (25/305 mm)                                                                                                                                                                                                                            |  |  |  |  |
| Max. Voltage—Amperage Max. Hipotential Max. Current Leakage Per Coil (cold) Max. Amperage Per Coil Phase(s) Resistance Coils | 240VAC — 48A<br>1480VAC<br>3mA<br>16A<br>1-ph parallel/series, 3-ph delta/wye<br>3 or 2                                                                    | 240VAC — 32A<br>1480VAC<br>3mA<br>16A<br>1-ph parallel/series<br>2                                                                                                                                                                                             |  |  |  |  |
| Ohms/In./Unit① Ohms/In./Coil①                                                                                                | 0.270Ω min. —2.833Ω max.<br>0.080Ω min. —8.500Ω max. per coil                                                                                              | 0.040Ω min. $-4.250\Omega$ max.<br>0.080Ω min. $-8.500\Omega$ max. per coil                                                                                                                                                                                    |  |  |  |  |
| Terminations                                                                                                                 | Flexible lead wires Quick connect (spade) Screw lug (plate) Threaded stud                                                                                  | Flexible lead wires Quick connect (spade) Screw lug (plate) Threaded stud                                                                                                                                                                                      |  |  |  |  |
| Seals                                                                                                                        | Stock: Lavacone 221°F (105°C)  M-t-O: Ceramic base 2800°F (1535°C)  Silicone rubber 392°F (200°C)  Lavacone 221°F (105°C)  Epoxy resin266/356°F(130/180°C) | Stock:         Lavacone         221°F         (105°C)           M-t-O:         Ceramic base 2800°F         (1535°C)           Silicone rubber 392°F         (200°C)           Lavacone         221°F         (105°C)           Epoxy resin266/356°F(130/180°C) |  |  |  |  |
| Min. Axis Bending Radius<br>in. (mm) (Do not field bend)                                                                     | Major:       1       (25)         Minor:       ½       (13)       90° bend         Minor:       ½       (4)       180° bend                                | Major:       %       (19)         Minor:       ½       (13)       90° bend         Minor:       ½       (4)       180° bend                                                                                                                                    |  |  |  |  |
| Mounting Options                                                                                                             | Brackets (Type 1, 2 and 3) Threaded bulkhead or fitting                                                                                                    | Brackets (Type 1, 2 and 3) Threaded bulkhead or fitting                                                                                                                                                                                                        |  |  |  |  |
| Surface Finish Options                                                                                                       | Bright anneal, passivation                                                                                                                                 | Bright anneal, passivation                                                                                                                                                                                                                                     |  |  |  |  |
| Agency Recognition                                                                                                           | UL® Component recognition to 240VAC<br>(File # E52951)<br>CSA Component recognition to 240VAC<br>(File # 31388)                                            | UL® Component recognition to 240VAC<br>(File # E52951)<br>CSA Component recognition to 240VAC<br>(File # 31388)                                                                                                                                                |  |  |  |  |

 $<sup>\</sup>ensuremath{\textcircled{1}}$  Resistance values valid for three coil 1 in. (25 mm) FIREBAR only.

## **FIREBAR Single-Ended Heaters**

### One Inch Single-Ended FIREBAR

Clamp-on; hoppers, griddles

### **% Inch Single-Ended FIREBAR**

Clamp-on; hoppers, griddles

Stock:

M-t-O:

Slotted, sealed or welded

UL® Component recognition to 240VAC

CSA Component recognition to 240VAC

(File # E52951)

(File # 31388)

**Specifications** (Continued)

**Applications** 

|   | ı İ |               |
|---|-----|---------------|
|   |     | $\overline{}$ |
| _ |     | $\neg$        |
|   |     |               |

| - Applications                                                                                                      | Forced or convection air heating (Also see FINBAR, page 112)                                                                                                                                                                                                            | Forced or convection air heating                                                                                                                                                                                                                               |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Watt Density W/in² (W/cm²)                                                                                          | Stock: up to 40 (6.2)<br>M-t-O: up to 60 (9.3)                                                                                                                                                                                                                          | Stock: up to 20 (3.1)<br>M-t-O: up to 60 (12.4)                                                                                                                                                                                                                |  |  |  |  |
| Surface Area Per Linear In. (cm)                                                                                    | 2.3 in <sup>2</sup> (14.8 cm <sup>2</sup> )                                                                                                                                                                                                                             | 1.52 in² (9.80 cm²)                                                                                                                                                                                                                                            |  |  |  |  |
| <b>Cross Section</b> Height ± 0.015/0.010 in. (0.381/0.254 mm) Thickness ± 0.005/0.001 in. (0.127/0.025 mm)         | 1.010 (25.7)<br>0.235 (5.9)                                                                                                                                                                                                                                             | 0.650 (16.5)<br>0.235 (5.9)                                                                                                                                                                                                                                    |  |  |  |  |
| Sheath Material—Max. Operating temperature                                                                          | Stock:       304 SS       1200°F       (650°C)         M-t-O:       Alloy 800       1400°F       (760°C)         304 SS       1200°F       (650°C)                                                                                                                      | Stock:         Alloy 800         1400°F         (760°C)           M-t-O:         Alloy 800         1400°F         (760°C)           304 SS         1200°F         (650°C)                                                                                      |  |  |  |  |
| Sheath Length in. (mm)                                                                                              | Stock: 11 to 46¼ (280 to 1175)<br>M-t-O: 11 to 120 (280 to 3048)                                                                                                                                                                                                        | Stock: 11½ to 52 (280 to 1321)<br>M-t-O: 11 to 116 (280 to 2946)                                                                                                                                                                                               |  |  |  |  |
| Straightness Tolerance Major axis in./foot (cm/m): Minor axis in./foot (cm/m):                                      | 0.062 (0.52)<br>0.062 (0.52)                                                                                                                                                                                                                                            | 0.062 (0.52)<br>0.062 (0.52)                                                                                                                                                                                                                                   |  |  |  |  |
| No-Heat Length Top Cold End Bottom (blunt end) Cold End                                                             | 1 in. min., 12 in. max. (25/305 mm)<br>1 ph- 0.5 min., 2 in. max. (13/51 mm)<br>3 ph- 0.75 min., 2 in. max. (19/51 mm)                                                                                                                                                  | 1 in. min., 12 in. max. (25/305 mm)<br>Only available at 1.25 in.<br>N/A                                                                                                                                                                                       |  |  |  |  |
| Max. Voltage—Amperage Max. Hipotential Max. Current Leakage (cold) Max. Amperage Per Coil Phase(s) Resistance Coils | 240VAC—48A<br>1480VAC<br>3mA<br>16A<br>1-ph, 3-ph wye<br>3 or 1                                                                                                                                                                                                         | 240VAC — 16A<br>1480VAC<br>3mA<br>16A<br>1-ph<br>1                                                                                                                                                                                                             |  |  |  |  |
| Ohms/In./Unit                                                                                                       | 0.200Ω min.—14.00Ω max. ①                                                                                                                                                                                                                                               | $0.200\Omega$ min. $-14.00\Omega$ max. $①$                                                                                                                                                                                                                     |  |  |  |  |
| Terminations                                                                                                        | Flexible lead wires Threaded stud Quick connect (spade) Screw lug (plate)                                                                                                                                                                                               | Flexible lead wires Quick connect (spade) Screw lug (plate)                                                                                                                                                                                                    |  |  |  |  |
| Seals                                                                                                               | Stock:         Lavacone         221°F         (105°C)           M-t-O:         Ceramic base 2800°F         (1535°C)           Silicone rubber 392°F         (200°C)           Lavacone         221°F         (105°C)           Epoxy resin266/356°F         (130/180°C) | Stock:         Lavacone         221°F         (105°C)           M-t-O:         Ceramic base 2800°F         (1535°C)           Silicone rubber 392°F         (200°C)           Lavacone         221°F         (105°C)           Epoxy resin266/356°F(130/180°C) |  |  |  |  |
| Min. Axis Bending Radius<br>in. (mm) (Do Not Field Bend)                                                            | Major:       1       (25)         Minor:       ½       (13)       90° bend         Minor:       ½       (4)       180° bend                                                                                                                                             | Major: ¾ (19) Minor: ½ (13) 90° bend Minor: ½ (4) 180° bend                                                                                                                                                                                                    |  |  |  |  |
| Mounting Options                                                                                                    | Bracket (Type 2) Threaded bulkhead                                                                                                                                                                                                                                      | Bracket (Type 2) Threaded bulkhead                                                                                                                                                                                                                             |  |  |  |  |
| Surface Finish Options                                                                                              | Bright anneal                                                                                                                                                                                                                                                           | Bright anneal                                                                                                                                                                                                                                                  |  |  |  |  |
| Optional Internal Thermocouple                                                                                      | _                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                                                     | 0. 1. 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                              |  |  |  |  |

Slotted, sealed or welded

UL® Component recognition to 240VAC

CSA Component recognition to 240VAC

(File # E52951)

(File # 31388)

Stock:

M-t-O:

Single-end Configuration

**Agency Recognition** 

① Based on 1-phase, single voltage heater.

### FIREBAR Single/Double-Ended Heaters

### Features and Benefits

### **One Inch Features and Benefits**

#### Double-Ended

## Streamline, 0.235 x 1.010 in. (5.9 x 25.6 mm) normal to flow dimension

Reduces drag

# 70 percent greater surface area per linear inch compared to a 0.430 in. (11 mm) diameter round tubular heater

Reduces watt density or packs more kilowatts in smaller bundles

### **Compacted MgO insulation**

• Maximizes thermal conductivity and dielectric strength

### Nickel-chromium resistance wires

Precision wound

### 0.040 in. (1 mm) thick MgO walls

 Transfers heat more efficiently away from the resistance wire to the sheath and media—conducts heat out of the element faster

### Three resistance coil design

 Configurable to either one- or three-phase power, readily adapts to a variety of electrical sources and wattage outputs

#### Lavacone seals

 Provides protection against humid storage conditions, moisture retardant to 221°F (105°C)

### Single-Ended

### Single-ended termination

• Simplifies wiring and installation

## Streamline, $0.235 \times 1.010$ in. (5.9 x 25.6 mm) normal to flow dimension

Reduces drag

### 70 percent greater surface area per linear inch

Reduces watt density from that of the 0.430 in.
 (11 mm) diameter round tubular

### Slotted end

Provides installation ease in clamp-on applications

#### Lavacone seals

 Provides protection against humid storage conditions, moisture retardant to 221°F (105°C)

### 5/8 inch Features and Benefits

#### Double-Ended

## Special sheath dimensions, $0.235 \times 0.650$ in. $(5.9 \times 16.5 \text{ mm})$

· Results in a lower profile heater

### 10 percent greater surface area per linear inch

Reduces watt density from that of the 0.430 in.
 (11 mm) diameter round tubular heater

### 0.040 in. (1 mm) thick MgO walls

 Transfers heat efficiently away from the resistance wire to the heated media—conducts heat out of the element faster

#### Lavacone seals

 Provides protection against humid storage conditions, moisture retardant to 221°F (105°C)

### Single-Ended

#### Single-ended termination

Simplifies wiring and installation

## Special sheath dimensions, $0.235 \times 0.650$ in. $(5.9 \times 16.5 \text{ mm})$

 Results in a lower profile heater for more wattage in a smaller package

#### Slotted end

• Provides installation ease in clamp-on applications

#### Lavacone seals

 Provides protection against humid storage conditions, moisture retardant to 221°F (105°C)

### FIREBAR Single/Double-Ended Heaters

### Performance Features

FIREBAR's flat tubular element geometry produces performance features and benefits not possible with traditional round tubular technology. The following describes how and why the FIREBAR is functionally superior for many applications—especially those requiring large wattage with low watt density.

### By using the FIREBAR element it will:

- · Lower the element's watt density
- · Reduce element size and keep the same watt density
- Increase element life by reducing sheath temperature

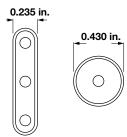
### Flat Shape Produces Lower Sheath Temperature

The FIREBAR element operates at a lower sheath temperature than a round tubular element of equal watt density because of three factors.

### 1. Flat Surface Geometry

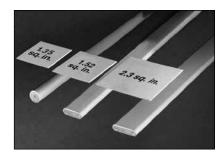
FIREBAR's flat, vertical geometry is streamline. The liquid's flow past the heating element's surface is not impaired by back eddies inherent in the round tubular shape. The FIREBAR's streamline shape results in fluids flowing more freely with more heat carried away from the sheath.




### 2. Normal to the Flow

The element's width (thickness) of both 1 inch and <sup>5</sup>/8 inch FIREBAR elements is just 0.235 in. (5.9 mm). Compared to a 0.430 in. (11 mm) round tubular element, this relative thinness further reduces drag on liquids or gases flowing past the heater.

### 3. Buoyancy Force


The FIREBAR element's boundary layer, or vertical side, is greater than virtually all round tubular elements. This is 1.010 and 0.650 in. (25.6 and 16.5 mm) for the one inch and <sup>5</sup>/<sub>8</sub> in. FIREBARs respectively, compared to a 0.430 in. (11 mm) diameter on a round tubular element. The FIREBAR element's increased height, relative to flow, increases the buoyancy force in viscous liquids. This buoyancy force can be as much as 10 times greater depending on the FIREBAR element and liquid used.

### **Comparative Widths**



### **Watt Density and Surface Area Advantages**

The surface area per linear inch of a 1 in. FIREBAR is 70 percent greater than the 0.430 in. (11 mm) diameter round tubular element. The <sup>5</sup>/<sub>8</sub> in. FIREBAR is nearly 10 percent greater.



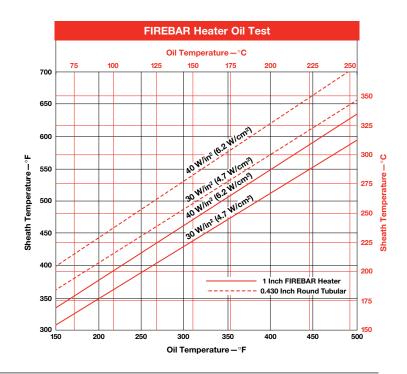
| Element Type                |                      | Area Per<br>nch (cm)<br>(cm²) |
|-----------------------------|----------------------|-------------------------------|
| 1 in. FIREBAR               | 2.30 in <sup>2</sup> | (5.84 cm <sup>2</sup> )       |
| <sup>5</sup> /8 in. FIREBAR | 1.52 in <sup>2</sup> | (3.86 cm <sup>2</sup> )       |
| 0.430 in. Round             | 1.35 in <sup>2</sup> | (3.43 cm <sup>2</sup> )       |

### Flat vs. Round Geometry Comparisons

The unique flat surface geometry of the FIREBAR element offers more versatility in solving heater problems than the conventional round tubular element. The following comparisons show how the FIREBAR element consistently outperforms round tubular heaters. FIREBAR elements can:

- · Reduce coking and fluid degrading
- Increase heater power within application space parameters
- Provide superior heat transfer in clamp-on applications resulting from greater surface area contact
- Lower watt density

Reducing watt density or sheath temperature extends life. The FIREBAR element allows you to do either, without sacrificing equipment performance ... as is proven by the accompanying *Heater Oil Test, Air Flow and Watt Density vs. Sheath Temperature* graphs.


WATLOW® \_\_\_\_\_\_ 9

### FIREBAR Single/Double-Ended Heaters

### **Technical Data**

The FIREBAR Heater Oil Test graph compares sheath temperatures of 40 W/in² (6.7 W/cm²) flat and round tubular elements. The FIREBAR element consistently operates at a lower sheath temperature than the round tubular element, even when light oils are tested at different temperatures. This reduces the chance that coking and fluid degradation will occur.

In fact, the FIREBAR element's sheath temperature at 40 W/in<sup>2</sup> (6.7 W/cm<sup>2</sup>) is lower than a 30 W/in<sup>2</sup> (4.6 W/cm<sup>2</sup>) round tubular element.



### **Heater Size and Power**

The Heater Size Comparison chart shows, at the same wattage and watt density, the FIREBAR element is 38 percent shorter than a 0.430 in. (11 mm) round tubular element. The FIREBAR element requires less space in application and equipment designs.

The *Heater Power Comparison* chart demonstrates equal watt density, element length and increased total wattage for the FIREBAR element. The power in the FIREBAR element is 70 percent greater.

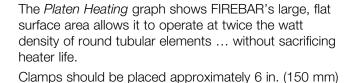
### **Heater Size Comparison**

|                       | Heated             | Length  |         |       |         |
|-----------------------|--------------------|---------|---------|-------|---------|
| Element               | in.                | (mm)    | Wattage | W/in² | (W/cm²) |
| 1 in. FIREBAR Element | 19 <sup>7</sup> /8 | (504.8) | 1000    | 23    | (3.6)   |
| 0.430 in. Round       | 001/.              | (010.0) | 1000    | 00    | (0,0)   |
| Tubular Element       | 32 1/4             | (819.0) | 1000    | 23    | (3.6)   |

### **Heater Power Comparison**

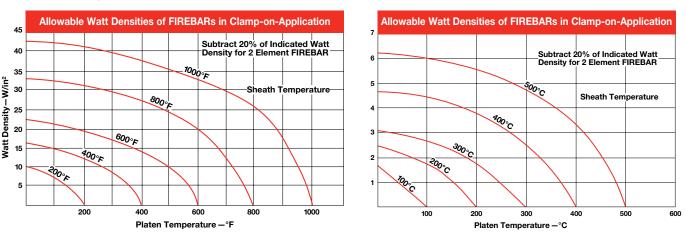
| Element                            |                                | Length<br>(mm) | Wattage | W/in² | (W/cm²) |
|------------------------------------|--------------------------------|----------------|---------|-------|---------|
| 1 in. FIREBAR Element              | 32 <sup>1</sup> /4             | (819.0)        | 1700    | 23    | (3.6)   |
| 0.430 in. Round<br>Tubular Element | 32 <sup>1</sup> / <sub>4</sub> | (819.0)        | 1000    | 23    | (3.6)   |

98 WATLOW®


### FIREBAR Single/Double-Ended Heaters

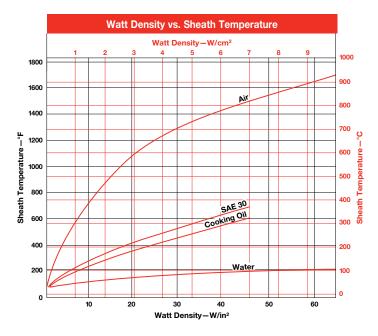
Technical Data (Continued)

### **Clamp-On Applications**


Direct immersion in the liquid may not always be practical. In these instances the FIREBAR element can be clamped to a tank wall. Heat from the FIREBAR is conducted to the tank wall and into the media.

apart and torqued down with 60 in.-lbs (6.8 Newton meters).




FIREBAR elements are also economical platen heaters.

### Platen Heating (°F) Platen Heating (°C)



### Watt Density vs. Sheath Temperature

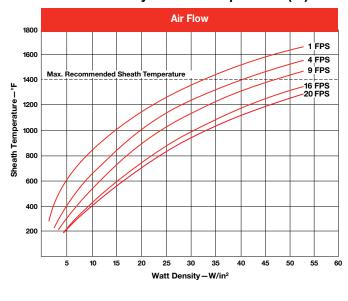
The Watt Density vs. Sheath Temperature graph features sheath temperature curves for commonly heated substances. A FIREBAR element's watt density will result in the sheath temperature shown at the intersecting point of its vertical watt density line and substance curve.



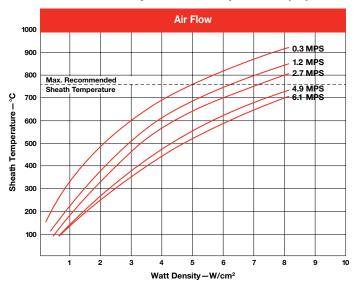
## FIREBAR Single/Double-Ended Heaters

### Technical Data (Continued)

### **Air Heating**


The Air Flow/Watt Density/Sheath Temperature graph shows the relationship between air flow, watt density and sheath temperature. Keep in mind that lower sheath temperature yields longer heater life.

To use the Air Flow graph, determine the air flow in feet per second (or meters per second). Then follow the curve to find the recommended sheath temperature and watt density.




Air Flow Normal to Sheath Geometry

### Air Flow/Watt Density/Sheath Temperature (°F)



### Air Flow/Watt Density/Sheath Temperature (°C)



### **Moisture Resistant Seals**

A lavacone seal is provided to prevent moisture and contaminants from entering the heater. Upon request, optional silicone rubber (RTV) and epoxy resin seals may be ordered.

### Silicone Rubber (RTV) Seal

Silicone rubber RTV seals are <sup>1</sup>/<sub>8</sub> in. (3.2 mm) moisture barriers surrounding the terminal pins at the end of the sheath. Silicone rubber is effective to 392°F (200°C).

### **Epoxy Resin Seal**

Epoxy resin seals are  $^{1}/8$  in. (3.2 mm) moisture barriers surrounding the terminal pins at the end of the sheath. Epoxy resin is effective to  $194^{\circ}F$  ( $90^{\circ}C$ ) or  $356^{\circ}F$  ( $180^{\circ}C$ ), and recommended for water heating applications.

### **Application Hints**

- Choose a FIREBAR heating element instead of an assembly, when the application requires lower wattages or smaller system packages.
- Keep terminations clean, dry and tight.
- Extend the heated section completely into the media being heated at all times to maximize heat transfer and heater life.
- Do not locate the end of the heated length within a bend, unless the radius is 3 in. (76 mm) or larger.
- Ensure termination temperatures do not exceed 392°F (200°C) or the maximum temperature rating of the end seal, whichever is lower.

## **FIREBAR Single/Double-Ended Heaters**

Technical Data (Continued)

Terminations

All FIREBAR heaters are available with a variety of termination options. Contact your Watlow representative for availability.

| Part       |                               |       |          | 1 in. Fl   | IREBAR        | 5/8 in. FIREBAR |              |  |
|------------|-------------------------------|-------|----------|------------|---------------|-----------------|--------------|--|
| Number*    | Termination                   | Phase | Wiring   | Dual-Ended | S. End/FINBAR | Dual-Ended      | Single-Ended |  |
| Al         | Sil-A-Blend™ 200°C lead wire  | 1     | Parallel | Yes        | Yes           | Yes             | Yes          |  |
| A2         | Sil-A-Blend™ 200°C lead wire  | 1     | Series   | Yes        | No            | Yes             | No           |  |
| А3         | Sil-A-Blend™ 200°C lead wire  | 3     | Delta    | Yes        | No            | No              | No           |  |
| <b>A</b> 4 | Sil-A-Blend™ 200°C lead wire  | 3     | Wye      | Yes        | Yes           | No              | No           |  |
| B1         | TGGT 250°C lead wire          | 1     | Parallel | Yes        | Yes           | Yes             | Yes          |  |
| B2         | TGGT 250°C lead wire          | 1     | Series   | Yes        | No            | Yes             | No           |  |
| В3         | TGGT 250°C lead wire          | 3     | Delta    | Yes        | No            | No              | No           |  |
| B4         | TGGT 250°C lead wire          | 3     | Wye      | Yes        | Yes           | No              | No           |  |
| C1         | 1/4 in. quick connect (spade) | 1     | Parallel | Yes        | Yes           | Yes             | Yes          |  |
| C2         | 1/4 in. quick connect (spade) | 1     | Series   | Yes        | No            | No              | No           |  |
| D1         | Screw lug (plate) terminal    | 1     | Parallel | Yes        | Yes           | Yes             | Yes          |  |
| D2         | Screw lug (plate) terminal    | 1     | Series   | Yes        | No            | No              | No           |  |
| D3         | Screw lug (plate) terminal    | 3     | Delta    | Yes        | No            | No              | No           |  |
| E1         | #10-32 stud terminal          | 1     | Parallel | Yes        | Yes           | Yes             | Yes          |  |
| E2         | #10-32 stud terminal          | 1     | Series   | Yes        | No            | No              | No           |  |
| E3         | #10-32 stud terminal          | 3     | Delta    | Yes        | No            | No              | No           |  |

#### Termination Code Number Legend\*

- A = Silicone rubber insulation (Sil-A-Blend™) with fiberglass oversleeves Rated to 392°F (200°C)
- B = High-temperature TGGT insulation with fiberglass oversleeves Rated to 480°F (250°C)
- C = Nickel-plated steel quick connect

- D = Nickel-plated steel screw lug with ceramic insulator and plated steel screw
- E = #10-32 nickel-plated steel threaded stud with plated steel nuts and washers

### **Electrical Configuration**

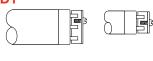
1 = 1-phase parallel, 2 = 1-phase series, 3 = 3-phase delta, 4 = 3-phase wye

### Double-End/Single-End 1 in. FIREBAR<sup>®</sup>

Flexible Lead Wire 1 A, B



- Double-End 1 in. FIREBAR
- Single-End 1 in. FIREBAR
- FINBAR


### **Quick Connect (Spade) C1**

• Double-End 1 in. FIREBAR

## **Quick Connect (Spade)** C2

• Double-End 1 in. FIREBAR

### Screw Lug (Plate) **D1**



• Double-End 1 & 5/8 in. FIREBAR

### Screw Lug (Plate) **D2**



• Double-End 1 in, FIREBAR

### Screw Lug (Plate) **D3**



Double-End 1 in. FIREBAR

3-phase delta wiring example

**Threaded Stud** 

E1



### Threaded Stud



• Double-End 1 in. FIREBAR

### Threaded Stud





3-phase delta

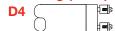
wiring example



①Flexible lead wires are 12 in. (305 mm) long unless otherwise specified.

### Single-End FIREBAR, Double-End FINBAR 15/8 in. FIREBAR<sup>®</sup>

### Flexible Lead Wire 1




- Single-End 1 in. FIREBAR
- Double-End 5/8 in. FIREBAR
- Single-End 5/8 in. FIREBAR
- FINBAR

## **Quick Connect (Spade)** C<sub>3</sub>

- Single-End 1 FIREBAR
- FINBAR
- Double-End 5/8 in. FIREBAR
- Single-End <sup>5</sup>/<sub>8</sub> in. FIREBAR

## **Screw Lug (Plate)**



- Single-End 1 in. FIREBAR
- FINBAR



• Double-End 1 & 5/8 in. FIREBAR

- Double-End 5/8 in. FIREBAR
- Single-End 5/8 in. FIREBAR

### Threaded Stud

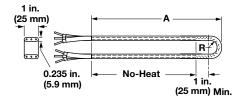


- Single-End 1 in. FIREBAR
- FINBAR

①Flexible lead wires are 12 in. (305 mm) long unless otherwise specified.

**WATLOW®** 

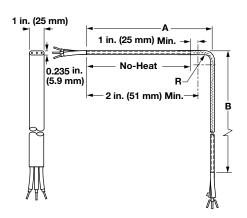
### FIREBAR Single/Double-Ended Heaters


### Bending

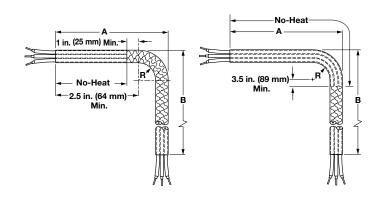
### **Major and Minor Axis Bending Parameters**

The following illustrations detail the recommended major and minor axis bend parameters for FIREBAR elements. These illustrations show the relationship between the type of bend and the location of heat and no-heat sections. See the next two pages for the 15 common bend formations.

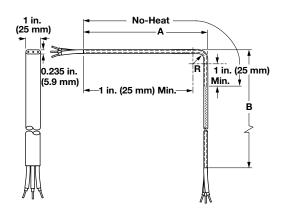
**Note:** Watlow does not recommend field bending FIREBAR elements. If the element must be bent in the field, please contact your Watlow representative for assistance.


### 180° Minor Axis Heated Bend




### 180° Major Axis Heated Bend




### 90° Minor Axis Heated Bend



### 90° Major Axis Heated Bend



### 90° Minor Axis Un-Heated Bend



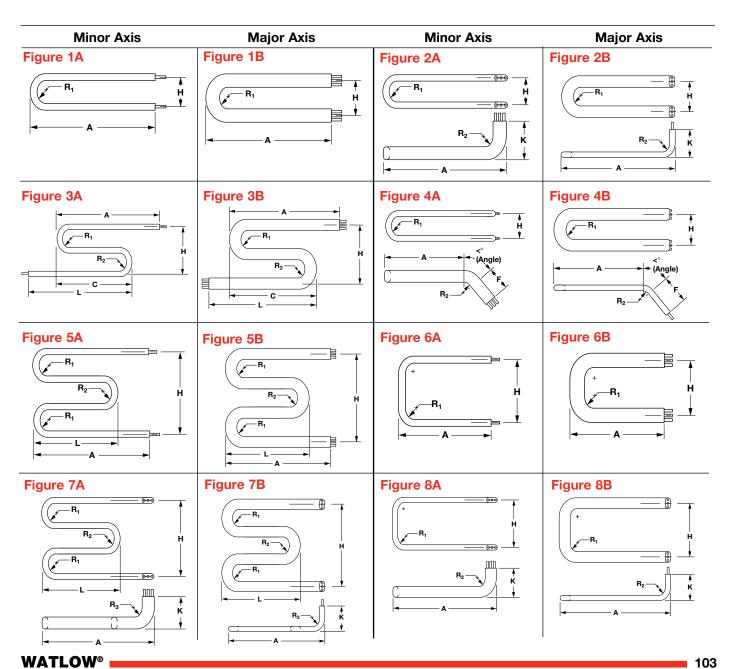
### 180° Major Axis Bends

| FIREBAR Size |        | Ra                | adius  |            |
|--------------|--------|-------------------|--------|------------|
| in.          | (mm)   | in.               | (mm)   | Arc Length |
| 5/8          | (15.9) | 3/4               | (19.0) | 3.125      |
| 5/8          | (15.9) | 1                 | (25.0) | 3.900      |
| 5/8          | (15.9) | 1 <sup>1</sup> /4 | (32.0) | 4.620      |
| 5/8          | (15.9) | 1 <sup>1</sup> /2 | (38.0) | 5.600      |
| 1            | (25.0) | 1                 | (25.0) | 4.335      |
| 1            | (25.0) | 1 <sup>1</sup> /4 | (32.0) | 5.121      |
| 1            | (25.0) | 1 <sup>1</sup> /2 | (38.0) | 5.906      |

### **FIREBAR Single/Double-Ended Heaters**

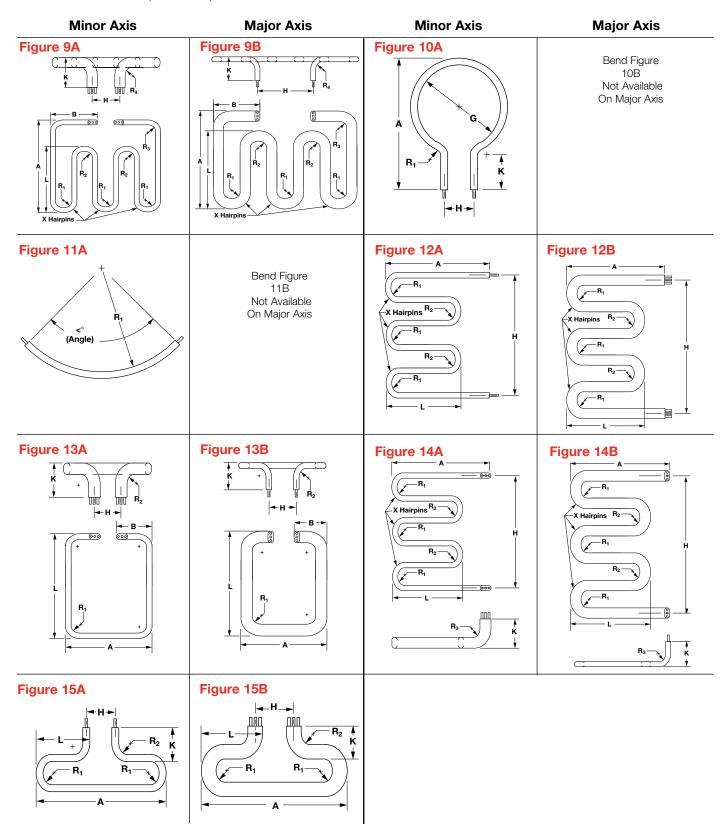
### **Bend Formations**

FIREBAR elements can be formed into spirals, compounds, multi-axis and multi-plane configurations from 15 common bends. Custom bending with tighter tolerances can be made to meet specific application needs.


Formation is limited by bending parameters specified in the illustrations of major and minor axis bends on the previous page. On these illustrations, please note the no-heat end location.

The no-heat end junction must be located a minimum of 1 in. (25 mm) from any bend. If these parameters are not followed, the heater may fail prematurely.

Illustrated below are the common bends that can be ordered for all FIREBAR heating elements.


To order a common bend, specify the figure number and critical dimensions.

Note: The alpha characters and symbols are used to designate specific dimensions within each illustration.

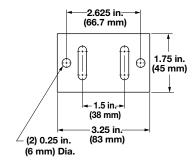


## FIREBAR Single/Double-Ended Heaters

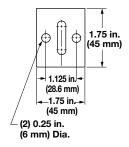
**Bend Formation** (Continued)



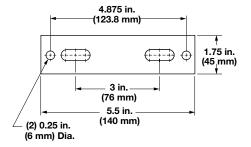
## FIREBAR Single/Double-Ended Heaters


### Mounting Brackets

Steel brackets provide element mounting in non-pressurized applications. In air heating applications, an 18-gauge aluminized steel bracket is press fitted to the element. A <sup>1</sup>/4 in. (6 mm) thick steel bracket is brazed or welded liquid-tight to the element for liquid heating. Upon request, stainless steel brackets can be provided. Special sizes also available.


The bracket is located <sup>1</sup>/<sub>2</sub> in. (13 mm) from the sheath's end, <sup>1</sup>/<sub>16</sub> in. (1.6 mm) if welded. Available on <sup>5</sup>/<sub>8</sub> in. (15.9 mm) FIREBAR as **made-to-order** only.

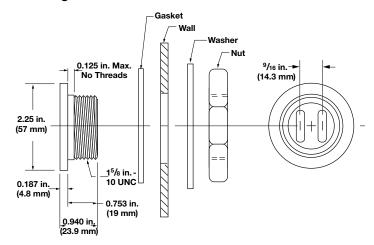
To order, specify **mounting bracket** as well as type, location, material and size.


Type 1



### Type 2




Type 3



### Water-Tight Double-Leg Threaded Fitting

A threaded 15/8 in.-10 UNC stainless steel fitting with flange on the heater sheath provides rigid, leak-proof mounting through tank walls. This fitting allows both legs of the heater to pass through the same opening. A gasket, plated steel washer and hex nut are included. The threaded end of the bulkhead is mounted flush with the sheath's end, unless otherwise specified. Available on 1 inch FIREBAR only (brazed only, available).

To order, specify water-tight double-leg threaded fitting.



### Surface Finish

### **Bright Annealing**

Bright annealing is a process that produces a smooth, metallic finish. It is a special annealed finish created in a non-oxidizing atmosphere. This finish is popular in the pharmaceutical and foodservice/beverage markets.

To order, specify bright annealing.

### **Passivation**

During manufacturing, particles of iron or tool steel may be embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode and produce rust spots. For critical sheath applications, passivation will remove free iron from the sheath.

To order, specify **passivation**.

WATLOW<sup>®</sup> 105



# Extended Capabilities For FIREBAR Single/Double-Ended Heaters

### Internal Thermocouples

To provide protection against element over-temperature conditions, 1 in. (25 mm) double-ended FIREBAR elements can be ordered with ASTM **Type K** thermocouples. This is accomplished by eliminating the center resistance coil and embedding the thermocouple junction inside the sheath. Thus, thermocouples are available only on two resistance coil, 1 in. (25 mm) FIREBAR elements.

To order, specify:

- Type K thermocouple
- Distance the junction is to be located from the element's end
- · Lead length

### **Thermocouple Types**

| ASTM      |                      | Characteristics     | Recommended<br>Temp. Range   |
|-----------|----------------------|---------------------|------------------------------|
| Type<br>K | Positive<br>Chromel® | Negative<br>Alumel® | ° <b>F (°C)</b><br>0 to 2000 |
|           | (Non-magnetic)       | (Magnetic)          | (-20 to 1100)                |

①Type K thermocouples are rated 32 to 2282°F (0 to 1250°C). Watlow does not recommend exceeding the temperature range shown on this chart.

## Mounting Brackets

### **Threaded Bulkheads**

A threaded stainless steel bushing with flange on the heater sheath provides rigid, leak-proof mounting through tank walls. A gasket, plated steel washer and hex nut are included (brazed only, available).

To order, specify threaded bulkheads.

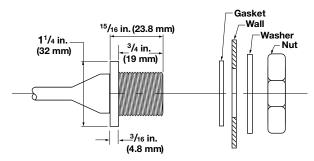
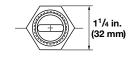



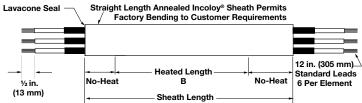

Illustration for 1-inch FIREBAR



| <u> </u>                        | 4 |
|---------------------------------|---|
| Illustration for %-inch FIREBAR |   |

| Heat | ter Size | Thread                    |
|------|----------|---------------------------|
| in.  | (mm)     | Size                      |
| 5/8  | (15.9)   | <sup>7</sup> /8-14 UNF-2A |
| 1    | (25.0)   | <sup>3</sup> /4-16 UNF-2A |

### Options for %-Inch FIREBAR


- Electropolished finish
- Custom formations
- Cordset
- Termination overmolds (silicone or neoprene)
- Terminal enclosures (general purpose, moisture resistant, moisture/explosion resistant and explosion resistant)
- Internal thermocouple (dual end only, single or dual coil
- Custom wattage tolerance (±5%)

### **Options for One-Inch FIREBAR**

- Electropolished finish
- Bulkhead, single leg
- Custom formations
- Cordset
- Termination overmolds (silicone or neoprene)
- Terminal enclosures (general purpose, moisture resistant, moisture/explosion resistant and explosion resistant)
- Internal thermocouple (dual end only, single or dual coil)
- Custom wattage tolerance (±5%)

## FIREBAR Single/Double-Ended Heaters

One-Inch, Double-Ended FIREBAR

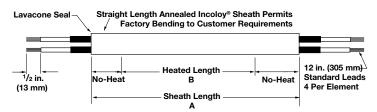


|                          |          |                |          |                |                | (10 11111)           | - Sheath               |                | -          |                |
|--------------------------|----------|----------------|----------|----------------|----------------|----------------------|------------------------|----------------|------------|----------------|
| FIREBAR                  | Sh       | neath          | He       | ated           |                |                      |                        | A              | Est        | t. Net         |
| Description              | A Dir    | nension        | B Din    | nension        | Watts          |                      | Part Number            |                |            | Nt.            |
|                          | in.      | (mm)           | in.      | (mm)           |                | 120VAC               | 240VAC                 | 480VAC         | lbs        | (kg            |
| <b>Applications</b>      | : Asph   | alt, Par       | affin (  | Solid), B      | unker Oil,     | Clamp-On             |                        |                |            |                |
| 6 W/in <sup>2</sup>      | 35       | (889)          | 25       | (635)          | 310            | FBN351WD             |                        |                | 1.3        | (0.6)          |
| Alloy 800                | 41       | (1041)         | 31       | (787)          | 410            | FBN411WD             |                        |                | 1.5        | (0.7)          |
| (1 W/cm <sup>2</sup> )   | 51       | (1295)         | 41       | (1041)         | 530            | FBN511WD             | FBN5110WD              |                | 1.9        | (0.9)          |
|                          | 62       | (1574)         | 52       | (1320)         | 650            | FBN621WD             | FBN6210WD              |                | 2.3        | (1.1)          |
|                          | 72       | (1828)         | 62       | (1574)         | 800            | FBN721WD             | FBN7210WD              |                | 2.6        | (1.2)          |
|                          | 93       | (2362)         | 83       | (2108)         | 1,060          | FBN931WD             | FBN9310WD              |                | 3.4        | (1.6)          |
|                          | 114      | (2895)         | 104      | (2641)         | 1,350          | FBN1141WD            | FBN11410WD             |                | 4.2        | (1.9)          |
| Applications             | : Grido  | dles, Fu       | el Oil,  | Clamp-0        | On             |                      |                        |                |            |                |
| 10 W/in <sup>2</sup>     | 25       | (635)          | 22       | (558)          | 500            | FBN251WL             |                        |                | 0.9        | (0.4)          |
| Alloy 800                | 35       | (889)          | 32       | (812)          | 750            | FBN351WL             | FBN3510WL              |                | 1.3        | (0.6)          |
| (1.6 W/cm <sup>2</sup> ) | 47       | (1193)         | 43       | (1092)         | 1,000          | FBN471WL             | FBN4710WL              |                | 1.7        | (8.0)          |
|                          | 69       | (1752)         | 65       | (1651)         | 1,500          | FBN691WL             | FBN6910WL              |                | 2.5        | (1.2)          |
|                          | 90       | (2286)         | 86       | (2184)         | 2,000          | FBN901WL             | FBN9010WL              |                | 3.3        | (1.5)          |
| Applications             | : Clam   | ıp-On, N       | Mediu    | m Weigh        | t Oils, Liq    | uid Paraffin, Lo     | w-Temperature          | Ovens 400°F (2 | 05°C)      |                |
| 15 W/in <sup>2</sup> ①   | 29       | (736)          | 19       | (482)          | 670            |                      | FBN2910WE              |                | 1.1        | (0.5)          |
| Alloy 800                | 34       | (863)          | 24       | (609)          | 830            |                      | FBN3410WE              |                | 1.3        | (0.6)          |
| (2.3 W/cm <sup>2</sup> ) | 39       | (990)          | 29       | (736)          | 1,000          |                      | FBN3910WE              |                | 1.4        | (0.7)          |
|                          | 48       | (1219)         | 38       | (965)          | 1,330          |                      | FBN4810WE              | FBN4811WE      | 1.8        | (0.9)          |
|                          | 58       | (1473)         | 48       | (1219)         | 1,670          |                      | FBN5810WE              | FBN5811WE      | 2.1        | (1.0)          |
|                          | 68       | (1727)         | 58       | (1473)         | 2,000          |                      | FBN6810WE              | FBN6811WE      | 2.5        | (1.2)          |
|                          | 87       | (2209)         | 77       | (1955)         | 2,670          |                      | FBN8710WE              | FBN8711WE      | 3.2        | (1.5)          |
|                          | 106      | (2692)         | 96       | (2438)         | 3,330          |                      | FBN10610WE             | FBN10611WE     | 3.9        | (1.8)          |
|                          |          |                |          |                | -              | rature Ovens 30      | 0°F (150°C)            |                |            |                |
| 20 W/in <sup>2</sup>     | 15       | (381)          | 11       | (279)          | 500            | FBN151WM             |                        |                | 0.6        | (0.3)          |
| Alloy 800                | 20       | (508)          | 16       | (406)          | 750            | FBN201WM             | EDNIO040W/M            |                | 0.8        | (0.4)          |
| (3.1 W/cm <sup>2</sup> ) | 26<br>36 | (660)<br>(914) | 22<br>32 | (558)<br>(812) | 1,000<br>1,500 | FBN261WM<br>FBN361WM | FBN2610WM<br>FBN3610WM |                | 1.0<br>1.3 | (0.5)<br>(0.6) |
|                          |          | . ,            |          | ` '            | · ·            |                      |                        |                |            |                |
|                          | 48       | (1219)         | 43       | (1092)         | 2,000          | FBN481WM             | FBN4810WM              | EDNIZO44MA     | 1.8        | (0.9)          |
|                          | 70<br>91 | (1778)         | 65<br>85 | (1651)         | 3,000          |                      | FBN7010WM              | FBN7011WM      | 2.6<br>3.3 | (1.2)          |
| Applications             |          | (2311)         |          | (2159)         | 4,000          | r Oile               | FBN9110WM              | FBN9111WM      | 3.3        | (1.5)          |
| 23 W/in <sup>2</sup>     | . Degi   | (889)          | 25       | (635)          | 1,250          | FBN351WT             | FBN3510WT              |                | 1.3        | (0.6)          |
| Alloy 800                | 41       | (1041)         | 31       | (787)          | 1,625          | FBN411WT             | FBN4110WT              |                | 1.5        | (0.0)          |
| (3.6 W/cm <sup>2</sup> ) | 51       | (1295)         | 41       | (1041)         | 2,125          | FBN511WT             | FBN5110WT              | FBN5111WT      | 1.9        | (0.7)          |
| (2.2 5 )                 | 62       | (1574)         | 52       | (1320)         | 2,625          | FBN621WT             | FBN6210WT              | FBN6211WT      | 2.3        | (1.1)          |
|                          | 72       | (1828)         | 62       | (1574)         | 3,200          | FBN721WT             | FBN7210WT              | FBN7211WT      | 2.6        | (1.2)          |
|                          | 93       | (2362)         | 83       | (2108)         | 4,250          | FBN931WT             | FBN9310WT              | FBN9311WT      | 3.4        | (1.6)          |
|                          | 114      | (2895)         | 104      | (2641)         | 5,400          | FBN1141WT            | FBN11410WT             | FBN11411WT     | 4.2        | (1.0)          |
|                          |          | ,/             |          | ( /            | - /            |                      |                        |                |            | ITINUE         |

<sup>•</sup> Manufacturing lead times

WATLOW® \_\_\_\_\_\_ 107

### FIREBAR Single/Double-Ended Heaters


One-Inch, Double-Ended FIREBAR (Continued) Lavacone Seal Straight Length Annealed Incoloy® Sheath Permits **Factory Bending to Customer Requirements** 12 in. (305 mm)\_ **Heated Length** Standard Leads No-Heat No-Heat 1/2 in. 6 Per Element (13 mm) Sheath Length **FIREBAR** Sheath Heated Est. Net Description A Dimension **B** Dimension Watts Part Number Wt. **120VAC** 240VAC 480VAC lbs (kg) in. (mm) (mm) Applications: Cooking Oils, Mild Caustic Solution, Ethylene Glycol (100%) 30 W/in<sup>2</sup> (254)750 FBN161WH 0.6 (0.3)Alloy 800 20 (508)14 (355)1000 FBN201WH 0.8 (0.4)FBN271WH 27 21 (533)1500 **FBN2710WH** (4.7 W/cm<sup>2</sup>) (685)1.0 (0.5)34 28 2000 FBN341WH (863)(711)**FBN3410WH** 1.3 (0.6)50 (1270)43 (1092)3000 FBN5010WH FBN5011WH 1.8 (0.9)57 4000 **FBN6410WH** 64 **FBN6411WH** 2.4 (1625)(1447)(1.1)80 72 5000 **FBN8011WH** (2032)(1828)**FBN8010WH** 2.9 (1.4)Applications: Process Water, Ethylene Glycol (50%) 40 W/in<sup>2</sup> (635)(558)2000 **FBN2510WK** 0.9 (0.4)32 Alloy 800 35 (889)(812)3000 **FBN3510WK** FBN3511WK 1.3 (0.6)(6.2 W/cm<sup>2</sup>) 47 (1193)43 (1092)4000 **FBN4710WK** FBN4711WK 1.7 (0.8)69 (1752)65 (1651)6000 **FBN6910WK** FBN6911WK 2.5 (1.2)**FBN9011WK** 90 (2286)86 (2184)8000 FBN9010WK 3.3 (1.5)45 W/in<sup>2</sup> 29 (736)19 (482)2000 FBN2910WP 1.1 (0.5)Alloy 800 34 (863)24 (609)2500 **FBN3410WP** 1.3 (0.6)(7 W/cm<sup>2</sup>) 39 (990)29 (736)3000 **FBN3910WP** 1.4 (0.7)48 (1219)38 (965)4000 **FBN4810WP FBN4811WP** 1.8 (0.9)58 (1473)48 (1219)5000 FBN5810WP FBN5811WP 2.1 (1.0)68 (1727)58 (1473)6000 FBN6810WP FBN6811WP 2.5 (1.2)87 (2209)77 (1955)8000 **FBN8710WP FBN8711WP** 3.2 (1.5)106 (2692)96 (2438)10,000 FBN10610WP FBN10611WP 3.9 (1.8)Applications: Clean and Potable Water 80 W/in<sup>2</sup> 15 (381)11 (279)2000 FBN1510WJ 0.6 (0.3)Alloy 800 20 (508)16 3000 FBN2010WJ (406)8.0 (0.4)(12.4 W/cm<sup>2</sup>) 26 (660)22 (558)4000 FBN2610WJ FBN2611WJ 1.0 (0.5)36 (914)32 6000 FBN3610WJ FBN3611WJ (812)1.3 (0.6)48 (1219)(1092)8000 **FBN4810WJ FBN4811WJ** 1.8 (0.9)FBN7011WJ 70 (1778)65 (1651)12,000 2.6 (1.2)91 (2311)85 (2159)16,000 **FBN9111WJ** 3.3 (1.5)90 W/in<sup>2</sup> FBN351WG **FBN3510WG FBN3511WG** (889)25 (635)5000 1.3 (0.6)Allov 800 41 (1041)31 (787)6500 FBN411WG **FBN4110WG** FBN4111WG 1.5 (0.7)**FBN5110WG** FBN5111WG (14 W/cm<sup>2</sup>) 51 (1295)41 (1041)8500 1.9 (0.9)62 (1574)52 (1320)10,500 **FBN6210WG** FBN6211WG 2.3 (1.1)72 (1828)62 (1574)12.750 **FBN7210WG FBN7211WG** 2.6 (1.2)93 (2362)83 (2108)17.000 FBN931WG 3.4 (1.6)114 (2895)104 (2641)21.500 FBN11411WG 3.4 (1.6)

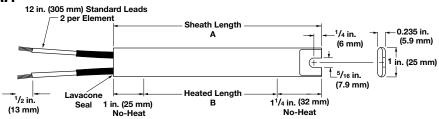
Manufacturing lead times

Truck Shipment only

# **FIREBAR Single/Double-Ended Heaters**

<sup>5</sup>/8-Inch Double-Ended FIREBAR



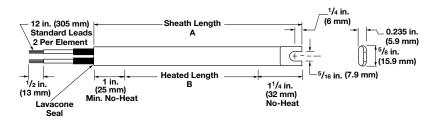

| FIREBAR<br>Description   |        | neath<br>nension |        | eated<br>nension | Watts     |          | Part Number |           |     |       |
|--------------------------|--------|------------------|--------|------------------|-----------|----------|-------------|-----------|-----|-------|
|                          | in.    | (mm)             | in.    | (mm)             |           | 120VAC   | 240VAC      | 480VAC    | lbs | (kg)  |
| Applications             | : Degr | easing l         | Fluids | s, Heat T        | ransfer O | ils      |             |           |     |       |
| 23 W/in <sup>2</sup> ①   | 19     | (483)            | 11     | (279)            | 375       | FAN191WT |             |           | 0.5 | (0.3) |
| Alloy 800                | 22     | (559)            | 14     | (356)            | 500       | FAN221WT | FAN2210WT   |           | 0.5 | (0.3) |
| (3.6 W/cm <sup>2</sup> ) | 26     | (660)            | 18     | (457)            | 625       | FAN261WT | FAN2610WT   |           | 0.6 | (0.3) |
|                          | 30     | (762)            | 22     | (559)            | 750       | FAN301WT | FAN3010WT   |           | 0.7 | (0.4) |
|                          | 37     | (940)            | 29     | (737)            | 1000      | FAN371WT | FAN3710WT   |           | 0.9 | (0.5) |
|                          | 44     | (1118)           | 36     | (914)            | 1250      | FAN441WT | FAN4410WT   |           | 1.0 | (0.5) |
|                          | 51     | (1295)           | 43     | (1092)           | 1500      | FAN511WT | FAN5110WT   |           | 1.2 | (0.6) |
| Applications             | : Clea | n and P          | otable | e Water          |           |          |             |           |     |       |
| 90 W/in <sup>2</sup>     | 15     | (381)            | 7      | (178)            | 1000      | FAN151WG | FAN1510WG   |           | 0.4 | (0.2) |
| Alloy 800                | 19     | (483)            | 11     | (279)            | 1500      | FAN191WG | FAN1910WG   | FAN1911WG | 0.5 | (0.3) |
| (14 W/cm <sup>2</sup> )  | 22     | (559)            | 14     | (356)            | 2000      | FAN221WG | FAN2210WG   | FAN2211WG | 0.5 | (0.3) |
|                          | 26     | (660)            | 18     | (457)            | 2500      | FAN261WG | FAN2610WG   | FAN2611WG | 0.6 | (0.3) |
|                          | 30     | (762)            | 22     | (559)            | 3000      | FAN301WG | FAN3010WG   | FAN3011WG | 0.7 | (0.4) |
|                          | 37     | (940)            | 29     | (737)            | 4000      |          | FAN3710WG   | FAN3711WG | 0.9 | (0.5) |
|                          | 44     | (1118)           | 36     | (914)            | 5000      |          | FAN4410WG   | FAN4411WG | 1.0 | (0.5) |
|                          | 51     | (1295)           | 43     | (1092)           | 6000      |          | FAN5110WG   | FAN5111WG | 1.2 | (0.6) |

<sup>•</sup> Manufacturing lead times

**WATLOW**<sup>®</sup> \_\_\_\_\_\_\_ 109

# FIREBAR Single/Double-Ended Heaters

One-Inch, Single-Ended FIREBAR




|                          |                                |                 |                    | (                | 13 11111) | No-Heat        |              | No-Hea    | at         |
|--------------------------|--------------------------------|-----------------|--------------------|------------------|-----------|----------------|--------------|-----------|------------|
| FIREBAR<br>Description   |                                | eath<br>nension |                    | eated<br>nension | Watts     | Part Nu        | mber         | Est.<br>W | Net<br>'t. |
|                          | in.                            | (mm)            | in.                | (mm)             |           | 120VAC         | 240VAC       | lbs       | (kg)       |
| <b>Applications</b>      | : Radia                        | nt, Plat        | ens, D             | ies, Lov         | v-Tempe   | rature Ovens 3 | 00°F (150°C) |           |            |
| 20 W/in <sup>2</sup>     | 8 <sup>3</sup> /4              | (222.0)         | 6 <sup>1</sup> /2  | (165.0)          | 300       | FSP91WM        |              | 0.4       | (0.2)      |
| 304 SS                   | 10 <sup>1</sup> /4             | (260.0)         | 7 <sup>1</sup> /2  | (203.0)          | 375       | FSP101WM       |              | 0.4       | (0.2)      |
| (3.1 W/cm <sup>2</sup> ) | 12 <sup>1</sup> /4             | (311.0)         | 10                 | (254.0)          | 450       | FSP121WM       |              | 0.5       | (0.3)      |
|                          | 13 <sup>1</sup> / <sub>2</sub> | (343.0)         | 11 <sup>1</sup> /4 | (286.0)          | 500       | FSP141WM       |              | 0.5       | (0.3)      |
|                          | 16 <sup>1</sup> /8             | (408.6)         |                    | (352.4)          | 650       | FSP161WM       | FSP1610WM    | 0.6       | (0.3)      |
|                          | 17 <sup>3</sup> /4             | (451.0)         | 15 <sup>1</sup> /2 | (393.0)          | 725       | FSP181WM       | FSP1810WM    | 0.7       | (0.4)      |
|                          | 19 <sup>1</sup> /4             | (489.0)         | 17                 | (431.0)          | 800       | FSP191WM       | FSP1910WM    | 0.7       | (0.4)      |
|                          | 22                             | (558.0)         | 19 <sup>3</sup> /4 | (502.0)          | 900       | FSP221WM       | FSP2210WM    | 0.8       | (0.4)      |
|                          | 233/4                          | (603.0)         | 21 <sup>1</sup> /2 | (546.0)          | 1,000     | FSP241WM       | FSP2410WM    | 0.9       | (0.4)      |
|                          | 25                             | (635.0)         | 22 <sup>3</sup> /4 | (578.0)          | 1,050     | FSP251WM       | FSP2510WM    | 0.9       | (0.4)      |
|                          | 28 <sup>5</sup> /8             | (727.1)         | 26 <sup>3</sup> /8 | (670.0)          | 1,250     | FSP291WM       | FSP2910WM    | 1.1       | (0.5)      |
|                          | 31 <sup>5</sup> /8             | (803.3)         | 29 <sup>3</sup> /8 | (746.1)          | 1,350     | FSP321WM       | FSP3210WM    | 1.2       | (0.6)      |
|                          | 34 <sup>1</sup> /8             | (866.8)         | 31 <sup>7</sup> /8 | (809.6)          | 1,500     |                | FSP3410WM    | 1.3       | (0.6)      |
|                          | 36 <sup>7</sup> /8             | (936.6)         | 34 <sup>5</sup> /8 | (879.5)          | 1,600     |                | FSP3710WM    | 1.4       | (0.7)      |
|                          | 40 <sup>5</sup> /8             | (1031.9)        | 38 <sup>3</sup> /8 | (974.7)          | 1,800     |                | FSP4110WM    | 1.5       | (0.7)      |
|                          | 46 <sup>1</sup> /4             | (1175.0)        | 44                 | (1117.0)         | 2,000     |                | FSP4610WM    | 1.7       | (0.8)      |
| Applications             | : Air He                       | eating          |                    |                  |           |                |              |           |            |
| 40 W/in <sup>2</sup>     | 83/4                           | (222.0)         | 6 <sup>1</sup> /2  | (165.0)          | 600       | FSP91WK        |              | 0.4       | (0.2)      |
| 304 SS                   | 10 <sup>1</sup> /4             | (260.0)         | 71/2               | (203.0)          | 750       | FSP101WK       |              | 0.4       | (0.2)      |
| (6.2 W/cm <sup>2</sup> ) | 12 <sup>1</sup> /4             | (311.0)         | 10                 | (254.0)          | 900       | FSP121WK       | FSP1210WK    | 0.5       | (0.3)      |
|                          | 13 <sup>1</sup> / <sub>2</sub> | (343.0)         | 11 <sup>1</sup> /4 | (286.0)          | 1,000     | FSP131WK       | FSP1310WK    | 0.5       | (0.3)      |
|                          | 161/4                          | (413.0)         | 13 <sup>7</sup> /8 | (352.4)          | 1,300     | FSP161WK       | FSP1610WK    | 0.6       | (0.3)      |
|                          | 17 <sup>3</sup> /4             | (451.0)         | 15 <sup>1</sup> /2 | (393.0)          | 1,450     | FSP181WK       | FSP1810WK    | 0.7       | (0.4)      |
|                          | 19 <sup>1</sup> /4             | (489.0)         | 17                 | (431.0)          | 1,600     |                | FSP1910WK    | 0.7       | (0.4)      |
|                          | 22                             | (558.0)         | 19 <sup>3</sup> /4 | (502.0)          | 1,800     |                | FSP2210WK    | 0.8       | (0.4)      |
|                          | 23 <sup>3</sup> /4             | (603.0)         | 21 <sup>1</sup> /2 | (546.0)          | 2,000     |                | FSP2410WK    | 0.9       | (0.4)      |
|                          | 25                             | (635.0)         |                    | (578.0)          | 2,100     |                | FSP2510WK    | 0.9       | (0.4)      |
|                          | 28 <sup>5</sup> /8             | (727.1)         |                    | (669.9)          | 2,500     |                | FSP2910WK    | 1.1       | (0.5)      |
|                          | 31 <sup>5</sup> /8             | (803.2)         | 29 <sup>3</sup> /8 | (746.1)          | 2,700     |                | FSP3210WK    | 1.2       | (0.6)      |
|                          | 34 <sup>1</sup> /8             | (866.8)         |                    | (809.6)          | 3,000     |                | FSP3410WK    | 1.3       | (0.6)      |
|                          | 36 <sup>7</sup> /8             | (936.6)         |                    | (879.5)          | 3,200     |                | FSP3710WK    | 1.4       | (0.7)      |
|                          | 40 <sup>5</sup> /8             | (1031.9)        | 38 <sup>3</sup> /8 | (974.7)          | 3,600     |                | FSP4110WK    | 1.5       | (0.7)      |
|                          | 46 <sup>1</sup> / <sub>4</sub> | (1175.0)        | 44                 | (1117.0)         | 4,000     |                | FSP4610WK    | 1.7       | (0.8)      |

<sup>•</sup> Manufacturing lead times

# FIREBAR Single/Double-Ended Heaters

<sup>5</sup>/8-Inch Single-Ended FIREBAR



| FIREBAR<br>Description                                                    | on A Dimension     |        |     |        | Watts | Part Nur | nber      | Est. Net<br>Weight |       |  |
|---------------------------------------------------------------------------|--------------------|--------|-----|--------|-------|----------|-----------|--------------------|-------|--|
|                                                                           | in.                | (mm)   | in. | (mm)   |       | 120VAC   | 240VAC    | lbs                | (kg)  |  |
| Applications: Radiant, Platens, Dies, Low-Temperature Ovens 300°F (150°C) |                    |        |     |        |       |          |           |                    |       |  |
| 20 W/in <sup>2</sup>                                                      | 11 <sup>1</sup> /2 | (292)  | 8   | (203)  | 250   | FSA121WM |           | 0.3                | (0.2) |  |
| Alloy 800                                                                 | 15 <sup>1</sup> /2 | (394)  | 12  | (304)  | 375   | FSA161WM | FSA1610WM | 0.4                | (0.2) |  |
| (3.1 W/cm <sup>2</sup> )                                                  | 19 <sup>1</sup> /2 | (495)  | 16  | (406)  | 500   | FSA201WM | FSA2010WM | 0.5                | (0.3) |  |
|                                                                           | 28                 | (711)  | 24  | (609)  | 750   | FSA281WM | FSA2810WM | 0.6                | (0.3) |  |
|                                                                           | 36                 | (914)  | 32  | (812)  | 1,000 | FSA361WM | FSA3610WM | 0.8                | (0.4) |  |
|                                                                           | 52                 | (1321) | 48  | (1219) | 1,500 | FSA521WM | FSA5210WM | 1.2                | (0.6) |  |

<sup>•</sup> Manufacturing lead times

# FINBAR™ Single-Ended Heaters

Composed of aluminized steel fins press fitted to a one-inch single-ended FIREBAR element. The FINBAR™ is designed to improve heat transfer to the air and permits putting more power in tighter spaces—like forced air ducts, dryers, ovens and load bank resistors.

Heat transfer, lower sheath temperature and element life are all maximized by its finned construction. Installation is simplified by terminations exiting at one end and mounting accommodations on both ends.

# **Performance Capabilities**

- Watt densities up to 50 W/in<sup>2</sup> (7.7 W/cm<sup>2</sup>)
- 304 stainless steel sheath temperatures up to 1200°F (650°C)
- Voltages up to 480VAC
- Amperages up to 48 amperes per heater or 16 amperes per coil

## **Features and Benefits**

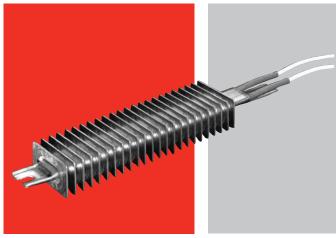
### Rugged aluminized steel fins

 Provides an increase in surface area to approximately 16 square inches for every linear inch of element length. Fins press fitted to the heating element improve heat transfer to the air

## Single-ended termination

Simplifies wiring and installation

# Stainless steel mounting bracket, welded to the terminal end, supplied with a slotted end


· Allows ease of installation

### Lavacone seals

 Provides protection against humid storage conditions, moisture retardant to 221°F (105°C)

### **Typical Applications**

- Forced air heating for dryers, ovens, ducts
- · Still air heating for ovens, comfort heating
- Incubators
- Ink drying
- Load bank resistors





## **Construction Features**

Watt Density: Up to 40 W/in<sup>2</sup> (6.2 W/cm<sup>2</sup>)

Fin Surface Area: 16 in<sup>2</sup>/linear in. (40.5 cm<sup>2</sup>/linear cm)

Fin Cross Section: 2 x 1 in. (50 x 25 mm)

**Maximum Operating Temperature**: Sheath material: 304 SS, 1200°F (650°C), Fin material; aluminized steel; 1100°F (600°C)

Heater Length: 11 to 120 in. (280 to 3050 mm)

No-Heat Length: 1 in. (25 mm) min.,

12 in. (305 mm) max. **Voltages**: Up to 240VAC

Phase: 1-phase parallel or 3-phase wye

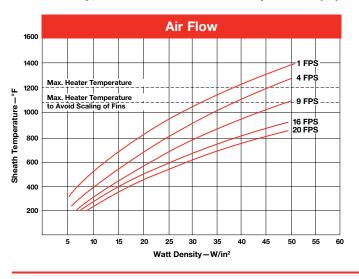
Resistance Coils: 1 or 3

**Terminations**: Flexible lead wires, quick connect (spade), screw lug (plate) and threaded stud **Seal Material**: Lavacone, rated to 221°F (105°C)

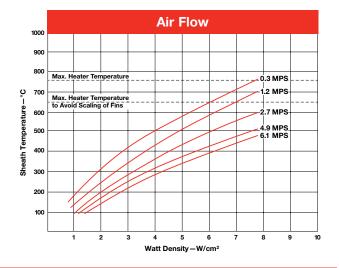
Single-End Configuration: Slotted

**Agency Recognition**: Refer to FIREBAR UL®

# **FINBAR Single-Ended Heaters**


# Air Heating

The Watt Density, Air Flow and Sheath Temperature graph shows the relationship between watt density, air flow velocity and sheath temperature, along with a recommended temperature to avoid deteriorating the fins. Be aware that **lower sheath temperature yields longer heater life**.


The graphic representation is based on a single-ended FINBAR, various air velocities (at 68°F/20°C inlet temperature) and different watt densities.

To determine, from the graph, the operating temperature of the FINBAR's sheath, identify the air velocity curve that approximates your application in feet per second (meters per second). Then, look at the vertical line that most closely approximates the FINBAR's watt density. From the intersecting point, read over to the temperature column to determine the sheath's operating temperature.

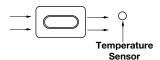
## Watt Density, Air Flow and Sheath Temperature (°F)



# Watt Density, Air Flow and Sheath Temperature (°C)



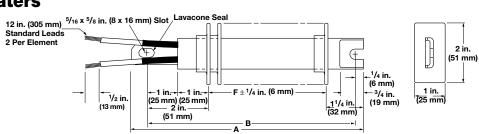
### **Dual Ended FINBAR**


FINBAR elements are typically terminated at one end. Upon request, however, dual-ended FINBAR heaters can be ordered. To order, specify **dual-ended FINBAR** and lead length.

### **Application Hints**

- Avoid deteriorating the fins by not exceeding the recommended maximum fin temperature of 1100°F (600°C).
- Ensure proper air flow to prevent premature heater failure.
- Locate the temperature sensor downstream from heater(s) for process temperature sensing.

The following mounting parameters are recommended:


- Air flow over element must be parallel with the flat side.
- Element center line to element center line spacing must be a minimum of 1<sup>1</sup>/<sub>2</sub> in. (38 mm).



113

Proper air flow relative to the heater's sheath is parallel with the longer cross sectional axis.

# **FINBAR Single-Ended Heaters**



| FINBAR                   | Ov                             | rerall   | 0                  | verall   | Mou                            | nting    |       |           |            |     | . Net |
|--------------------------|--------------------------------|----------|--------------------|----------|--------------------------------|----------|-------|-----------|------------|-----|-------|
| Description              | A Din                          | nension  | F Dir              | nension  | B Dim                          | ension   | Watts | Pa        | rt Number  | _ \ | Nt.   |
|                          | in.                            | (mm)     | in.                | (mm)     | in.                            | (mm)     |       | 120VAC    | 240VAC     | lbs | (kg)  |
| pplication:              |                                |          |                    |          |                                |          |       |           |            |     |       |
| 20 W/in <sup>2</sup>     | 10 <sup>1</sup> /4             | (260.0)  | 6 <sup>1</sup> /2  | (158.0)  | 9 <sup>1</sup> /2              | (241.0)  | 300   | FSP91WMF  |            | 1.4 | (0.7) |
| 304 SS                   | 11 <sup>3</sup> /4             | (298.0)  | 8                  | (203.0)  | 11                             | (279.0)  | 375   | FSP101WMF |            | 1.4 | (0.7) |
| (3.1 W/cm <sup>2</sup> ) | 13 <sup>3</sup> /4             | (349.0)  | 10                 | (254.0)  | 13                             | (330.0)  | 450   | FSP121WMF |            | 1.5 | (0.7) |
|                          | 15                             | (381.0)  | 11 <sup>1</sup> /4 | (285.0)  | 14 <sup>1</sup> /4             | (362.0)  | 500   | FSP141WMF |            | 1.5 | (0.7) |
|                          | 17 <sup>5</sup> /8             | (447.7)  | 13 <sup>7</sup> /8 | (352.4)  | 16 <sup>7</sup> /8             | (428.6)  | 650   | FSP161WMF | FSP1610WMF | 1.6 | (0.8) |
|                          | 19 <sup>1</sup> /4             | (489.0)  | 15 <sup>1</sup> /2 | (393.0)  | 18 <sup>1</sup> /2             | (469.0)  | 725   | FSP181WMF | FSP1810WMF | 1.7 | (0.8) |
|                          | 20 <sup>3</sup> /4             | (527.0)  | 17                 | (431.0)  | 20                             | (508.0)  | 800   | FSP191WMF | FSP1910WMF | 1.7 | (0.8) |
|                          | 23 <sup>1</sup> / <sub>2</sub> | (597.0)  | 19 <sup>3</sup> /4 | (501.0)  | 22 <sup>3</sup> /4             | (577.0)  | 900   | FSP221WMF | FSP2210WMF | 1.8 | (0.9) |
|                          | 25 <sup>1</sup> /4             | (641.0)  | 21 <sup>1</sup> /2 | (546.0)  | 24 <sup>1</sup> /2             | (622.0)  | 1000  | FSP241WMF | FSP2410WMF | 1.9 | (0.9) |
|                          | 26 <sup>1</sup> /2             | (673.0)  | 22 <sup>3</sup> /4 | (577.0)  | 25 <sup>3</sup> /4             | (654.0)  | 1050  | FSP251WMF | FSP2510WMF | 1.9 | (0.9) |
|                          | 30 <sup>1</sup> /8             | (765.2)  | 26 <sup>3</sup> /8 | (669.9)  | 29 <sup>3</sup> /8             | (746.1)  | 1250  | FSP291WMF | FSP2910WMF | 2.1 | (1.0) |
|                          | 33 <sup>1</sup> /8             | (841.4)  | 29 <sup>3</sup> /8 | (746.1)  | 32 <sup>3</sup> /8             | (822.3)  | 1350  | FSP321WMF | FSP3210WMF | 2.2 | (1.0) |
|                          | 35 <sup>5</sup> /8             | (904.9)  | 31%                | (809.6)  | 34 <sup>7</sup> /8             | (885.8)  | 1500  |           | FSP3410WMF | 2.3 | (1.1) |
|                          | 38 <sup>3</sup> /8             | (974.7)  | 34 <sup>5</sup> /8 | (879.5)  | 37 <sup>5</sup> /8             | (955.7)  | 1600  |           | FSP3710WMF | 2.4 | (1.1) |
|                          | 42 <sup>1</sup> /8             | (1070.0) | 38 <sup>3</sup> /8 | (974.7)  | 41 <sup>3</sup> /8             | (1051.0) | 1800  |           | FSP4110WMF | 2.5 | (1.2) |
|                          | 47 <sup>3</sup> /4             | (1213.0) | 44                 | (1117.0) | 47                             | (1193.0) | 2000  |           | FSP4610WMF | 2.7 | (1.3) |
| 40 W/in <sup>2</sup>     | 10 <sup>1</sup> /4             | (260.0)  | 6 <sup>1</sup> /2  | (158.0)  | 9 <sup>1</sup> /2              | (241.0)  | 600   | FSP91WKF  |            | 1.4 | (0.7) |
| 304 SS                   | 11 <sup>3</sup> /4             | (298.0)  | 8                  | (203.0)  | 11                             | (279.0)  | 750   | FSP101WKF |            | 1.4 | (0.7) |
| (6.2 W/cm <sup>2</sup> ) | 13 <sup>3</sup> /4             | (349.0)  | 10                 | (254.0)  | 13                             | (330.0)  | 900   | FSP121WKF | FSP1210WKF | 1.5 | (0.7) |
|                          | 15                             | (381.0)  | 11 <sup>1</sup> /4 | (285.0)  | 14 <sup>1</sup> /4             | (362.0)  | 1000  | FSP131WKF | FSP1310WKF | 1.5 | (0.7) |
|                          | 17 <sup>5</sup> /8             | (447.7)  | 13 <sup>7</sup> /8 | (352.4)  | 16%                            | (428.6)  | 1300  | FSP161WKF | FSP1610WKF | 1.6 | (0.8) |
|                          | 19 <sup>1</sup> /4             | (489.0)  | 15 <sup>1</sup> /2 | (393.0)  | 18 <sup>1</sup> /2             | (469.0)  | 1450  | FSP181WKF | FSP1810WKF | 1.7 | (0.8) |
|                          | 20 <sup>3</sup> /4             | (527.0)  | 17                 | (431.0)  | 20                             | (508.0)  | 1600  |           | FSP1910WKF | 1.7 | (0.8) |
|                          | 23 <sup>1</sup> / <sub>2</sub> | (597.0)  | 19 <sup>3</sup> /4 | (501.0)  | 22 <sup>3</sup> /4             | (577.0)  | 1800  |           | FSP2210WKF | 1.8 | (0.9) |
|                          | 25 <sup>1</sup> /4             | (641.0)  | 21 <sup>1</sup> /2 | (546.0)  | 24 <sup>1</sup> / <sub>2</sub> | (622.0)  | 2000  |           | FSP2410WKF | 1.9 | (0.9) |
|                          | 26 <sup>1</sup> /2             | (673.0)  | 22 <sup>3</sup> /4 | (577.0)  | 25 <sup>3</sup> /4             | (654.0)  | 2100  |           | FSP2510WKF | 1.9 | (0.9) |
|                          | 30 <sup>1</sup> /8             | (765.2)  | 26 <sup>3</sup> /8 | (669.9)  | 29 <sup>3</sup> /8             | (746.1)  | 2500  |           | FSP2910WKF | 2.1 | (1.0) |
|                          | 33 <sup>1</sup> /8             | (841.4)  | 29 <sup>3</sup> /8 | (746.1)  | 32 <sup>3</sup> /8             | (822.3)  | 2700  |           | FSP3210WKF | 2.2 | (1.0) |
|                          | 35 <sup>5</sup> /8             | (904.9)  | 31 <sup>7</sup> /8 | (809.6)  | 34 <sup>7</sup> /8             | (885.8)  | 3000  |           | FSP3410WKF | 2.3 | (1.1) |
|                          | 38 <sup>3</sup> /8             | (974.7)  | 34 <sup>5</sup> /8 | (879.4)  | 37 <sup>5</sup> /8             | (955.7)  | 3200  |           | FSP3710WKF | 2.4 | (1.1) |
|                          | 42 <sup>1</sup> /8             | (1070.0) | 38 <sup>3</sup> /8 | (974.7)  | 41 <sup>3</sup> /8             | (1050.9) | 3600  |           | FSP4110WKF | 2.5 | (1.2) |
|                          | 47 <sup>3</sup> /4             | (1213.0) | 44                 | (1117.0) | 47                             | (1193.0) | 4000  |           | FSP4610WKF | 2.7 | (1.3) |

<sup>•</sup> M - Manufacturing lead times

| Flexible Heaters                         | Sheath Materials | Max. Op<br>Tempe<br>°F |     |      | al Max.<br>ensities<br>W/cm² | Page |
|------------------------------------------|------------------|------------------------|-----|------|------------------------------|------|
| Silicone Rubber                          | Silicone rubber  | 500                    | 260 | 80.0 | 12.50                        | 119  |
| Line Heating                             | Silicone rubber  | 392                    | 200 | 2.5  | 0.39                         | 133  |
| Polyimide                                | Polyimide        | 392                    | 200 | 50.0 | 7.75                         | 148  |
| SERIES EHG® Controller                   | N/A              | 158*                   | 70* | ١    | I/A                          | 152  |
| SERIES EHG SL10<br>Controller with Limit | N/A              | 158*                   | 70* | N/A  |                              | 154  |
| SERIES EHG CL Controller                 | N/A              | 158*                   | 70* | ١    | √A                           | 158  |

<sup>\*</sup> Ambient environment, not maximum controlling temperature.





# **Flexible Shapes and Geometries**

Flexible heaters are thin, bendable and shaped to fit almost any type of equipment. Heat can be applied to complex shapes and geometries without sacrificing efficiency or dependability.

Excellent heat transfer results from the heater's thin design and direct bonding to an application. Flexible heaters provide fast heat-up and cool-down rates, uniform heat distribution and high watt densities.

# **Features and Benefits**

### Flat geometry

• Permits holes, notches and unusual shapes

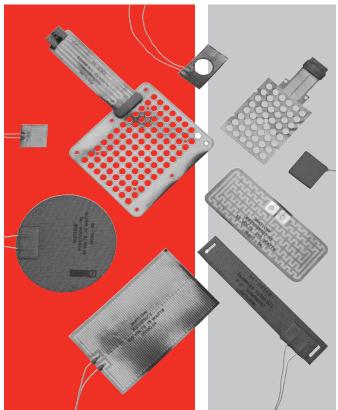
## Option of two material types and two element styles

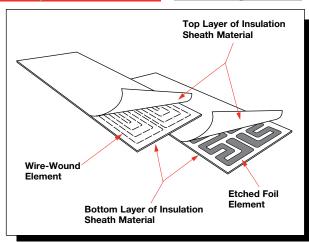
• Allow wider flexibility

### Lightweight construction and low thermal mass

 Permit use in applications with limited space or weight requirements

### Heating elements as close as 0.003 in. (0.08 mm)


• Creates faster heat-up and cool-down time


## Uniformly spaced element paths

• Distributes heat more evenly

# **Typical Applications**

- Medical equipment including blood analyzers, respiratory therapy units and hydrotherapy baths
- Semiconductor equipment, including vacuum and gas delivery lines and wafer processing equipment
- Foodservice equipment, including food holding and warming cabinets
- Battery heating
- Satellite and communication equipment
- Freeze protection for military hardware, aircraft instrumentation, hydraulic equipment, etc.
- · Any application requiring a flexible shape or design





# Flexible Shapes and Geometries

# Applications and Technical Data

# **Two Material Types**

### Silicone Rubber

Rugged, moisture- and chemical-resistant material easily can be bonded to parts for effective heat transfer. Watlow silicone rubber heaters handle temperatures up to  $500^{\circ}$ F (260°C). Many heater styles are available with UR®, cUR®, VDE and CE recognition.

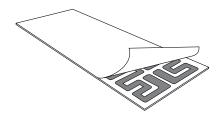
# **Polyimide**

Polyimide is a thin, lightweight transparent material designed for precise heating requirements ranging from -319 to 392°F (-195 to 200°C). It is ideal for applications requiring low outgassing in a vacuum or resistance to radiation, fungus and chemicals. Many custom heaters can be UR® and cUR® recognized.

# **Two Element Types**

Watlow offers wire-wound and etched foil resistance elements for silicone rubber heaters. Watlow can recommend the type best suited to your application.

## **Wire-Wound Elements**




This element style is created by spiraling fine resistance wires around a fiberglass cord. The element is laid out in a pattern designed for a specific application. The benefits of wire-wound elements include:

- Excellent physical strength and flexibility. Repeated heater flexing has no harmful effects on its performance
- The ability to conform easily to curved surfaces, including small radius bends

Semiconductor pumpline heaters are typical examples of applications that use the wire-wound method. These heaters are flexed repeatedly during removal and installation, but due to their wiring, no internal damage occurs.

### **Etched Foil Elements**



This element type is created by acid etching a circuit in nickel alloy resistance foil. It is available in silicone rubber and polyimide heater types. The etched foil element is known for its excellent circuit pattern repeatability and superior heat transfer, which results from greater coverage of the element. Other benefits include:

- Delivery of more heat and up to twice the watt density of a wire-wound element provides longer heater life
- Complex heat distribution patterns

The etched foil element style is usually recommended for applications requiring high temperatures, watt densities, or multiple zoning.

# Silicone Rubber Heaters

Rugged, yet thin, lightweight and flexible—use of Watlow® silicone rubber heaters is limited only by the imagination. Heat can be put exactly where it is needed to improve heat transfer, speed warm ups and decrease wattage requirements in an application process.

Fiberglass-reinforced silicone rubber provides dimensional stability without sacrificing flexibility. Because very little material separates the element from the part, heat transfer is rapid and efficient. Heaters are constructed with a wire-wound element or with an etched foil element. Its thin construction allows it to fit into applications where space is limited.

# **Performance Capabilities**

- Operating temperatures up to 500°F (260°C)
- Watt densities up to 80 W/in<sup>2</sup> (12.5 W/cm<sup>2</sup>), dependent upon application temperature
- Wire-wound element thickness 0.055 in. (1.4 mm)
- Etched foil element 0.022 in. (0.56 mm)
- UR<sup>®</sup>, cUR<sup>®</sup>, VDE and CE recognitions are available on many designs up to 428°F (220°C)

### **Features and Benefits**

### Designed to the exact shape and size needed

• Conforms to component and/or equipment

# More than 80 designs available immediately from stock

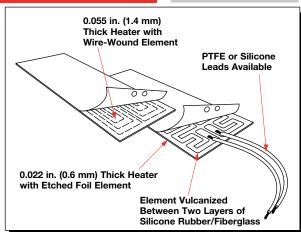
Reduces downtime

# Constructed with wire-wound or etched foil elements

- Enables a thin, lightweight heater
- Provides the desired flexibility for many dynamic applications
- Delivers low mass and easily repeatable distributed watt densities

# Moisture and chemical-resistant silicone rubber material

Provides longer heater life

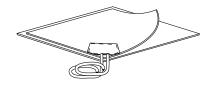

### **Vulcanizing adhesives or fasteners**

Allows heaters to be easily bonded to parts

## **Typical Applications**

- Semiconductor processing equipment
- Freeze protection and condensation prevention for many types of instrumentation and equipment
- Medical equipment such as blood analyzers and test tube heaters
- Computer peripherals such as laser printers
- Curing of plastic laminates
- Photo processing equipment

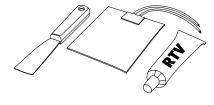





## **Silicone Rubber Heaters**

# **Mounting Methods**

Watlow offers various attachment techniques designed for fast installation.


# Pressure Sensitive Adhesive Surface (PSAS)



For speed, convenience and economy of installation, specify PSAS. Simply peel off the protective backing and roll the heater in place for an even bond to a clean, smooth surface. PSAS is not recommended for curved surfaces or for heaters rated above 10 W/in² (1.5 W/cm²). It should not be used for applications exceeding 400°F (205°C) on silicone rubber and 300°F (150°C) on polyimide.

**Note:** PSAS has a maximum six-month storage life at or below 86°F (30°C) before heater installation.

# **Field Applied Adhesive**



For a stronger bond or when long storage is probable, room temperature vulcanizing (RTV) silicone adhesive works well. Watlow offers red RTV for temperatures up to 500°F (260°C). White RTV is available from adhesive suppliers for temperatures up to 400°F (205°C). Watlow's one-part RTV is self-priming and can be ordered in either 3 oz (90 ml) or 12 oz (355 ml) tubes. For larger heaters requiring longer adhesive working time, two-part RTV kits can be purchased from adhesive suppliers. These kits require primer on the surface prior to adhesive application.

Note: Not recommended for polyimide heaters.

### Silicone Contact Cement Kit

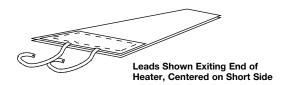


This two-part adhesive consists of a resin and catalyst that are easily mixed together and applied with a paintbrush. Recommended usage is for field cementing of silicone rubber heaters to customer parts. Available for immediate delivery, the cement kit handles temperatures up to 350°F (175°C). The resin is available in pint or quart containers. To order, specify **silicone contact cement** and the container size.

## **Mechanical Fasteners**



When a wire-wound flexible heater must be detachable, any type of fastener normally used with fabrics can usually be built into the flexible heater's sheath material. The most common types are latch fasteners, boot hooks and grommets. Other styles include snap fasteners, springs and lacing cord. (Hook and loop style fastener strips are only available as part of the extended capabilities offering.) Grommets and boot hooks are commonly used with tension springs to compensate for slight variations in part size.


120 WATLOW<sup>®</sup>

# Silicone Rubber Heaters

# **Termination Styles**

Watlow offers many types of leads and terminations. Leads can project from any position along the perimeter of the unit. **They are centered on the short side width of rectangular heaters unless specified.** 

# PTFE UL® 1180 CSA



Watlow's leads are 12 in. (305 mm) long, white, PTFE insulated, flexible, plated copper UL® 1180 CSA wire. Leads are rated for 392°F (200°C)/300V. Lead connections on or at the heater are insulated with a cap of sheath material vulcanized to the heater body.

### **PTFE Leads**



PTFE Type E (MIL-W-16878) and PTFE UL $^{\rm B}$  1199 leads rated for 392°F (200°C)/600V are also available.

## Silicone Insulated Leads



For a better moisture seal, specify UL® silicone insulated lead wires. This lead type is rated for 302°F (150°C)/600V. Any lead length is available. **Note:** Silicone rubber heaters are not designed to be waterproof. Excess exposure to moisture may facilitate premature heater failure.

## **Option**

## **Thermal Insulation**

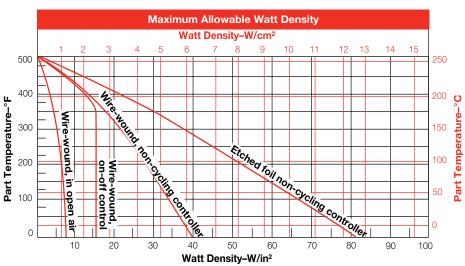


To increase heating efficiency of your application, silicone rubber heaters can be thermally insulated with silicone sponge rubber bonded to one side in the following thicknesses: 1/16, 1/8, 1/4, 3/8 or 1/2 in. (1.6, 3.2, 6, 9.5 or 13 mm).

An aluminized surface can be added to the back side of the heater to reduce radiated heat losses. This aluminized surface, called "low loss treatment," adds very little to the unit thickness or mass and maintains a very clean appearance.

## Silicone Rubber Heaters

# Applications and Technical Data


# **Determining Watt Density**

The Maximum Allowable Watt Density graph illustrates the maximum recommended heater watt density at various metal parts or ambient air temperatures. However, it does not indicate the watt density necessary to achieve a given part temperature. See the Surface Temperature vs. Time graph on the next page for assistance with these calculations. When using this graph, consider:

- Part temperature is measured at the point where the heater contacts the metal part.
- Thermostats and on-off controllers are typically bimetal or capillary bulb.
- Non-cycling controllers are typically solid state, time-proportioning or silicone controlled rectifier (SCR) temperature controllers.

- Watt density values should be de-rated by one third if insulation is used.
- UL® recognition temperature limits are not detailed.
- Contact your Watlow representative prior to selecting high watt density etched-foil elements, or operating heaters with back side insulation or non-metallic parts which are poor thermal conductors.

**Example:** A wire-wound heater with a non-cycling controller at a part temperature of 250°F (120°C) can be rated at 24 W/in² (3.7 W/cm²) maximum. An etched foil heater operating under the same conditions can be rated at 45 W/in² (7 W/cm²) maximum.



## Silicone Rubber Specifications

### Max. width x max. length

• Wire wound: 36 x 120 in. (914 mm x 3048 mm)

• Etched foil: 18 x 34 in. (457 mm x 863 mm)

### **Thickness**

Wire wound: 0.055 in. (1.4 mm)Etched foil: 0.022 in. (0.6 mm)

### Weight

Wire wound: 8 oz/ft² (0.24 g/cm²)

• Etched foil: 3 oz/ft<sup>2</sup> (0.09 g/cm<sup>2</sup>)

Max. operating temperature: 500°F (260°C)

Max. temperature for UL® recognition: 428°F (220°C)

Min. ambient temperature: -80°F (-62°C)

Max. voltage: 600V

Max. wattage: see watt density graph

Lead size: sized to load

**Lead length:**  $12 + 1^{1/2} - ^{1/2}$  in. (305 mm +38 mm -13

mm)

## Wattage tolerance

Wire: ±5%

• Foil: +5% -10%

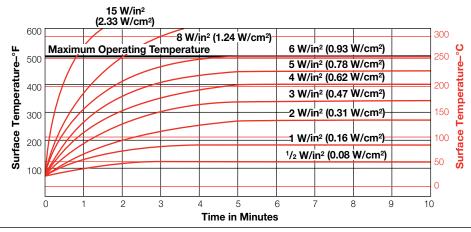
### **Dimensional tolerances**

• 0 to 6 in. (0 to 152 mm):  $\pm^{1/16}$  in. (1.59 mm)

6 to 18 in. (152 to 457 mm): ±<sup>1</sup>/8 in. (3.18 mm)

18 to 36 in. (457 mm to 914 mm): ±<sup>3</sup>/<sub>16</sub> in. (4.76 mm)

• Over 36 in. (914 mm): ±1%


## Silicone Rubber Heaters

## Applications and Technical Data (Continued)

## Surface Temperature vs. Time

This graph illustrates the surface temperature a silicone rubber heater will reach when uninsulated and suspended vertically in 70°F (20°C) still air.

Data is based on 0.055 in. (1.4 mm) thick construction and is offered as a reference tool.



# UR®, cUR®, VDE and CE Recognition for Silicone Rubber Heaters

Watlow frequently works with customers requiring agency approvals such as UR®, cUR®, VDE and CE. Many silicone rubber heaters are available with one or more certifications.







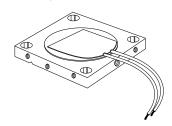
**UL®** Component Recognition (UR®) of factory-bonded heaters is available up to 392°F (200°C) and for customer installed heaters up to 428°F (220°C) (UL® File No. E52951).

For Canadian recognition, Watlow offers **cUR® Recognized** silicone rubber heaters under UL® File #E52951. Several constructions are available with ratings to 600V and 428°F (220°C) maximum surface temperature. Contact your Watlow representative for further information.

**VDE Approval** is available on several constructions of both wire-wound (File No. 62533) and etched foil (File No. 62535) silicone rubber heaters. Maximum ratings are 440V and 428°F (220°C) surface temperature. Under VDE guidelines, minimum installed bend radius is <sup>1</sup>/8 in. (3.2 mm) for etched foil and <sup>1</sup>/4 in. (6 mm) for wire wound. VDE states that the user is responsible for the safe application, installation and wiring of heaters. Maximum working temperature must be maintained by an appropriate temperature controller.

The **CE mark** is available on UR® and/or VDE recognized heaters.

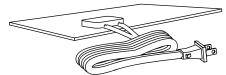
## **Options**


Watlow offers options including attachment techniques, thermostats, special leads, holes and cutouts and three-dimensional shapes as described in the introduction to flexible heaters section.



# **Extended Capabilities For Silicone Rubber Heaters**

# **Mounting Methods**


# **Factory Bonding**



This attachment technique provides a strong, void-free bond for excellent heat transfer and extended heater life that has proven to be successful. Bonding is recommended for applications that reach maximum temperatures of 500°F (260°C) on silicone rubber and 300°F (150°C) on polyimide.

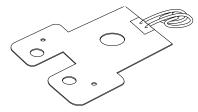
# **Termination Styles**

# **HPN Cord and Plug Set**



Molded Leads are Shown Exiting Edge of Heater; Capped Leads are also Available.

For removable heaters, a 6 ft (1.8 m) HPN cord and plug set provides convenience. It is rated for 194°F (90°C)/300V. An HPN cord without a plug is also available in any length.


## **Construction**

# **Formed Heaters**



Many three-dimensional shapes, such as cylinders, cones and boxes, can be factory formed. Semi-rigid shapes can self-grip to the part. Special tooling may be required for some designs.

# **Holes, Cutouts and Notches**



Watlow provides flexible heaters with special holes, cutouts and notches in nearly any position required for your design. The resistance element can be brought to within <sup>1</sup>/<sub>8</sub> in. (3.2 mm) of all edges. Standard spacing is <sup>1</sup>/<sub>4</sub> in. (6 mm) from all edges.

# **Silicone Rubber Heaters**

# Wire-Wound Elements - RAPID SHIP Offering

| 120/240VAC  | 120VAC      |           | -ength | L   | idth | Wi  |
|-------------|-------------|-----------|--------|-----|------|-----|
| Part Number | Part Number | Watts     | (mm)   | in. | (mm) | in. |
|             | 010020C1*   | 10        | (51)   | 2   | (25) | 1   |
|             | 010030C1*   | 15        | (76)   | 3   | ` ′  |     |
|             | 010040C1*   | 20        | (102)  | 4   |      |     |
|             | 010050C1*   | 25        | (127)  | 5   | •    |     |
| 010050C2*   |             | 6.25/25   | (127)  | 5   |      |     |
|             | 010100C1    | 50        | (254)  | 10  |      |     |
| 010100C2*   |             | 12.50/50  | (254)  | 10  |      |     |
|             | 010150C1    | 75        | (381)  | 15  |      |     |
| 010150C2    |             | 18.75/75  | (381)  | 15  |      |     |
|             | 010200C1    | 100       | (508)  | 20  |      |     |
| 010200C2    |             | 25/100    | (508)  | 20  |      |     |
|             | 010250C1    | 125       | (635)  | 25  |      |     |
|             | 010300C1    | 150       | (762)  | 30  |      |     |
|             | 010350C1    | 175       | (889)  | 35  |      |     |
|             | 010400C1    | 200       | (1016) | 40  |      |     |
|             | 010800C1    | 400       | (2032) | 80  |      |     |
|             | 010F10C1    | 600       | (3048) | 120 |      |     |
|             | 020020C1*   | 20        | (51)   | 2   | (51) | 2   |
|             | 020050C1    | 50        | (127)  | 5   | ` ′  |     |
| 020050C2*   |             | 12.50/50  | (127)  | 5   |      |     |
|             | 020100C1    | 100       | (254)  | 10  |      |     |
| 020100C2    |             | 25/100    | (254)  | 10  |      |     |
|             | 020150C1    | 150       | (381)  | 15  |      |     |
| 020150C2    |             | 37.50/150 | (381)  | 15  |      |     |
|             | 020200C1    | 200       | (508)  | 20  |      |     |
| 020200C2    |             | 50/200    | (508)  | 20  |      |     |
|             | 020250C1    | 250       | (635)  | 25  |      |     |
|             | 020300C1    | 300       | (762)  | 30  |      |     |
|             | 020350C1    | 350       | (889)  | 35  |      |     |
|             | 020400C1    | 400       | (1016) | 40  |      |     |
|             | 030030C1    | 45        | (76)   | 3   | (76) | 3   |
|             | 030050C1    | 75        | (127)  | 5   |      |     |
| 030050C2    |             | 18.75/75  | (127)  | 5   |      |     |
|             | 030100C1    | 150       | (254)  | 10  |      |     |
| 030100C2    |             | 37.50/150 | (254)  | 10  |      |     |
|             | 030150C1    | 225       | (381)  | 15  |      |     |
| 030150C2    |             | 56.25/225 | (381)  | 15  |      |     |
|             | 030200C1    | 300       | (508)  | 20  |      |     |
| 030200C2    |             | 75/300    | (508)  | 20  |      |     |
|             | 030250C1    | 375       | (635)  | 25  |      |     |
|             | 030300C1    | 450       | (762)  | 30  |      |     |
|             | 030350C1    | 525       | (889)  | 35  |      |     |
|             | 030400C1    | 600       | (1016) | 40  |      |     |

**CONTINUED** 

# RAPID SHIP

- RS Next day shipment up to 10 pieces for orders with part number configuration -0001B.
- \* Due to their high resistance, these heaters are not recommended for curved or flexing applications. Notes:
  - Thickness 0.055 in. (1.4 mm)
  - Heaters have lead length of 12 in. (305 mm) UL® 1180 PTFE
  - UL® component recognition
  - Silicone rubber wire-wound elements rated at 5 W/in<sup>2</sup> (0.78 W/cm<sup>2</sup>)

# **Silicone Rubber Heaters**

Wire-Wound Elements — RAPID SHIP Offering (Continued)

|     | /idth |     | ength . |            | 120VAC                 | 120/240VAC  |
|-----|-------|-----|---------|------------|------------------------|-------------|
| in. | (mm)  | in. | (mm)    | Watts      | Part Number            | Part Number |
| 4   | (102) | 4   | (102)   | 80         | 040040C1               |             |
|     |       | 5   | (127)   | 100        | 040050C1               |             |
|     |       | 5   | (127)   | 25/100     |                        | 040050C2    |
|     |       | 10  | (254)   | 200        | 040100C1               |             |
|     |       | 10  | (254)   | 50/200     |                        | 040100C2    |
|     |       | 15  | (381)   | 300        | 040150C1               |             |
|     |       | 15  | (381)   | 75/300     |                        | 040150C2    |
|     |       | 20  | (508)   | 400        | 040200C1               |             |
|     |       | 20  | (508)   | 100/400    |                        | 040200C2    |
|     |       | 25  | (635)   | 500        | 040250C1               |             |
|     |       | 30  | (762)   | 600        | 040300C1               |             |
|     |       | 35  | (889)   | 700        | 040350C1               |             |
|     |       | 40  | (1016)  | 800        | 040400C1               |             |
| 5   | (127) | 5   | (127)   | 125        | 050050C1               |             |
|     |       | 5   | (127)   | 31.25/125  |                        | 050050C2    |
|     |       | 10  | (254)   | 250        | 050100C1               |             |
|     |       | 10  | (254)   | 62.50/250  |                        | 050100C2    |
|     |       | 15  | (381)   | 375        | 050150C1               |             |
|     |       | 15  | (381)   | 9.38/375   |                        | 050150C2    |
|     |       | 20  | (508)   | 500        | 050200C1               |             |
|     |       | 20  | (508)   | 125/500    |                        | 050200C2    |
|     |       | 25  | (635)   | 625        | 050250C1               |             |
|     |       | 30  | (762)   | 750        | 050300C1               |             |
|     |       | 35  | (889)   | 875        | 050350C1               |             |
|     |       | 40  | (1016)  | 1000       | 050400C1               |             |
| 6   | (152) | 5   | (127)   | 150        | 060050C1               |             |
|     | ,     | 5   | (127)   | 37.50/150  |                        | 060050C2    |
|     |       | 10  | (254)   | 300        | 060100C1               |             |
|     |       | 10  | (254)   | 75/300     |                        | 060100C2    |
|     |       | 15  | (381)   | 450        | 060150C1               |             |
|     |       | 15  | (381)   | 112.50/450 |                        | 060150C2    |
|     |       | 20  | (508)   | 600        | 060200C1               |             |
|     |       | 20  | (508)   | 150/600    |                        | 060200C2    |
|     |       | 25  | (635)   | 750        | 060250C1               |             |
|     |       | 30  | (762)   | 900        | 060300C1               |             |
|     |       | 35  | (889)   | 1050       | 060350C1               |             |
|     |       | 40  | (1016)  | 1200       | 060400C1               |             |
|     |       | 40  | (1010)  | 1200       | 000 <del>4</del> 000 i |             |

# RAPID SHIP

• RS - Next day shipment up to 10 pieces for orders with part number configuration -0001B.

- \* Due to their high resistance, these heaters are not recommended for curved or flexing applications.

  - Thickness 0.055 in. (1.4 mm)
    Heaters have lead length of 12 in. (305 mm) UL<sup>®</sup> 1180 PTFE
  - UL® component recognition
  - Silicone rubber wire-wound elements rated at 5 W/in<sup>2</sup> (0.78 W/cm<sup>2</sup>)

# Silicone Rubber Heaters

# Wire-Wound Elements — RAPID SHIP Offering Coding Configured Options

To order, complete the part number with the information below:

Wire Wound

### **Modification Options**

- 0 = None
- A = PSAS bottom
- B = PSAS top
- E = With plate, heater on side opposite flange
- F = With plate, heater on flange side
- G = Flaps + grommets
- H = Flaps + boot hooks
- J = Flaps + latch fasteners
- K = PSAS and low loss
- L = Low loss
- M = Low loss + flaps +grommets
- N = Low loss + flaps +boot hooks
- P = Low loss + flaps +
- latch fasteners <sup>1</sup>/<sub>16</sub> in. sponge
- $S = \frac{1}{8}$  in. sponge
- $T = \frac{1}{4}$  in. sponge
- $U = \frac{3}{8}$  in. sponge
- $V = \frac{1}{2}$  in. sponge
- $W = PSAS + \frac{1}{16}$  in. sponge  $Y = PSAS + \frac{1}{8}$  in. sponge
- $1 = PSAS + \frac{1}{4}$  in. sponge
- $2 = PSAS + \frac{3}{8}$  in. sponge
- $3 = PSAS + \frac{1}{2}$  in. sponge

### Sensors LOC **WIR** Type 0 = NoneL = T10STD STD M = T10STD **ALT** N = T10STD ALT P = T10ALT AI T R = T207STD STD S = T207STD ALT T = T207**ALT** STD U = T207**ALT ALT** On heater STD V = T207FW = T207ERemote STD 4 = JSTDSTD STD 6 = JALTSTD STD 7 = KSTDSTD

- For thermostats, standard location is as shown in catalog; standard wiring is integral or in series with the heater, alternate location is rotated parallel with heater width, alternate wiring is separate leads for pilot
- For thermocouples. Type J standard is PFA insulation, Type J alternate is fiberglass insulation, Type K standard is fiberalass insulation.

### T10 Set °F\* 0 = None

- A = 125
- B = 150
- E = 175F = 200
- G = 225
- H = 250J = 275K = 300

### T207 Set °F\*

- 0 = None1 = 40/55
- 2 = 60/753 = 95/1104 = 145/160

## T/C Length

- 0 = NoneA = 8 in.B = 12 in.
- E = 18 in.
- F = 24 in.G = 30 in.
- H = 36 in.J = 40 in.
- K = 4 ft
- L = 5 ftM = 6 ft
- N = 7 ft
- P = 8 ftR = 9 ft
- S = 10 ftT = 12 ft
- U = 15 ftV = 18 ft
- W = 20 ft
- Y = 22 ft1 = 25 ft2 = 30 ft
- \* For all thermostats the heater must be a 2 in. (51 mm) min, width and 5 in. (127 mm) min. length.

### Lead Insulation

- 0 = None1 = 1180 UL®R/C
- $2 = 1180 \text{ C-UL}^{\otimes} \text{ R/C}$  $3 = 313322 \, \text{Ga}.$
- 6 = 1199 CSA7 = HPN
- 8 = 6 ft HPN set
- 9 = Type E PTFE  $A = 1180VDE^*$
- $B = 1199VDE^*$
- C = Silicone leads w/waterproof
- E = SJO cordF = 6 ft SJO set
- \* 1180VDE denotes a C-UL® heater plus a VDE stamp.

## Lead Length\*

- A = 8 in.B = 12 in.
- E = 18 in.
- F = 24 in. G = 30 in.
- H = 36 in.
- J = 40 in.
- K = 4 ft
- L = 5 ft
- M = 6 ft
- N = 7 ft
- P = 8 ft
- R = 9 ft
- S = 10 ftT = 12 ft
- U = 15 ft
- V = 18 ftW = 20 ft
- Y = 22 ft
- 1 = 25 ft2 = 30 ft
- \* Customer specified length must be noted in inches when ordering.

# **Silicone Rubber Heaters**

# Etched Foil Elements - RAPID SHIP Offering

|     | ماخاه |     | us orble |          |                     |           | 100//40           | 100/040440  |
|-----|-------|-----|----------|----------|---------------------|-----------|-------------------|-------------|
|     | idth  |     | ength    | Moste    | NAT/:2 (1           | M//2)     | 120VAC            | 120/240VAC  |
| in. | (mm)  | in. | (mm)     | Watts    | W/in <sup>2</sup> ( |           | Part Number       | Part Number |
| 1   | (25)  | 5   | (127)    | 25       | 5                   | (0.8)     | F010050C3         |             |
|     |       | 5   | (127)    | 50       | 10                  | (1.6)     | F010050C7         |             |
|     |       | 5   | (127)    | 12.5/50  | 2.5/10              | (0.4/1.6) |                   | F010050C8   |
|     |       | 10  | (254)    | 100      | 10                  | (1.6)     | F010100C7         |             |
|     |       | 10  | (254)    | 25/100   | 2.5/10              | (0.4/1.6) |                   | F010100C8   |
|     |       | 15  | (381)    | 150      | 10                  | (1.6)     | F010150C7         |             |
|     |       | 15  | (381)    | 37.5/150 | 2.5/10              | (0.4/1.6) |                   | F010150C8   |
|     |       | 20  | (508)    | 200      | 10                  | (1.6)     | F010200C7         |             |
|     |       | 20  | (508)    | 50/200   | 2.5/10              | (0.4/1.6) |                   | F010200C8   |
| 2   | (51)  | 5   | (127)    | 100      | 10                  | (1.6)     | F020050C7         |             |
|     |       | 5   | (127)    | 25/100   | 2.5 /10             | (0.4/1.6) |                   | F020050C8   |
|     |       | 10  | (254)    | 200      | 10                  | (1.6)     | F020100C7         |             |
|     |       | 10  | (254)    | 50/200   | 2.5 /10             | (0.4/1.6) |                   | F020100C8   |
|     |       | 15  | (381)    | 300      | 10                  | (1.6)     | F020150C7         |             |
|     |       | 15  | (381)    | 75/300   | 2.5/10              | (0.4/1.6) |                   | F020150C8   |
|     |       | 20  | (508)    | 400      | 10                  | (1.6)     | F020200C7         |             |
|     |       | 20  | (508)    | 100/400  | 2.5/10              | (0.4/1.6) |                   | F020200C8   |
| 3   | (76)  | 5   | (127)    | 75       | 5                   | (0.8)     | F030050C3         |             |
|     |       | 5   | (127)    | 150      | 10                  | (1.6)     | F030050C7         |             |
|     |       | 5   | (127))   | 37.5/150 | 2.5 /10             | (0.4/1.6) |                   | F030050C8   |
|     |       | 10  | (254)    | 300      | 10                  | (1.6)     | F030100C7         |             |
|     |       | 10  | (254)    | 75/300   | 2.5 /10             | (0.4/1.6) |                   | F030100C8   |
|     |       | 15  | (381)    | 450      | 10                  | (1.6)     | F030150C7         |             |
|     |       | 15  | (381)    | 112/450  | 2.5 /10             | (0.4/1.6) |                   | F030150C8   |
|     |       | 20  | (508)    | 600      | 10                  | (1.6)     | F030200C7         |             |
|     |       | 20  | (508)    | 150/600  | 2.5 /10             | (0.4/1.6) |                   | F030200C8   |
| 4   | (102) | 5   | (127)    | 200      | 10                  | (1.6)     | F040050C7         |             |
|     |       | 5   | (127)    | 50/200   | 2.5 /10             | (0.4/1.6) |                   | F040050C8   |
|     |       | 10  | (254)    | 400      | 10                  | (1.6)     | F040100C7         |             |
|     |       | 10  | (254)    | 100/400  | 2.5 /10             | (0.4/1.6) |                   | F040100C8   |
|     |       | 15  | (381)    | 600      | 10                  | (1.6)     | F040150C7         |             |
|     |       | 15  | (381)    | 150/600  | 2.5/10              | (0.4/1.6) |                   | F040150C8   |
|     |       | 20  | (508)    | 800      | 10                  | (1.6)     | F040200C7         |             |
|     |       | 20  | (508)    | 200/800  | 2.5/10              | (0.4/1.6) |                   | F040200C8   |
| 5   | (127) | 5   | (127)    | 250      | 10                  | (1.6)     | F050050C7         |             |
| -   | ` '   | 5   | (127)    | 62.5/250 | 2.5/10              | (0.4/1.6) |                   | F050050C8   |
|     |       | 10  | (254)    | 500      | 10                  | (1.6)     | F050100C7         |             |
|     |       | 10  | (254)    | 125/500  | 2.5/10              | (0.4/1.6) |                   | F050100C8   |
|     |       | 15  | (381)    | 750      | 10                  | (1.6)     | F050150C7         | . 355.000   |
|     |       | 15  | (381)    | 187/750  | 2.5/10              | (0.4/1.6) |                   | F050150C8   |
|     |       | 20  | (508)    | 1000     | 10                  | (1.6)     | F050200C7         | 1 000 10000 |
|     |       | 20  | (508)    | 250/1000 | 2.5/10              | (0.4/1.6) | 1 00020001        | F050200C8   |
| 6   | (152) | 5   | (127)    | 300      | 10                  | (1.6)     | F060050C7         | 1 00020000  |
| U   | (104) | 5   | (127)    | 75/300   | 2.5/10              | (0.4/1.6) | 1 00000001        | F060050C8   |
|     |       | 10  | (127)    | 600      | 10                  | ` ,       | F060100C7         | FUUUUUUUO   |
|     |       |     |          |          |                     | (1.6)     | F0001000 <i>1</i> | E06040000   |
|     |       | 10  | (254)    | 150/600  | 2.5 /10             | (0.4/1.6) | E06015007         | F060100C8   |
|     |       | 15  | (381)    | 900      | 10                  | (1.6)     | F060150C7         | F06045000   |
|     |       | 15  | (381)    | 225/900  | 2.5/10              | (0.4/1.6) | F0000007          | F060150C8   |
|     |       | 20  | (508)    | 1200     | 10                  | (1.6)     | F060200C7         | F0000000    |
|     |       | 20  | (508)    | 300/1200 | 2.5/10              | (0.4/1.6) |                   | F060200C8   |

• RS - Next day shipment up to 10 pieces for orders with part number configuration 0001B.

- Silicone rubber etched foil elements 0.022 in. (0.56 mm) thick
  Heaters have standard lead length of 12 in. (305 mm) UL<sup>®</sup> 1180 PTFE
  UL<sup>®</sup> component recognition

# Silicone Rubber Heaters

# Etched Foil Elements — RAPID SHIP Offering Coding Configured Options

To order, complete the part number with the information below:

**Etched Foil** F0\_\_\_\_

### Options

- 0 = NoneA = PSAS bottom
- B = PSAS top
- K = PSAS and low loss
- L = Low loss
- $R = \frac{1}{16}$  in. sponge
- $S = \frac{1}{8}$  in. sponge
- $T = \frac{1}{4}$  in. sponge
- $U = \frac{3}{8}$  in. sponge
- $V = \frac{1}{2}$  in. sponge  $W = PSAS + \frac{1}{16}$  in. sponge
- $Y = PSAS + \frac{1}{8}$  in. sponge
- $1 = PSAS + \frac{1}{4}$  in. sponge
- $2 = PSAS + \frac{3}{8}$  in. sponge
- $3 = PSAS + \frac{1}{2}$  in. sponge
- Sensors LOC **WIR** Type 0 = NoneSTD STD L = T10M = T10STD ALT N = T10**ALT** STD P = T10**ALT** ALT R = T207STD STD S = T207STD ALT T = T207STD **ALT** U = T207**ALT** ALT 4 = JSTDSTD STD 6 = JALTSTD STD 7 = KSTDSTD STD
- For thermostats, standard location is as shown in catalog; standard wiring is integral or in series with the heater, alternate location is rotated parallel with heater width, alternate wiring is separate leads for pilot control.
- For thermocouples, Type J offering is PFA insulation, Type J alternate is fiberglass insulation, Type K offering is fiberglass insulation.
- Etched foil heaters are not recommended for enclosure heaters.

### T10 Set °F\* 0 = None

- A = 125
- B = 150
- E = 175F = 200
- G = 225H = 250
- J = 275K = 300
- T207 Set °F\* 0 = None
- 1 = 40/552 = 60/75
- 3 = 95/1104 = 145/160

### T/C Length 0 = None

- A = 8 in
- B = 12 in.E = 18 in.
- F = 24 in.G = 30 in.
- H = 36 in.
- J = 40 in.
- K = 4 ft
- L = 5 ftM = 6 ft
- N = 7 ft
- P = 8 ftR = 9 ft
- S = 10 ft
- T = 12 ft
- U = 15 ftV = 18 ft
- W = 20 ft
- Y = 22 ft
- 1 = 25 ft2 = 30 ft
- \* For all thermostats, the heater must be
- a 2 in. min. width and a 5 in. min.
- length.

Lead Insulation

- 0 = None1 = 1180 UL® R/C
- 2 = 1180 C-UL® R/C 3 = 3133 22 Ga.\*\*
- $6 = 1199 \, \text{CSA}$
- 7 = HPN
- 8 = 6 ft HPN set 9 = Type E PTFE
- A = 1180VDE\* B = 1199VDE\*
- C = Silicone leads w/waterproof
- cap E = SJO cordF = 6 ft SJO set
- \*1180VDE denotes a C-UL® heater plus a VDE
- stamp. \*\*Not available on composite heaters due to amperage.

Lead Length\*

- A = 8 in. B = 12 in. E = 18 in.
- F = 24 in.
- G = 30 in. H = 36 in.
- J = 40 in.K = 4 ft
- L = 5 ft
- M = 6 ft
- N = 7 ftP = 8 ft
- R = 9 ft
- S = 10 ftT = 12 ft
- U = 15 ft
- V = 18 ftW = 20 ft
- Y = 22 ft1 = 25 ft2 = 30 ft
- \*Customer specified length must be noted in inches when ordering.

# **Silicone Rubber Heaters**

# **Composite Bonding Applications**

Watlow offers silicone rubber heaters commonly used for composite bonding and curing. The design includes equal length circuits and a no-heat tab for temperature uniformity. The contact surface is made using smooth silicone to prevent composite surface imperfections. The heaters are fiberglass reinforced to provide lasting field service durability and life.

# **Performance Capabilities**

- Watt density up to 5 W/in<sup>2</sup> (0.8 W/cm<sup>2</sup>)
- Voltage of 120VAC/240VAC (option) single phase
- UL® recognized

## **Features and Benefits**

### **Customized leads**

• Allows up to 30 feet of lead length

### Field service ease

• Enables on-site repairs

# Equal length circuits — min. 2 x 2 in. (51 x 51 mm) tab with radius

• Creates temperature uniformity

### **Smooth contact surface**

• Prevents composite surface imperfections

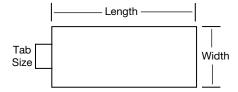
# **Typical Applications**

- Aerospace industry
  - Repair
  - Fabrication
- Composite bonding processes



# **Silicone Rubber Heaters**

# Wire-Wound Elements - Composite Bonding Applications


Composite Heaters "L"

| W   | /idth | Leng             | th   |       | 120VAC      | 120/240VAC  |
|-----|-------|------------------|------|-------|-------------|-------------|
| in. | (mm)  | in. (m           | nm)  | Watts | Part Number | Part Number |
| 6   | (152) | 6 ( <sup>-</sup> | 152) | 180   | L060080C1   |             |
|     |       | 6 ( <sup>-</sup> | 152) | 180   |             | L060080C2   |
|     |       | 10 (2            | 254) | 300   | L060120C1   |             |
|     |       | 10 (2            | 254) | 300   |             | L060120C2   |
| 8   | (203) | 8 (2             | 203) | 320   | L080100C1   |             |
|     |       | 8 (2             | 203) | 320   |             | L080100C2   |
|     |       | 12 (3            | 305) | 480   | L080140C1   |             |
|     |       | 12 (3            | 305) | 480   |             | L080140C2   |
| 10  | (254) | 10 (2            | 254) | 500   | L100120C1   |             |
|     |       | 10 (2            | 254) | 500   |             | L100120C2   |
|     |       | 12 (3            | 305) | 600   | L100140C1   |             |
|     |       | 12 (3            | 305) | 600   |             | L100140C2   |
|     |       | 18 (4            | 457) | 900   | L100200C1** |             |
|     |       | 18 (4            | 457) | 900   |             | L100200C2   |
| 12  | (305) | 12 (3            | 305) | 720   | L120140C1** |             |
|     |       | 12 (3            | 305) | 720   |             | L120140C2   |
|     |       | 18 (4            | 457) | 1080  | L120200C1** |             |
|     |       | 18 (4            | 457) | 1080  |             | L120200C2** |
|     |       | 24 (6            | 610) | 1440  | L120260C1** |             |
|     |       | 24 (6            | 610) | 1440  |             | L120260C2** |
| 16  | (406) | 16 (4            | 406) | 1280  | L160180C1** |             |
|     |       | 16 (4            | 406) | 1280  |             | L160180C2** |
| 18  | (457) | 18 (4            | 457) | 1620  | L180200C1** |             |
|     |       | 18 (4            | 457) | 1620  |             | L180200C2** |
| 20  | (508) | 20 (5            | 508) | 2000  | L200220C1*  |             |
|     |       | 20 (5            | 508) | 2000  |             | L200220C2** |

<sup>•</sup> M - Manufacturing lead times

### Notes:

- Thickness 0.055 in. (1.4 mm)
- Lead length 12 in. (305 mm) UL® 1180 PTFE
- UL® component recognition
- Silicone rubber wire-wound elements rated at 5 W/in<sup>2</sup>
- Length does not include 2 in. (51 mm) tab for leads
- Smooth surface
- \* Thermostat option is not available for this heater.
- \*\* Only T207 thermostat option is available.



## Silicone Rubber Heaters

# Etched Foil Elements — Coding Configured Options Composite Heaters "L"

To order, complete the part number with the information below:

# **Composite Flexible Stock Heaters**

L\_\_\_\_- - \_

### **Modification Options**

- 0 = None
- A = PSAS bottom
- B = PSAS top
- K = PSAS and low loss
- L = Low loss
- $R = \frac{1}{16}$  in. sponge
- $S = \frac{1}{8}$  in. sponge
- $T = \frac{1}{4}$  in. sponge
- $U = \frac{3}{8}$  in. sponge
- $V = \frac{1}{2}$  in. sponge
- $W = PSAS + \frac{1}{16}$  in. sponge
- $Y = PSAS + \frac{1}{8}$  in. sponge
- $1 = PSAS + \frac{1}{4}$  in. sponge
- $2 = PSAS + \frac{3}{8}$  in. sponge
- $3 = PSAS + \frac{1}{2}$  in. sponge
- Sensors LOC WIR Type 0 = NoneSTD STD L = T10M = T10STD ALT N = T10STD ALT P = T10ALT ALT R = T207STD STD ALT S = T207STD T = T207STD ALT U = T207AI T ALT 4 = JSTDSTD STD 6 = JALTSTD STD 7 = KSTDSTD ST
- For thermostats, standard location is as shown in catalog; standard wiring is integral or in series with the heater, alternate location is rotated parallel with heater width, alternate wiring is separate leads for pilot control.
- For thermocouples, Type J offering is PFA insulation, Type J alternate is fiberglass insulation, Type K offering is fiberglass insulation.
- Etched foil heaters are not recommended for enclosure heaters.

# T10 Set °F\*

- 0 = NoneA = 125
- A = 125B = 150
- E = 175
- F = 200
- G = 225H = 250
- J = 275K = 300

# T207 Set °F\*

- $0 = \text{None} \\ 1 = 40/55$
- 2 = 60/75 3 = 95/110
- 4 = 145/160

### T/C Length

- 0 = NoneA = 8 in.
- B = 12 in.
- E = 18 in.
- F = 24 in. G = 30 in.
- H = 36 in.
- J = 40 in.
- K = 4 ft
- L = 5 ftM = 6 ft
- N = 7 ft
- P = 8 ft
- R = 9 ft
- S = 10 ftT = 12 ft
- 1 = 121
- $U = 15 \, ft$  $V = 18 \, ft$
- W = 20 ft
- Y = 22 ft
- 1 = 25 ft2 = 30 ft

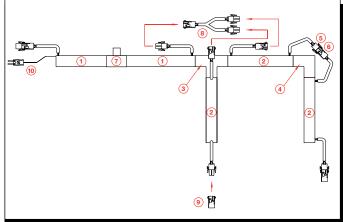
### Lead Insulation

- 0 = None $1 = 1180 \text{ UL}^{\$} \text{R/C}$
- 2 = 1180 C-UL®R/C
- $3 = 313322 \, \text{Ga.**}$
- 6 = 1199 CSA
- 7 = HPN
- 8 = 6 ft HPN set
- 9 = Type E PTFE
- $A = 1180VDE^*$
- $B = 1199VDE^*$
- C = Silicone leads
- w/waterproof
- cap
- E = SJO cord
- F = 6 ft SJO set
- \* 1180VDE denotes
- a cUR® heater plus a VDE stamp.
- \*\*Not available on
- composite heaters \* Customer specified due to amperage.

- Lead Length\*
- A = 8 in.
- B = 12 in.E = 18 in.
- F = 24 in.
- G = 30 in.
- H = 36 in.
- J = 40 in. K = 4 ft
- $K = 4 \pi$ L = 5 ft
- M = 6 ft
- N = 7 ft
- P = 8 ftR = 9 ft
- R = 9 ftS = 10 ft
- T = 12 ftU = 15 ft
- V = 18 ft
- W = 20 ftY = 22 ft
- 1 = 25 ft2 = 30 ft
- Customer specified length must be noted in inches when ordering.

# **Line Heating**

## Modular Gas Line Heaters


### **Gas Delivery**

Tetraethyl orthosilicate (TEOS), boron trichloride (BCl³), aluminum chloride (AlCl³), chlorine trifluoride (CIF³) and dichlorosilane (DCS) are gases that condense or liquefy due to a phase shift at low temperatures. In semiconductor processes, condensation occurs in the gas line and puddles in the shower head before being injected into the vacuum chamber. A substantial number of wafer defects will occur if liquefied gases are injected into the vacuum chamber. Uniform heating of the lines will prevent condensation. TEOS lines are typically heated above 194°F (90°C) and BCl³ above 86°F (30°C), depending on pressure and flow rate. The optimum line temperature will vary depending on the process parameters.

# **Specifications**

- Watt density of 2.5 W/in<sup>2</sup> (0.4 W/cm<sup>2</sup>) on gas line O.D.
- UL<sup>®</sup> recognized for U.S. and Canadian safety standards
- Heaters and insulators meet UL® 94-HB flammability requirements
- Insulated straight fillers for 100 percent line coverage; elbows and tees are trim-to-fit to proper length
- I.D. available: <sup>1</sup>/<sub>4</sub>, <sup>3</sup>/<sub>8</sub>, <sup>1</sup>/<sub>2</sub>, <sup>3</sup>/<sub>4</sub> in. (6, 9.5, 13, 19 mm)
- 120V standard, other voltages available
- Small metal snaps
- Heaters are insulated with a <sup>3</sup>/<sub>8</sub> in. (9.5 mm) wall, silicone rubber, closed cell sponge





# **Upstream Gas Line Heater Assembly (Example)**

- <sup>1</sup> 9 in. (229 mm) heater with thermocouple. Heater leads have a male plug on one end and a female cap on the other end. Heater materials are UL<sup>®</sup> rated to 392°F (200°C)
- <sup>2</sup> 6 in. (152 mm) heater, heater leads, see 1
- <sup>®</sup> Union tee insulator
- 90° union elbow insulator
- Male plug, AMP MATE-N-LOK<sup>™</sup> connector part number 1-480698-0; with sockets AMP MATE-N-LOK<sup>™</sup> connector part number 350689-1
- Female cap, AMP MATE-N-LOK<sup>™</sup> connector part number 1-480699-0; with pins AMP MATE-N-LOK<sup>™</sup> connector part number 350690-1
- Valve or regulator
- Y connector: one female cap on one end, two male plugs on the other end
- <sup>®</sup> Dead plug (sealed)
- Type J thermocouple w/ male mini-plug (optional)

# **Line Heating**

Modular Gas Line Heaters (Continued)

## **Gas Line Diameter**

<sup>1</sup>/<sub>4</sub> in. (6 mm) O.D. Tubing

| <sup>1</sup> /4 in. | . (6 mm)            |                           |       |             |           |             | Part Number        |                    |
|---------------------|---------------------|---------------------------|-------|-------------|-----------|-------------|--------------------|--------------------|
| Heater I.I in.      | D. x Length<br>(mm) | Description               | Volts | Watts       | Amperes   | Without T/C | With Type J<br>T/C | With Type K<br>T/C |
| 6                   | (152)               | Heated straight           | 120   | 12          | 0.10      | 008060C1    | 008060C1A          | 008060C1K          |
| 9                   | (229)               | Heated straight           | 120   | 18          | 0.15      | 008090C1    | 008090C1A          | 008090C1K          |
| 12                  | (305)               | Heated straight           | 120   | 24          | 0.20      | 008120C1    | 008120C1A          | 008120C1K          |
| 18                  | (457)               | Heated straight           | 120   | 36          | 0.30      | 008180C1    | 008180C1A          | 008180C1K          |
| 24                  | (610)               | Heated straight           | 120   | 48          | 0.40      | 008240C1    | 008240C1A          | 008240C1K          |
| 36                  | (914)               | Heated straight           | 120   | 72          | 0.60      | 008360C1    | 008360C1A          | 008360C1K          |
| 18                  | (457)               | Straight insulator        | N/A   | Trim-to-fit | Insulator | 008180C0    |                    |                    |
| * Elbow             |                     | 90° union elbow insulator | N/A   | Trim-to-fit | Insulator | 008020C0    |                    |                    |
| * Tee               |                     | Union tee insulator       | N/A   | Trim-to-fit | Insulator | 008030C0    |                    |                    |

# 3/8 in. (10 mm) O.D. Tubing

| <sup>3</sup> /8 in. | (10 mm)             |                           |       |             |           |             | Part Number        |                    |
|---------------------|---------------------|---------------------------|-------|-------------|-----------|-------------|--------------------|--------------------|
| Heater I.I          | D. x Length<br>(mm) | Description               | Volts | Watts       | Amperes   | Without T/C | With Type J<br>T/C | With Type K<br>T/C |
| 6                   | (152)               | Heated straight           | 120   | 18          | 0.15      | 012060C1    | 012060C1A          | 012060C1K          |
| 9                   | (229)               | Heated straight           | 120   | 27          | 0.23      | 012090C1    | 012090C1A          | 012090C1K          |
| 12                  | (305)               | Heated straight           | 120   | 36          | 0.30      | 012120C1    | 012120C1A          | 012120C1K          |
| 18                  | (457)               | Heated straight           | 120   | 54          | 0.45      | 012180C1    | 012180C1A          | 012180C1K          |
| 24                  | (610)               | Heated straight           | 120   | 71          | 0.60      | 012240C1    | 012240C1A          | 012240C1K          |
| 36                  | (914)               | Heated straight           | 120   | 107         | 0.90      | 012360C1    | 012360C1A          | 012360C1K          |
| 18                  | (457)               | Straight insulator        | N/A   | Trim-to-fit | Insulator | 012180C0    |                    |                    |
| * Elbow             |                     | 90° union elbow insulator | N/A   | Trim-to-fit | Insulator | 012020C0    |                    |                    |
| * Tee               |                     | Union tee insulator       | N/A   | Trim-to-fit | Insulator | 012030C0    |                    |                    |

# <sup>1</sup>/<sub>2</sub> in. (13 mm) O.D. Tubing

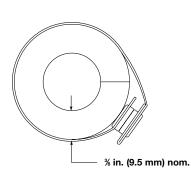
| <sup>1</sup> / <sub>2</sub> in. | (13 mm)             |                           |       |             |           |             | Part Number        |                    |
|---------------------------------|---------------------|---------------------------|-------|-------------|-----------|-------------|--------------------|--------------------|
| Heater I.I                      | D. x Length<br>(mm) | Description               | Volts | Watts       | Amperes   | Without T/C | With Type J<br>T/C | With Type K<br>T/C |
| 6                               | (152)               | Heated straight           | 120   | 24          | 0.20      | 016060C1    | 016060C1A          | 016060C1K          |
| 9                               | (229)               | Heated straight           | 120   | 36          | 0.30      | 016090C1    | 016090C1A          | 016090C1K          |
| 12                              | (305)               | Heated straight           | 120   | 48          | 0.40      | 016120C1    | 016120C1A          | 016120C1K          |
| 18                              | (457)               | Heated straight           | 120   | 72          | 0.60      | 016180C1    | 016180C1A          | 016180C1K          |
| 24                              | (610)               | Heated straight           | 120   | 96          | 0.80      | 016240C1    | 016240C1A          | 016240C1K          |
| 36                              | (914)               | Heated straight           | 120   | 144         | 1.20      | 016360C1    | 016360C1A          | 016360C1K          |
| 18                              | (457)               | Straight insulator        | N/A   | Trim-to-fit | Insulator | 016180C0    |                    |                    |
| * Elbow                         |                     | 90° union elbow insulator | N/A   | Trim-to-fit | Insulator | 016020C0    |                    |                    |
| * Tee                           |                     | Union tee insulator       | N/A   | Trim-to-fit | Insulator | 016030C0    |                    |                    |

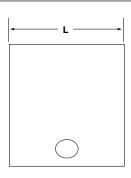
<sup>•</sup> M - Manufacturing lead times

<sup>\*</sup> For use on Micro-Fit® weld fittings.

# **Line Heating**

Modular Gas Line Heaters (Continued)


**Gas Line Diameter** 


3/4 in. (19 mm) O.D. Tubing

| <sup>3</sup> /4 in. | (19 mm)             |                           |       |             |           |             | Part Number        |                    |
|---------------------|---------------------|---------------------------|-------|-------------|-----------|-------------|--------------------|--------------------|
| Heater I.I          | D. x Length<br>(mm) | Description               | Volts | Watts       | Amperes   | Without T/C | With Type J<br>T/C | With Type K<br>T/C |
| 6                   | (152)               | Heated straight           | 120   | 36          | 0.30      | 024060C1    | 024060C1A          | 024060C1K          |
| 9                   | (229)               | Heated straight           | 120   | 54          | 0.45      | 024090C1    | 024090C1A          | 024090C1K          |
| 12                  | (305)               | Heated straight           | 120   | 71          | 0.60      | 024120C1    | 024120C1A          | 024120C1K          |
| 18                  | (457)               | Heated straight           | 120   | 107         | 0.90      | 024180C1    | 024180C1A          | 024180C1K          |
| 24                  | (610)               | Heated straight           | 120   | 142         | 1.19      | 024240C1    | 024240C1A          | 024240C1K          |
| 36                  | (914)               | Heated straight           | 120   | 213         | 1.78      | 024360C1    | 024360C1A          | 024360C1K          |
| 18                  | (457)               | Straight insulator        | N/A   | Trim-to-fit | Insulator | 024180C0    |                    |                    |
| * Elbow             |                     | 90° union elbow insulator | N/A   | Trim-to-fit | Insulator | 024020C0    |                    |                    |
| * Tee               |                     | Union tee insulator       | N/A   | Trim-to-fit | Insulator | 024030C0    |                    |                    |

<sup>•</sup> M - Manufacturing lead times

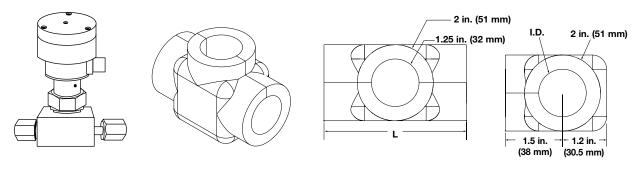
# **VCR Union Heaters/Insulators**





| 1/4 in.                                                       | (6 mm)             |                                                             |       |       |         | Part Number |                    |                    |
|---------------------------------------------------------------|--------------------|-------------------------------------------------------------|-------|-------|---------|-------------|--------------------|--------------------|
| Heater I.D in.                                                | . x Length<br>(mm) | Description                                                 | Volts | Watts | Amperes | Without T/C | With Type J<br>T/C | With Type K<br>T/C |
| <sup>7</sup> /8 x 1 <sup>3</sup> /4                           | (22 x 45)          | 1/4 in. (6 mm) VCR union heater                             | 120   | 10    | 0.09    | 01702783    | 01702783A          | 01702783K          |
| $^{3}/_{4} \times 1^{1}/_{2}$                                 | (19 x 38)          | <sup>1</sup> / <sub>4</sub> in. (6 mm) VCR union insulator  | N/A   | N/A   | N/A     | 02401580    | N/A                | N/A                |
| 1 <sup>1</sup> / <sub>4</sub> x 1 <sup>1</sup> / <sub>2</sub> | (32 x 38)          | <sup>1</sup> / <sub>2</sub> in. (13 mm) VCR union heater    | 120   | 12    | 0.10    | 03901581    | 03901581A          | 03901581K          |
| 1 <sup>1</sup> / <sub>4</sub> x 1 <sup>1</sup> / <sub>2</sub> | (32 x 38)          | <sup>1</sup> / <sub>2</sub> in. (13 mm) VCR union insulator | N/A   | N/A   | N/A     | 03901580    | N/A                | N/A                |

<sup>•</sup> M - Manufacturing lead times


WATLOW<sup>®</sup> \_\_\_\_\_\_ 135

<sup>\*</sup> For use on Micro-Fit® weld fittings.

# **Line Heating**

# Modular Gas Line Heaters (Continued)

# **VCR Valve Heaters**



| Tube | Diameter |                   | .D.  |                         | Lei  | ngth  |       | Amperes |             |
|------|----------|-------------------|------|-------------------------|------|-------|-------|---------|-------------|
| in.  | (mm)     | in.               | (mm) | Fitting Type            | in.  | (mm)  | Watts | @ 120V  | Part Number |
| 1/4  | (6)      | <sup>7</sup> /8   | (22) | Male VCR valve heater   | 3.00 | (76)  | 18    | 0.15    | 03104786    |
| 1/4  | (6)      | 7/8               | (22) | Female VCR valve heater | 4.75 | (121) | 28    | 0.24    | 04704893    |
| 1/2  | (13)     | 1 <sup>1</sup> /4 | (32) | Male VCR valve heater   | 3.75 | (95)  | 27    | 0.23    | 03804782    |
| 1/2  | (13)     | 1 <sup>1</sup> /4 | (32) | Female VCR valve heater | 6.51 | (165) | 47    | 0.39    | 04706690    |

<sup>•</sup> M - Manufacturing lead times

# Note: Heaters fit Nupro® BN and BK series valves.

# **Accessories**

| Part                          | Description                                           | Part Number |
|-------------------------------|-------------------------------------------------------|-------------|
| Y connector*                  | Power splitter: 1 female, 2 male                      | Z5303-2     |
| Y connector*                  | Power splitter: 2 female, 1 male                      | Z6333       |
| Female dead plug*             | Insulating plug for last connector in chain           | Z5309-2     |
| Male dead plug*               | Insulating plug for last connector in chain           | Z6332       |
| Type J thermocouple           | 12 in. (305 mm) 24 Ga. Type J PFA with mini plug      | Z5786       |
| Type J thermocouple extension | 10 ft (3048 mm) Type K FEP thermocouple               |             |
|                               | with mini plug and mini jack                          | Z6271       |
| Type K thermocouple           | 12 in. (305 mm) 24 Ga. Type K TFE tape with mini plug | Z5639       |
| Adapter*                      | Female to male                                        | Z6334       |
| Adapter*                      | Male to female                                        | Z6335       |
| Power extension*              | 6 in. (152 mm)                                        | Z6374       |
| Power extension*              | 3 ft (914 mm)                                         | A000136     |
| Power extension*              | 6 ft (1829 mm)                                        | A000137     |
| Power extension*              | 10 ft (3048 mm)                                       | A000138     |
| Strap extension               | 1 in. (25 mm) long pump line strap extension          | 010010116   |
| Strap extension               | 2 in. (51 mm) long pump line strap extension          | 010020113   |
| Strap extension               | 3 in. (76 mm) long pump line strap extension          | 010030124   |

<sup>\*</sup>All connectors use AMP MATE-N-LOK  $^{\scriptscriptstyle\mathsf{TM}}$  connectors.

- Y-adapters and dead plugs
- Sensor pocket thermocouple: 12 in. (305 mm) long, Type J or K, #24 AWG
- Two-prong mini-plug connector

# **Line Heating**

# STRETCH-TO-LENGTH® Heaters

During semiconductor processes, condensation of many critical gases occurs due to a phase shift at low temperatures. Burning of gases occurs if the delivery line is too hot. High or low temperature conditions may result in undesirable particulates, costly device defects and tool maintenance.

The Watlow STRETCH-TO-LENGTH® (S-T-L) gas line heater system is an easy-to-assemble temperature solution that delivers superior performance compared to heat tape. The heater's preformed construction allows an engineer to easily wrap it around the delivery line. It provides consistent heater/gas line contact to improve temperature uniformity. Due to its flexibility, the S-T-L gas line heater can compensate for variable component sizes to reduce the potential for hot and cold spots.

The S-T-L system includes a 2 W/in<sup>2</sup> S-T-L heater and silicone foam rubber insulation.

## **Features and Benefits**

## Easy to install two-part system

Conveniently fits most gas line configurations

# Flexible heater design

- Easily customize the thermal profile for each gas line application
- Allows quick prototyping to determine energy distribution requirements for process improvements

## Flexible standard system components

• Eliminates unnecessary lead times for custom designs

# Agency Certification, Recognition Compliance and Approvals

- Semi S2-93 compatible with a high-limit thermocouple and controller
- UL® recognized for U.S. safety standards

# **Typical Applications**

## Gas delivery lines

- Boron trichloride, BCl3
- Chlorine trifluoride, CIF3
- Dichlorosilane, (DCS), SiH<sub>2</sub>Cl<sub>2</sub>
- Tetra ethyl orthosilicate, TEOS
- Tungsten hexafluoride, WF3
- Process gas line qualification



# **Specifications**

- Heater material is reinforced silicone rubber fabric
  - Color:
    - Insulation and outer jacket orange
    - Heater orange
- Clean room strap fasteners
- Voltage:120 and 240VAC
- Max. operating temperature: 392°F (200°C)
- Heater watt density: 2 W/in² (0.31 W/cm²) Watlow recommends 80% line wrap for optimum performance
- Power lead wires: 12 in. (305 mm); #18 AWG UL® 1180 CSA, rated 10A, lead wire pair encapsulated in reinforced silicone rubber sleeving
- Heater interconnectable up to a 10A circuit
- Material rated UL® 94-HB
- Heater materials are UL<sup>®</sup> rated to 392°F (200°C)
- Insulation:
  - <sup>3</sup>/<sub>8</sub> in. (9.5 mm) wall, silicone rubber, closed cell sponge
  - Jacket material is reinforced silicone rubber fabric

# **Line Heating**

# STRETCH-TO-LENGTH Heaters (Continued)

S-T-L heaters are specified by their straight length. For actual applications, an engineer can wrap the heaters to achieve an optimum temperature profile. Coverage lengths of approximately 60 and 80 percent on  $\frac{1}{2}$  in. (6 mm) and  $\frac{1}{2}$  in. (13 mm) diameter tubes are provided

as a guide to select heater lengths for actual gas line dimensions. A gas line with 100 percent coverage is approximately 2 W/in², 80 percent coverage 1.6 W/in² or 60 percent coverage 1.2 W/in².

# S-T-L Heater Ranges - 1/4 in. (6 mm) O.D. Tubing

| 0.25<br>60%<br>Coverage | 0.25<br>80%<br>Coverage | 120V Version<br>Part Number | Amperes | 240V Version<br>Part Number | Amperes |
|-------------------------|-------------------------|-----------------------------|---------|-----------------------------|---------|
| 10.20                   | 8.04                    | 005120500 <sup>①</sup>      | 0.10    | N/A                         | N/A     |
| 14.45                   | 11.39                   | 005170500 <sup>②</sup>      | 0.14    | N/A                         | N/A     |
| 18.70                   | 14.74                   | 005220500 <sup>②</sup>      | 0.18    | 005220501 <sup>①</sup>      | 0.09    |
| 23.80                   | 18.76                   | 005280500 <sup>①</sup>      | 0.23    | 005280501 <sup>①</sup>      | 0.12    |
| 30.60                   | 24.12                   | 005360500 <sup>②</sup>      | 0.30    | 005360501 <sup>①</sup>      | 0.15    |
| 39.95                   | 31.49                   | 005470500 <sup>②</sup>      | 0.39    | 005470501 <sup>①</sup>      | 0.20    |
| 51.00                   | 40.20                   | 005600502 <sup>②</sup>      | 0.50    | 005600503 <sup>①</sup>      | 0.25    |
| 63.75                   | 50.25                   | 005750500 <sup>②</sup>      | 0.63    | 005750501 <sup>①</sup>      | 0.31    |
| 76.50                   | 60.30                   | 005900500 <sup>②</sup>      | 0.75    | 005900501 <sup>①</sup>      | 0.38    |

# S-T-L Heater Ranges - 1/2 in. (13 mm) O.D. Tubing

| 0.50<br>60%<br>Coverage | 0.50<br>80%<br>Coverage | 120V Version<br>Part Number | Amperes | 240V Version<br>Part Number | Amperes |
|-------------------------|-------------------------|-----------------------------|---------|-----------------------------|---------|
| 10.20                   | 6.63                    | 005170501 <sup>②</sup>      | 0.14    | N/A                         | N/A     |
| 15.00                   | 9.75                    | 005250501 <sup>②</sup>      | 0.21    | N/A                         | N/A     |
| 21.00                   | 13.65                   | 005350502 <sup>②</sup>      | 0.29    | 005350503 <sup>①</sup>      | 0.15    |
| 29.40                   | 19.11                   | 005490502 <sup>②</sup>      | 0.41    | 005490503 <sup>②</sup>      | 0.20    |
| 38.40                   | 24.96                   | 005640502 <sup>②</sup>      | 0.53    | 005640503 <sup>①</sup>      | 0.27    |
| 47.40                   | 30.81                   | 005790502 <sup>②</sup>      | 0.66    | 005790503 <sup>①</sup>      | 0.33    |
| 59.40                   | 38.61                   | 005990502 <sup>2</sup>      | 0.82    | 005990503 <sup>②</sup>      | 0.41    |
| 73.80                   | 49.97                   | 005F103502 <sup>②</sup>     | 1.02    | 005F103503 <sup>②</sup>     | 0.51    |
| 92.40                   | 60.06                   | 005F128502 <sup>2</sup>     | 1.28    | 005F128503 <sup>②</sup>     | 0.64    |

## <sup>1</sup>/<sub>4</sub> in. (6 mm) O.D. Tubing Insulators

| · · ·                                                 |                     |                        |
|-------------------------------------------------------|---------------------|------------------------|
| <sup>1</sup> /4 in. (6 mm)<br>Heater I.D.<br>x Length | Description         | Part<br>Number         |
| 18 in. (457 mm)                                       | Straight insulator  | 012180500 <sup>①</sup> |
| 36 in. (914 mm)                                       | Straight insulator  | 012360500 <sup>①</sup> |
| Elbow                                                 | 90° union           | 012020500 <sup>①</sup> |
|                                                       | elbow insulator     |                        |
| Tee                                                   | Union tee insulator | 012030500 <sup>①</sup> |
| VCR                                                   | VCR fitting         | 015030500 <sup>①</sup> |

## <sup>3</sup>/<sub>8</sub> in. (9.5 mm) O.D. Tubing Insulators

| <sup>3</sup> / <sub>8</sub> in. (9.5 mm)<br>Heater I.D.<br>x Length | Description         | Part<br>Number         |
|---------------------------------------------------------------------|---------------------|------------------------|
| 18 in. (457 mm)                                                     | Straight insulator  | 016180500 <sup>①</sup> |
| 36 in. (914 mm)                                                     | Straight insulator  | 016360500 <sup>①</sup> |
| Elbow                                                               | 90° union           | 016020500 <sup>②</sup> |
|                                                                     | elbow insulator     |                        |
| Tee                                                                 | Union tee insulator | 016030501 <sup>②</sup> |
| VCR                                                                 | VCR fitting         | 015042500 <sup>①</sup> |

## <sup>1</sup>/<sub>2</sub> in. (13 mm) O.D. Tubing Insulators

| <sup>1</sup> / <sub>2</sub> in. (13 mm)<br>Heater I.D.<br>x Length | Description         | Part<br>Number         |
|--------------------------------------------------------------------|---------------------|------------------------|
| 18 in. (457 mm)                                                    | Straight insulator  | 024180500 <sup>①</sup> |
| 36 in. (914 mm)                                                    | Straight insulator  | 024360500 <sup>①</sup> |
| Elbow                                                              | 90° union           | 020024500 <sup>①</sup> |
|                                                                    | elbow insulator     |                        |
| Tee                                                                | Union tee insulator | 024030500 <sup>①</sup> |
| VCR                                                                | VCR fitting         | 015042500 <sup>①</sup> |

# RAPID SHIP

- Next day shipment up to 10 pieces depending on part number
- 2 Manufacturing lead times

# **Line Heating**

# STRETCH-TO-LENGTH Heaters (Continued)

## **Extensions**

| Description     | Part<br>Number |
|-----------------|----------------|
| 3 ft (914 mm)   | A000136        |
| 6 ft (1829 mm)  | A000137        |
| 10 ft (3048 mm) | A000138        |

# **Accessories**

| Description                          | Part<br>Number |
|--------------------------------------|----------------|
| Power cord 6 ft 18-2 SJ              | Z5302-2        |
| Wiring Y connector – 1F-2M           | Z5303-2        |
| Wiring Y connector – 1M-2F           | Z6333          |
| Female termination plug              | Z5309-2        |
| Male termination plug                | Z6332          |
| 12 in. 24 Ga. Type J T/C w/mini plug | <b>Z</b> 5786  |
| 12 in. 24 Ga. Type K T/C w/mini plug | Z5639          |
| Gender changer – M-F                 | Z6334          |
| Gender changer – F-M                 | Z6335          |
| 6 in. power extension                | Z6374          |
| 10 ft Type J T/C extension           | <b>Z</b> 6271  |

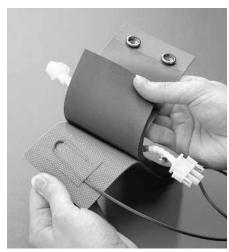
Note: All power connectors use AMP MATE-N-LOK  $^{^{\text{TM}}}$ 

**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 139

# **Line Heating**

# Modular Pump Line Heaters

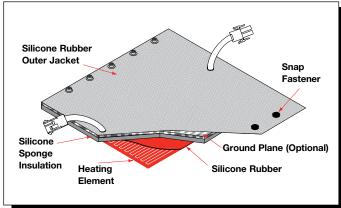
The tight contact fit of Watlow's pump line heaters provide superior, uniform heating of transfer lines.


# Agency Certification, Recognition Compliance and Approvals

- Complies with SEMI S2-93 standards
- UL® recognized for U.S. and Canadian safety standards
- CE, VDE
- National Electrical Code (NEC), Article #427-23
- UL® Listed available

Contact your Watlow representative for specific applications and approvals.

# **General Specifications**


- The heater and jacket material are constructed using reinforced silicone rubber fabric.
- Insulation and outer jacket are gray. The heater is red-orange in color.



Sensor Pocket Built-in to all Straight Length Heaters 3 in. (76 mm) Long and Greater; One Per Heater

- Snap type fasteners are ½ in. (13 mm) with a nominal diameter metal construction and a nylon cover. The maximum operating temperature is 392°F (200°C).
- Hook and latch fasteners are available.
- 120 and 208VAC are standard. Contact your Watlow representative for other voltages.
- Power lead wires are 3 in. (76 mm) #18 AWG UL<sup>®</sup> 1180/ CSA PTFE insulated and rated 10A. The lead wire pair is encapsulated in reinforced silicone rubber sleeving.
- Heaters are interconnectable up to a 10A circuit.
- Low watt density:
   1.5-2 in. (38-51 mm) diameter, 1.5 W/in² (0.23 W/cm²)
   3-4 in. (76-102 mm) diameter, 1.25 W/in² (0.19 W/cm²)





# **Line Heating**

# Modular Pump Line Heaters (Continued)

| _                    |               |                   |                   |           |                 |            |                |            |
|----------------------|---------------|-------------------|-------------------|-----------|-----------------|------------|----------------|------------|
| Base<br>Part Number* | Features      | Amperes<br>@ 208V | Amperes<br>@ 120V | Watts     | gth "L"<br>(mm) | Len<br>in. | e O.D.<br>(mm) | Tub<br>in. |
| 020050A              | _             | 0.08              | 0.13              | 15        | (51)            | 2          | (38)           | 1.5        |
| 020050T              | Trim-to-fit   | N/A               | 0.07              | 8         | (51T)           | 2T         | (38)           | 1.5        |
| 030050A              | Sensor pocket | 0.11              | 0.19              | 22        | (76)            | 3          | (38)           | 1.5        |
| 030050T              | Trim-to-fit   | 0.08              | 0.13              | 15        | (76T)           | ЗТ         | (38)           | 1.5        |
| 040050A              | Sensor pocket | 0.14              | 0.25              | 29        | (102)           | 4          | (38)           | 1.5        |
| 040050T              | Trim-to-fit   | 0.11              | 0.19              | 22        | (102T)          | 4T         | (38)           | 1.5        |
| 050050A              | Sensor pocket | 0.18              | 0.30              | 36        | (127)           | 5          | (38)           | 1.5        |
| 050050T              | Trim-to-fit   | 0.14              | 0.25              | 29        | (127T)          | 5T         | (38)           | 1.5        |
| 050060A              | Sensor pocket | 0.21              | 0.36              | 43        | (152)           | 6          | (38)           | 1.5        |
| 050060T              | Trim-to-fit   | 0.17              | 0.30              | 36        | (152T)          | 6T         | (38)           | 1.5        |
| 050070A              | Sensor pocket | 0.24              | 0.42              | 50        | (178)           | 7          | (38)           | 1.5        |
| 050080A              | Sensor pocket | 0.27              | 0.48              | 57        | (203)           | 8          | (38)           | 1.5        |
| 050090A              | Sensor pocket | 0.31              | 0.53              | 64        | (229)           | 9          | (38)           | 1.5        |
| 050100A              | Sensor pocket | 0.34              | 0.59              | 71        | (254)           | 10         | (38)           | 1.5        |
| 050120A              | Sensor pocket | 0.41              | 0.71              | 85        | (305)           | 12         | (38)           | 1.5        |
| 050180A              | Sensor pocket | 0.62              | 1.07              | 128       | (457)           | 18         | (38)           | 1.5        |
| 050240A              | Sensor pocket | 0.82              | 1.42              | 170       | (610)           | 24         | (38)           | 1.5        |
| 050300A              | Sensor pocket | 1.03              | 1.78              | 213       | (762)           | 30         | (38)           | 1.5        |
| 050360A              | Sensor pocket | 1.23              | 2.13              | 255       | (914)           | 36         | (38)           | 1.5        |
| 050360B              | _             | N/A               | N/A               | Insulator | (914)           | 36         | (38)           | 1.5        |
| 020066A              | _             | 0.10              | 0.16              | 19        | (51)            | 2          | (51)           | 2.0        |
| 020066T              | Trim-to-fit   | N/A               | 0.09              | 10        | (51T)           | 2T         | (51)           | 2.0        |
| 030066A              | Sensor pocket | 0.14              | 0.25              | 29        | (76)            | 3          | (51)           | 2.0        |
| 030066T              | Trim-to-fit   | 0.10              | 0.16              | 19        | (76T)           | 3T         | (51)           | 2.0        |
| 040066A              | Sensor pocket | 0.19              | 0.32              | 38        | (102)           | 4          | (51)           | 2.0        |
| 040066T              | Trim-to-fit   | 0.14              | 0.25              | 29        | (102T)          | 4T         | (51)           | 2.0        |
| 050066A              | Sensor pocket | 0.24              | 0.40              | 48        | (127)           | 5          | (51)           | 2.0        |
| 050066T              | Trim-to-fit   | 0.19              | 0.32              | 38        | (127T)          | 5T         | (51)           | 2.0        |
| 060066A              | Sensor pocket | 0.28              | 0.48              | 57        | (152)           | 6          | (51)           | 2.0        |
| 060066T              | Trim-to-fit   | 0.23              | 0.39              | 47        | (152T)          | 6T         | (51)           | 2.0        |
| 066070A              | Sensor pocket | 0.32              | 0.55              | 66        | (178)           | 7          | (51)           | 2.0        |
| 066080A              | Sensor pocket | 0.37              | 0.63              | 76        | (203)           | 8          | (51)           | 2.0        |
| 066090A              | Sensor pocket | 0.41              | 0.71              | 85        | (229)           | 9          | (51)           | 2.0        |

CONTINUED

<sup>•</sup> M - Manufacturing lead times

<sup>\*</sup>To complete the part number, please reference the Ordering Information on page 147.

# **Line Heating**

# Modular Pump Line Heaters (Continued)

| Base<br>Part Number* | Features      | Amperes<br>@ 208V | Amperes<br>@ 120V | Watts     |        |    | Tube O.D.<br>in. (mm) |     |  |
|----------------------|---------------|-------------------|-------------------|-----------|--------|----|-----------------------|-----|--|
| 066100A              | Sensor pocket | 0.46              | 0.79              | 95        | (254)  | 10 | (51)                  | 2.0 |  |
| 066120A              | Sensor pocket | 0.55              | 0.95              | 114       | (305)  | 12 | (51)                  | 2.0 |  |
| 066180A              | Sensor pocket | 0.82              | 1.42              | 170       | (457)  | 18 | (51)                  | 2.0 |  |
| 066240A              | Sensor pocket | 1.10              | 1.90              | 227       | (610)  | 24 | (51)                  | 2.0 |  |
| 066300A              | Sensor pocket | 1.37              | 2.36              | 283       | (762)  | 30 | (51)                  | 2.0 |  |
| 066360A              | Sensor pocket | 1.64              | 2.84              | 340       | (914)  | 36 | (51)                  | 2.0 |  |
| 066360B              | _             | N/A               | N/A               | Insulator | (914)  | 36 | (51)                  | 2.0 |  |
| 020096A              | _             | 0.12              | 0.20              | 24        | (51)   | 2  | (76)                  | 3   |  |
| 020096T              | Trim-to-fit   | 0.06              | 0.10              | 12        | (51T)  | 2T | (76)                  | 3   |  |
| 030096A              | Sensor pocket | 0.18              | 0.30              | 36        | (76)   | 3  | (76)                  | 3   |  |
| 030096T              | Trim-to-fit   | 0.12              | 0.20              | 24        | (76T)  | 3T | (76)                  | 3   |  |
| 040096A              | Sensor pocket | 0.24              | 0.40              | 48        | (102)  | 4  | (76)                  | 3   |  |
| 040096T              | Trim-to-fit   | 0.18              | 0.30              | 36        | (102T) | 4T | (76)                  | 3   |  |
| 050096A              | Sensor pocket | 0.29              | 0.50              | 59        | (127)  | 5  | (76)                  | 3   |  |
| 050096T              | Trim-to-fit   | 0.24              | 0.40              | 48        | (127T) | 5T | (76)                  | 3   |  |
| 060096A              | Sensor pocket | 0.35              | 0.60              | 71        | (152)  | 6  | (76)                  | 3   |  |
| 060096T              | Trim-to-fit   | 0.28              | 0.49              | 59        | (152T) | 6T | (76)                  | 3   |  |
| 070096A              | Sensor pocket | 0.4               | 0.69              | 83        | (178)  | 7  | (76)                  | 3   |  |
| 080096A              | Sensor pocket | 0.46              | 0.79              | 95        | (203)  | 8  | (76)                  | 3   |  |
| 090096A              | Sensor pocket | 0.51              | 0.88              | 106       | (229)  | 9  | (76)                  | 3   |  |
| 096100A              | Sensor pocket | 0.57              | 0.98              | 118       | (254)  | 10 | (76)                  | 3   |  |
| 096120A              | Sensor pocket | 0.69              | 1.19              | 142       | (305)  | 12 | (76)                  | 3   |  |
| 096180A              | Sensor pocket | 1.03              | 1.78              | 213       | (457)  | 18 | (76)                  | 3   |  |
| 096240A              | Sensor pocket | 1.37              | 2.36              | 283       | (610)  | 24 | (76)                  | 3   |  |
| 096300A              | Sensor pocket | 1.71              | 2.95              | 354       | (762)  | 30 | (76)                  | 3   |  |
| 096360A              | Sensor pocket | 2.05              | 3.55              | 425       | (914)  | 36 | (76)                  | 3   |  |
| 096360B              | _             | N/A               | N/A               | Insulator | (914)  | 36 | (76)                  | 3   |  |

CONTINUED

<sup>•</sup> M - Manufacturing lead times

<sup>\*</sup>To complete the part number, please reference the Ordering Information on page 147.

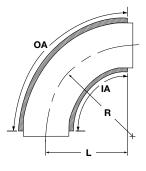
# **Line Heating**

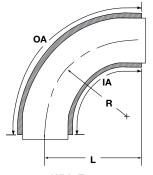
# Modular Pump Line Heaters (Continued)

| Tube O.D.<br>in. (mm) |       |    |        |           |      | Watts | Amperes<br>@ 120V | Amperes<br>@ 208V | Features | Base<br>Part Number* |
|-----------------------|-------|----|--------|-----------|------|-------|-------------------|-------------------|----------|----------------------|
| 4                     | (102) | 2  | (51)   | 32        | 0.27 | 0.16  | _                 | 020128A           |          |                      |
| 4                     | (102) | 2T | (51T)  | 16        | 0.14 | 0.08  | Trim-to-fit       | 020128T           |          |                      |
| 4                     | (102) | 3  | (76)   | 48        | 0.40 | 0.24  | Sensor pocket     | 030128A           |          |                      |
| 4                     | (102) | 3T | (76T)  | 32        | 0.27 | 0.16  | Trim-to-fit       | 030128T           |          |                      |
| 4                     | (102) | 4  | (102)  | 63        | 0.53 | 0.31  | Sensor pocket     | 040128A           |          |                      |
| 4                     | (102) | 4T | (102T) | 48        | 0.40 | 0.24  | Trim-to-fit       | 040128T           |          |                      |
| 4                     | (102) | 5  | (127)  | 79        | 0.66 | 0.38  | Sensor pocket     | 050128A           |          |                      |
| 4                     | (102) | 5T | (127T) | 63        | 0.53 | 0.31  | Trim-to-fit       | 050128T           |          |                      |
| 4                     | (102) | 6  | (152)  | 95        | 0.80 | 0.46  | Sensor pocket     | 060128A           |          |                      |
| 4                     | (102) | 6T | (152T) | 79        | 0.66 | 0.38  | Trim-to-fit       | 060128T           |          |                      |
| 4                     | (102) | 7  | (178)  | 110       | 0.92 | 0.53  | Sensor pocket     | 070128A           |          |                      |
| 4                     | (102) | 8  | (203)  | 126       | 1.05 | 0.61  | Sensor pocket     | 080128A           |          |                      |
| 4                     | (102) | 9  | (229)  | 142       | 1.18 | 0.68  | Sensor pocket     | 090128A           |          |                      |
| 4                     | (102) | 10 | (254)  | 157       | 1.31 | 0.75  | Sensor pocket     | 100128A           |          |                      |
| 4                     | (102) | 12 | (305)  | 189       | 1.58 | 0.91  | Sensor pocket     | 120128A           |          |                      |
| 4                     | (102) | 18 | (457)  | 283       | 2.36 | 1.37  | Sensor pocket     | 128180A           |          |                      |
| 4                     | (102) | 24 | (610)  | 377       | 3.15 | 1.82  | Sensor pocket     | 128240A           |          |                      |
| 4                     | (102) | 30 | (762)  | 472       | 3.94 | 2.27  | Sensor pocket     | 128300A           |          |                      |
| 4                     | (102) | 36 | (914)  | 566       | 4.72 | 2.73  | Sensor pocket     | 128360A           |          |                      |
| 4                     | (102) | 36 | (914)  | Insulator | N/A  | N/A   | _                 | 128360B           |          |                      |

<sup>•</sup> M - Manufacturing lead times

**WATLOW**<sup>®</sup> \_\_\_\_\_\_\_ 143


<sup>\*</sup>To complete the part number, please reference the Ordering Information on page 147.


# **Line Heating**

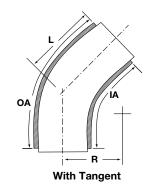
# Modular Pump Line Heaters (Continued)

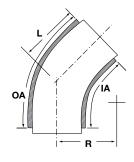
## 90° Radius Elbow Heaters

- 0.25 in. (6 mm) or 0.5 in. (13 mm) silicone rubber sponge insulation is available
- With or without tangents
- Will fit both butt-weld and flanged style tubing elbows






Without Tangent


With Tangent

| Tub<br>in. | e O.D.<br>(mm) | Len  | gth "L"<br>(mm) |      | dius<br>R)<br>(mm) | Watts | Outer Arc<br>Length<br>(OA) | Inside Arc<br>Length<br>(IA) | Amperes<br>@120V | Amperes<br>@208V | Base<br>Part Number* |
|------------|----------------|------|-----------------|------|--------------------|-------|-----------------------------|------------------------------|------------------|------------------|----------------------|
| 1.5        | (38)           | 2.00 | (51.0)          | 2.25 | (57)               | 26    | 4.21                        | 1.85                         | 0.22             | 0.13             | 042050A              |
| 1.5        | (38)           | 2.68 | (68.1)          | 2.25 | (57)               | 36    | 5.58                        | 3.22                         | 0.30             | 0.18             | 050055A              |
| 2.0        | (51)           | 2.75 | (70.0)          | 3.00 | (76)               | 45    | 5.78                        | 2.64                         | 0.38             | 0.22             | 057066A              |
| 2.0        | (51)           | 3.81 | (96.8)          | 3.00 | (76)               | 65    | 7.91                        | 4.77                         | 0.55             | 0.32             | 066079A              |
| 3.0        | (76)           | 4.00 | (102.0)         | 4.50 | (114)              | 84    | 8.42                        | 3.71                         | 0.70             | 0.41             | 089097A              |
| 3.0        | (76)           | 5.81 | (147.6)         | 4.50 | (114)              | 127   | 12.05                       | 7.33                         | 1.06             | 0.62             | 097125A              |
| 4.0        | (102)          | 5.50 | (140.0)         | 6.00 | (152)              | 149   | 11.56                       | 5.28                         | 1.25             | 0.72             | 116128A              |
| 4.0        | (102)          | 7.81 | (198.4)         | 6.00 | (152)              | 222   | 16.18                       | 9.00                         | 1.85             | 1.07             | 128166A              |

# 45° Radius Elbow Heaters

- 0.25 in. (6.4 mm) or 0.5 in. (13 mm) silicone rubber sponge insulation is available
- With or without tangents
- Will fit both butt-weld and flanged style tubing elbows

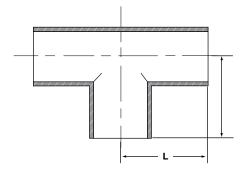




Without Tangent

| Tub | Tube O.D. Length "L" |      | Tube O.D. |      | Length "L" |       | dius<br>R) |      | Outer Arc<br>Length | Inside Arc<br>Length | Amperes      | Amperes | Base |
|-----|----------------------|------|-----------|------|------------|-------|------------|------|---------------------|----------------------|--------------|---------|------|
| in. | (mm)                 | in.  | (mm)      | in.  | (mm)       | Watts | (OA)       | (IA) | @120V               | @208V                | Part Number* |         |      |
| 1.5 | (38)                 | 0.69 | (17.5)    | 2.25 | (57)       | 14    | 1.85       | 0.67 | 0.12                | NA                   | 018050A      |         |      |
| 1.5 | (38)                 | 1.38 | (35.1)    | 2.25 | (57)       | 23    | 3.23       | 2.04 | 0.20                | 0.12                 | 032050A      |         |      |
| 2.0 | (51)                 | 1.00 | (25.0)    | 3.00 | (76)       | 23    | 2.64       | 1.07 | 0.20                | 0.12                 | 026066A      |         |      |
| 2.0 | (51)                 | 2.06 | (52.3)    | 3.00 | (76)       | 44    | 4.77       | 3.20 | 0.37                | 0.22                 | 047066A      |         |      |
| 3.0 | (76)                 | 1.37 | (34.8)    | 4.50 | (114)      | 43    | 3.71       | 1.35 | 0.36                | 0.21                 | 042097A      |         |      |
| 3.0 | (76)                 | 3.18 | (80.8)    | 4.50 | (114)      | 85    | 7.33       | 4.97 | 0.71                | 0.41                 | 078097A      |         |      |
| 4.0 | (102)                | 2.00 | (51.0)    | 6.00 | (152)      | 75    | 5.28       | 2.14 | 0.63                | 0.37                 | 057128A      |         |      |
| 4.0 | (102)                | 4.31 | (109.5)   | 6.00 | (152)      | 148   | 9.90       | 6.76 | 1.24                | 0.72                 | 104128A      |         |      |

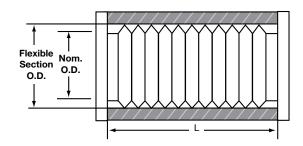
<sup>•</sup> M - Manufacturing lead times


<sup>\*</sup>To complete the part number, please reference the Ordering Information on page 147.

### **Line Heating**

#### Modular Pump Line Heaters (Continued)

#### **Tee Section Heaters**


- 0.25 in. (6 mm) or 0.5 in. (13 mm) silicone rubber sponge insulation is available
- Will fit both butt-weld and flanged style tee sections



| Tube<br>in. | e O.D.<br>(mm) | Leng<br>in. | th "L"<br>(mm) | Watts | Amperes<br>@120V | Amperes<br>@208V | Base<br>Part Number* |
|-------------|----------------|-------------|----------------|-------|------------------|------------------|----------------------|
| 1.5         | (38)           | 2.00        | (51)           | 38    | 0.32             | 0.19             | 047064A              |
| 2.0         | (51)           | 2.75        | (70)           | 69    | 0.58             | 0.34             | 062081A              |
| 3.0         | (76)           | 3.00        | (76)           | 89    | 0.75             | 0.43             | 095120A              |
| 4.0         | (102)          | 3.63        | (92)           | 140   | 1.17             | 0.69             | 125155A              |

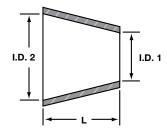
#### **Bellows Section Heaters**

- 0.25 in. (6 mm) or 0.5 in. (13 mm) silicone rubber sponge insulation is available
- Will fit both butt-weld and flanged style flexible sections



| Tub<br>in. | e O.D.<br>(mm) |      | llows<br>ion O.D.<br>(mm) | Ler<br>in. | ngth "L"<br>(mm) | Watts | Amperes<br>@120V | Amperes<br>@208V | Base<br>Part Number* |
|------------|----------------|------|---------------------------|------------|------------------|-------|------------------|------------------|----------------------|
| 1.5        | (38)           | 1.92 | (48.9)                    | 3          | (76)             | 26    | 0.22             | 0.13             | 030056A              |
| 1.5        | (38)           | 1.92 | (48.9)                    | 3T         | (76T)            | 18    | 0.15             | 0.09             | 030056T              |
| 1.5        | (38)           | 1.92 | (48.9)                    | 6          | (152)            | 51    | 0.43             | 0.25             | 056060A              |
| 1.5        | (38)           | 1.92 | (48.9)                    | 6T         | (152T)           | 44    | 0.37             | 0.21             | 056060T              |
| 2.0        | (51)           | 2.47 | (62.7)                    | 3          | (76)             | 34    | 0.29             | 0.17             | 030077A              |
| 2.0        | (51)           | 2.47 | (62.7)                    | 3T         | (76T)            | 24    | 0.2              | 0.12             | 030077T              |
| 2.0        | (51)           | 2.47 | (62.7)                    | 6          | (152)            | 68    | 0.57             | 0.33             | 060077A              |
| 2.0        | (51)           | 2.47 | (62.7)                    | 6T         | (152T)           | 59    | 0.49             | 0.28             | 060077T              |
| 3.0        | (76)           | 3.77 | (95.8)                    | 3          | (76)             | 44    | 0.37             | 0.22             | 030117A              |
| 3.0        | (76)           | 3.77 | (95.8)                    | 3T         | (76T)            | 30    | 0.25             | 0.14             | 030117T              |
| 3.0        | (76)           | 3.77 | (95.8)                    | 6          | (152)            | 88    | 0.74             | 0.43             | 060117A              |
| 3.0        | (76)           | 3.77 | (95.8)                    | 6T         | (152T)           | 74    | 0.62             | 0.36             | 060117T              |
| 3.0        | (76)           | 3.77 | (95.8)                    | 12         | (305)            | 175   | 1.46             | 0.85             | 117120A              |
| 4.0        | (102)          | 4.75 | (121.0)                   | 3          | (76)             | 56    | 0.47             | 0.27             | 030149A              |
| 4.0        | (102)          | 4.75 | (121.0)                   | 3T         | (76T)            | 38    | 0.32             | 0.18             | 030149T              |
| 4.0        | (102)          | 4.75 | (121.0)                   | 6          | (152)            | 111   | 0.93             | 0.54             | 060149A              |
| 4.0        | (102)          | 4.75 | (121.0)                   | 6T         | (152T)           | 94    | 0.78             | 0.45             | 060149T              |
| 4.0        | (102)          | 4.75 | (121.0)                   | 12         | (305)            | 222   | 1.85             | 1.07             | 120149A              |

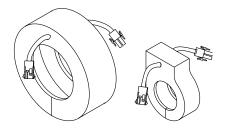
<sup>•</sup> M - Manufacturing lead times


WATLOW® \_\_\_\_\_\_ 145

<sup>\*</sup>To complete the part number, please reference the Ordering Information on page 147.

### **Line Heating**

Modular Pump Line Heaters (Continued)


#### **Reducers**



| T<br>I.D. 2<br>in. | ube<br>to I.I | D. 1<br>(mm) | Leng<br>in. | gth "L"<br>(mm) | Watts | Amperes<br>@120V | Amperes<br>@208V | Base<br>Part Number* |
|--------------------|---------------|--------------|-------------|-----------------|-------|------------------|------------------|----------------------|
| 2 (51)             | to            | 1.5 (38)     | 1.38        | (35.1)          | 12    | 0.10             | 0.06             | 020062A              |
| 3 (76)             | to            | 2.0 (51)     | 2.42        | (61.5)          | 24    | 0.20             | 0.12             | 034090A              |
| 4 (102)            | to            | 2.0 (51)     | 2.63        | (66.8)          | 31    | 0.26             | 0.15             | 044103A              |
| 4 (102)            | to            | 3.0 (76)     | 2.60        | (66.0)          | 36    | 0.30             | 0.18             | 040121A              |

#### **Flange Heaters**

- 0.25 in. (6 mm) or 0.5 in. (13 mm) silicone rubber sponge insulation is available
- For both KF screw flanges and ISO clamp flanges



| Tube O.D.<br>in.         |     | ninal<br>O.D.<br>(mm) | Watts<br>@120V | Amperes<br>@120V | Amperes<br>@ 208V | Base<br>Part Number* |
|--------------------------|-----|-----------------------|----------------|------------------|-------------------|----------------------|
| KF-40                    | 1.5 | (38)                  | 10             | 0.09             | NA                | 035040A              |
| KF-50                    | 2.0 | (51)                  | 15             | 0.13             | 0.07              | 045050A              |
| ISO-80                   | 3.0 | (76)                  | 70             | 0.59             | 0.34              | 020176A              |
| ISO-100                  | 4.0 | (102)                 | 82             | 0.69             | 0.40              | 020204A              |
| CF 2 <sup>3</sup> /4 in. | 1.5 | (38)                  | 21             | 0.18             | 0.10              | 016089A              |


### **Flange Insulators**

- 0.25 in. (6 mm) or 0.5 in. (13 mm) silicone rubber sponge insulation is available
- For both KF screw flanges and ISO clamp flanges

| Tube O.D.                |      | minal<br>e O.D. | Base         |
|--------------------------|------|-----------------|--------------|
| in.                      | in.  | (mm)            | Part Number* |
| KF-40                    | 1.50 | (38)            | 035040B      |
| KF-50                    | 2.00 | (51)            | 045050B      |
| ISO-80                   | 3.00 | (76)            | 020176B      |
| ISO-100                  | 4.00 | (102)           | 020204B      |
| CF 1 <sup>1</sup> /3 in. | 0.75 | (19)            | 010044B      |
| CF 2 <sup>3</sup> /4 in. | 1.50 | (38)            | 016089B      |



<sup>\*</sup>To complete the part number, please reference the Ordering Information on page 147.





#### **Line Heating**

#### Modular Pump Line Heaters (Continued)

#### **Ordering Information**

#### **Part Number**

| 1                    | 2                    | 3                    | 4                    | 5                    | 6                    | 7                    | 89                | 10         | 11         | 12      | 13               | 14               |  |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------|------------|------------|---------|------------------|------------------|--|
| Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Heater<br>Voltage | Insulation | Connectors | Sensors | Future<br>Option | Future<br>Option |  |
| Х                    | X                    | X                    | X                    | X                    | X                    | Х                    |                   |            |            |         | 0                | 0                |  |

| 12   | 3 4 5 6 7 Base Code Number                                    |
|------|---------------------------------------------------------------|
| 8 9  | Heater Voltage                                                |
| CO = | Insulator                                                     |
| C1 = | 120V                                                          |
| C4 = | 208V                                                          |
| 10   | Insulation                                                    |
| A =  | 0.25 in. (6 mm) insulation w/UL® 94-HB jacket                 |
| B =  | 0.5 in. (13 mm) insulation w/UL® 94V-0 jacket                 |
| C =  | 0.25 in. (6 mm) insulation w/UL® 94-HB jacket and ground grid |
| D =  | 0.5 in. (13 mm) insulation w/UL® 94V-0 jacket and ground grid |
| 11   | Connectors                                                    |
| 0 =  | None (Zero)                                                   |
| A =  | AMP Universal MATE-N-LOK <sup>™</sup> connector               |
| B =  | AMP CPC connector                                             |

| 12  | Sensors                            |  |  |  |  |
|-----|------------------------------------|--|--|--|--|
| 0 = | None                               |  |  |  |  |
| A = | Thermal fuse 378°F (192°C)         |  |  |  |  |
| B = | Type J thermocouple                |  |  |  |  |
| C = | Type K thermocouple                |  |  |  |  |
| D = | Thermal fuse + Type J thermocouple |  |  |  |  |
| E = | Thermal fuse + Type K thermocouple |  |  |  |  |
| 13  | Future Option                      |  |  |  |  |
| 0 = | None (Zero)                        |  |  |  |  |
| 14) | Future Option                      |  |  |  |  |
| O = | None (Letter O)                    |  |  |  |  |

Note: All options are not available for every base part number.

| Description                                         | CE | SEMI S2-93 | UL <sup>®</sup> Listing | NEC | VDE |
|-----------------------------------------------------|----|------------|-------------------------|-----|-----|
| 0.25 in. (6 mm) insulation w/HOT marking            | ×  | ×          | ×                       |     | ×   |
| 0.5 in. (13 mm) insulation                          | 0  | 0          | 0                       |     | 0   |
| Ground grid                                         | 0  | 0          | 0                       | х   | 0   |
| AMP MATE-N-LOK <sup>™</sup> connectors <sup>①</sup> | х  | х          | ×                       |     | ×   |
| AMP CPC connectors <sup>②</sup>                     | 0  | 0          | 0                       |     | 0   |
| Jacket w/UL® 94V-0 rating                           | 0  | 0          | 0                       |     | 0   |
| Jacket w/UL® 94-HB rating                           | х  | х          | ×                       |     | ×   |
| Thermal cut-off                                     | 0  | х          | Х                       |     | 0   |

- x = Min. requirements
- o = Optional features
- ① Male plug: AMP p/n 1-480698-0, w/sockets AMP p/n 350689-1. Female cap: AMP p/n 1-480699-0, w/pins AMP p/n 350690-1.
- ② Plug: AMP p/n 206060-1, w/socket AMP p/n 66101-3.

Receptacle: AMP p/n 206153-1, w/pin AMP p/n 66099-3, w/ground pin p/n 164164-2 if ground grid option is chosen.

### **Polyimide Heaters**

Polyimide is a thin, lightweight organic polymer film that provides excellent tensile strength, tear and solvent resistance and dimensional stability. The polyimide heater is ideal for applications requiring low outgassing in a vacuum or resistance to radiation, fungus and chemicals.

#### **Performance Capabilities**

- For operating environments as low as -319°F (-195°C), heater temperature as high as 392°F (200°C)
- Watt densities up to 50 W/in² (7.75 W/cm²)<sup>①</sup>
- UR® and C-UR® recognitions

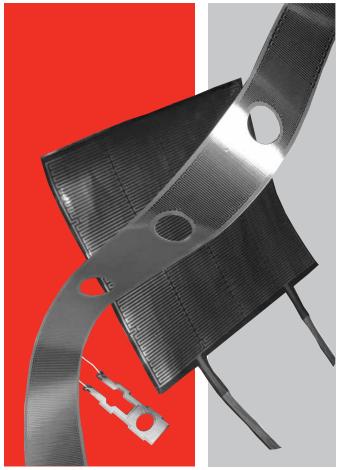
#### **Features and Benefits**

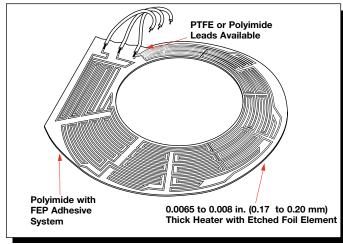
#### **Excellent physical and electrical properties**

Results in thermal stability over a wide temperature range

#### Transparent polyimide material

Allows inspection of internal details


#### Resistance of radiation and fungus


Can be used in a wide range of applications

#### **Typical Applications**

- Medical applications that require a clean, sterile environment
- Laboratory research
- Semiconductor processing equipment
- Optical equipment
- LCD displays
- Computer equipment
- Photographic equipment
- Aerospace/defense, where low outgassing properties are required

① Watt density limits are application dependent (operating temperatures, bonding method and heat sink).





### **Polyimide Heaters**

#### **Technical Data**

#### **Specifications**

#### **Thickness**

• 0.007 in. (0.2 mm)

#### Flexibility (min. radius)

• <sup>1</sup>/<sub>32</sub> in. (0.8 mm)

#### Weight

• 1.5 oz/ft<sup>2</sup> (0.05 g/cm<sup>2</sup>)

#### **Operating temperature:**

• Max.: 392°F (200°C)

• Min.: -319°F (-195°C)

#### Watt density rating on stock units

• 5 W/in<sup>2</sup> (0.8 W/cm<sup>2</sup>)

#### Dielectric strength

• Min. VAC: 1000

#### Flammability rating

Self-extinguishing

#### **Heater size limitations**

• 18 x 26 in. (457 mm x 660 mm)

#### Weight loss (outgassing):

• 0.51%

#### Lead length

• 12 in. (305 mm) PTFE E

#### **Maximum Allowable Watt Density Versus Temperature**

To achieve optimum performance with your Watlow polyimide heater, use a proper watt density on the surface of the heater.

The graph recommends watt densities for temperatures using a temperature controller. It does not indicate the watt density needed to achieve a given part temperature.



**Note:** The maximum watt density (W/in<sup>2</sup>) in open air is 5 W/in<sup>2</sup>. The chart above assumes bonding the polyimide heater to a part.

WATLOW® \_\_\_\_\_\_ 149

### **Polyimide Heaters**

#### Rapid Ship Offering

Lead length, 12 in. (305 mm) "E" PTFE

| in. | /idth<br>(mm) | L<br>in. | ength<br>(mm) | Watts | 28V<br>Part Number | 120V<br>Part Number |
|-----|---------------|----------|---------------|-------|--------------------|---------------------|
| 0.5 | (13)          | 2        | (51)          | 5     | K005020C5-0009B    |                     |
| 1   | (25)          | 1        | (25)          | 5     | K010010C5-0009B    |                     |
|     |               | 3        | (76)          | 15    | K010030C5-0009B    |                     |
|     |               | 5        | (127)         | 25    |                    | K010050C3-0009B     |
|     |               | 15       | (381)         | 75    |                    | K010150C3-0009B     |
| 2   | (51)          | 10       | (254)         | 100   |                    | K020100C3-0009B     |
| 3   | (76)          | 5        | (127)         | 75    |                    | K030050C3-0009B     |
| 4   | (102)         | 4        | (102)         | 80    |                    | K040040C3-0009B     |
| 5   | (127)         | 5        | (127)         | 125   |                    | K050050C3-0009B     |



 RS - Next day shipment up to 75 pieces depending on part number.

#### **Option**

Pressure sensitive adhesive surface (PSAS). The heaters above can be ordered with the
optional PSAS surface by adding an "A" suffix to the part number and replacing the first "0."
 Example K010050C3-A009B

#### **Polyimide Heaters**

#### Special Product Offering

| Part Number | Size<br>in. (mm)                                                          | Circuit | Resistance | Max. Voltage | Watts @<br>Max. Voltage |
|-------------|---------------------------------------------------------------------------|---------|------------|--------------|-------------------------|
| K05711980-A | <sup>1</sup> /2 x 2 <sup>1</sup> /8 (13 x 54)                             | А       | 40         | 12           | 4                       |
| K05711980-B | 1 x 2 <sup>1</sup> /8 (25 x 54)                                           | В       | 90         | 48           | 26                      |
| K05711980-C | 1 <sup>1</sup> / <sub>2</sub> x 2 <sup>1</sup> / <sub>8</sub> (38 x 54)   | С       | 145        | 75           | 39                      |
| K05711980-D | 2 x 2 <sup>1</sup> /8 (51 x 54)                                           | D       | 205        | 105          | 54                      |
| K05711980-E | <sup>1</sup> / <sub>2</sub> x 3 <sup>5</sup> / <sub>8</sub> (13 x 34.9)   | E       | 80         | 48           | 29                      |
| K05711980-F | 1 x 3 <sup>5</sup> /8 (25 x 92.1)                                         | F       | 165        | 90           | 49                      |
| K05711980-G | 1 <sup>1</sup> / <sub>2</sub> x 3 <sup>5</sup> / <sub>8</sub> (38 x 92.1) | G       | 275        | 120          | 52                      |
| K05711980-H | 2 x 3 <sup>5</sup> /8 (51 x 92.1)                                         | Н       | 375        | 120          | 38                      |
| K05711980-I | <sup>1</sup> / <sub>2</sub> x 5 <sup>3</sup> / <sub>4</sub> (13 x 146)    | I       | 130        | 60           | 28                      |
| K05711980-J | 1 x 5 <sup>3</sup> / <sub>4</sub> (25 x 146)                              | J       | 255        | 120          | 56                      |
| K05711980-K | 1 x 1 <sup>1</sup> /8 (25 x 28.6)                                         | K       | 28         | 12           | 5                       |
| K05711980-L | <sup>1</sup> / <sub>2</sub> x 1 <sup>1</sup> / <sub>8</sub> (13 x 28.6)   | L       | 13         | 6            | 3                       |
| K05711980-M | 1 in O.D. (25)                                                            | М       | 32         | 12           | 5                       |
| K05711980-N | 2 in O.D. (51)                                                            | N       | 180        | 105          | 61                      |
| K05711980-O | 4 in O.D. (102)                                                           | 0       | 185        | 120          | 78                      |
| K05711980-P | 1 x 1 <sup>3</sup> / <sub>8</sub> (25 x 34.9)                             | Р       | 45         | 24           | 13                      |

Note: Above heaters are shipped without power leads unless specified, see below.

#### **Options**

- Pressure sensitive adhesive (PSAS) surface
- Polyimide Handy Heater Kit—For Quick Heating Solutions
  - Watlow offers a convenient polyimide heater kit which consists of 16 polyimide heaters — 13 rectangular and three circular—in different sizes and resistances. When a small flexible heater is needed quickly, the correct heater that fits the application can be used.

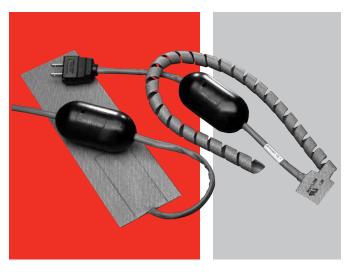
#### Notes:

- **Example:** To order the J heater circuit with PSAS, use K05711980A-J.
  - To order the J heater circuit with PSAS and leads, use K05711980AL-J.
- Leads are shipped loose, not soldered. Leads are 12 in. (305 mm) "E" PTFE.

#### Other Features

- The heater sheet can be ordered with or without PSAS, depending on requirements. To specify PSAS add A to the part number.
- The kit includes instructions for wiring, lead attachment, selection and installation. Pre-tinned solder pads are provided for easy lead connections.
- Instructions show how to dial in the desired wattage using a variable voltage transformer.
- Heaters can be wired individually, in series or in parallel, for hundreds of variations to satisfy special applications.

WATLOW® \_\_\_\_\_\_ 151


#### **SERIES EHG®**

Many applications requiring a fixed temperature set point rely on a mechanical thermostat for thermal control. Thermostats have proven, however, to be inadequate for many applications due to long-term reliability issues, such as 100,000 cycle rating and poor temperature control.

The SERIES EHG® thermal solution includes a compact temperature controller, thermocouple sensor and power switching device integrated into the heater's power cord. The SERIES EHG reduces system costs and lasts substantially longer than a conventional thermostat solution.

The evolution of miniature microprocessor technology and Watlow switching technology fostered development of a small, versatile temperature controller and thermocouple sensor that is integrated with Watlow silicone rubber heater products. This device senses the temperature via input from a thermocouple strategically placed on the heater mat. The microprocessor is programmed prior to shipment with an application specific set point. This results in quick delivery of a custom, integrated system.

The small thermocouple mass provides superior response to changes in process temperature enabling higher watt density silicone rubber heater designs. These features offer an integrated custom set point temperature controller with superior life span, faster heat-up rates and improved accuracy. The SERIES EHG system has been tested to over four million cycles at rated amperage. Depending on the application, Watlow's power switching design can last up to 40 times longer than a conventional thermostat.



#### **Features and Benefits**

#### Long operational life

• Improves system reliability

#### **Tight temperature control**

Ensures process accuracy

#### **Small sensor footprint**

- Fits with almost any heater
- Responds quickly to temperature changes
- Controls high watt densities in low mass applications

# A single EHG controller can be configured with multiple heaters

• Reduces system cost

#### Pre-wired, in line control

- Simplifies installation
- Offers two-wire power connection

#### Durable housing with built-in strain relief

- Protects electronics
- Provides low risk of mechanical damage

#### Manufactured with proven Watlow components

Assures reliable system performance

#### **Typical Applications**

- Semiconductor processing
- Aerospace composite repair
- Foodservice equipment
- Freeze protection
- Life sciences
- Telecommunications

#### **SERIES EHG**

#### **Technical Information**

#### **Specifications**

#### Operational

- SERIES EHG silicone rubber heater UL® recognized to 428°F (220°C) operating temperature
- · Factory programmed fixed set point
- On-off control with 6°F (3°C) switching hysteresis
- Temperature band LED indicator ON between -68 and +68°F (-20 and +20°C) of set point

#### **Electrical**

- Voltage rating: 120 or 240VAC 30/+10%, 50/60Hz
- Silicone rubber heater watt densities up to 80 W/in<sup>2</sup> (12.5 W/cm<sup>2</sup>) dependent on application temperature
- SERIES EHG system UL® recognized to 10A max.

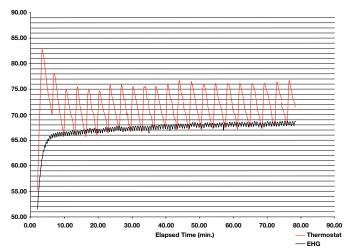
#### Sensor

• Type K thermocouple

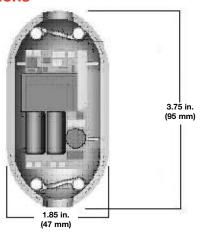
#### Mechanical

- Control dimensions 3.75 in. (95 mm) long by 1.75 in. (45 mm) diameter
- Heater per silicone rubber heater specifications

#### **Agencies**


- Silicone rubber heater: UL® recognized File #E52951
- SERIES EHG control: TUV File DE 3-3068 to EN 61010-1:2001, UL<sup>®</sup> File E43684 to UL<sup>®</sup> 873 temperature indicating and regulating equipment

#### **Environmental**


- Control operating temperature range 32 to 158°F (0 to 70°C)
- Control storage temperature range -40 to 158°F (-40 to 70°C)

Contact your Watlow representative for custom configurations.

# SERIES EHG Versus Thermostat (typical application)



#### **Dimensions**



### Integrated SERIES EHG System Versus Integrated Thermostat System

|                                                            | Integrated EHG System                                       | Integrated Thermostat System            | SERIES EHG Benefit                                                              |
|------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|
| Life comparison at rated amperage                          | Tested to greater than<br>4,000,000 cycles with<br>10A load | Rated 100,000 cycles                    | Longer product life of<br>SERIES EHG system and<br>high application reliability |
| Switch hysteresis                                          | 6°F (3°C)                                                   | 15°F (8°C)                              | Provides superior process control                                               |
| Improved response time<br>reduces overshoot on<br>start-up | 6°F (3°C) typical                                           | 25°F (14°C) typical                     | Responds to temperature changes faster than a thermostat                        |
| Warranty                                                   | 2 years for material and workmanship                        | 1 year on material and workmanship      | Warranty can be extended due to longer life cycle                               |
| Zero cross switching                                       | SERIES EHG has<br>zero cross switching                      | Random switching during sign wave cycle | Reduces the possibility of electrical mechanical interference (EMI)             |

WATLOW® \_\_\_\_\_\_ 153

#### **SERIES EHG SL10**

The SERIES EHG SL10 integrated, multi-function controller is a key component to a powerful system that integrates a heater, an adjustable set point temperature controller, a high/low temperature alert, a power switching device and a high temperature safety limit. Its agency recognized controller/safety limit meets UL® 1998 and CE 60730 requirements.

An optional display/communications module can be easily added in the field to provide a digital display indication, an adjustment of set point, RS485 Modbus® communications and other Human Machine Interface (HMI) features. As a scalable system, only what is needed can be purchased.

The EHG SL10 controllers' easy to install, compact design, inherent reliability and integrated limit functions offer unmatched value. It is designed for easy integration with Watlow heaters to simplify engineering, reduce component count for new equipment and decrease ownership cost. For original equipment manufacturers, (OEMs), CE, Semi-S2 compliance and UL® recognition, the EHG controller reduces time and costs associated with global agency testing and validation.

#### **Features and Benefits**

#### Process controller and safety limit in one package

- Meets UL® 1998 and CE 60730 requirements
- · Eliminates the need for a thermal fuse on a heater
- · Eliminates replacement of heater when fuse fails

#### Optional display/communications module

- Allows easy upgrade on to base device
- Offers low cost field upgrade
- Provides easy, snap-on installation

# Accurate and flexible temperature process controller

- Replaces problematic bi-metal thermostats with accurate electronic temperature process controller
- Allows easy change of process parameters

# Ambient operating temperature range 32 to 158°F (0 to 70°C)

 Increases reliability when mounting in harsh temperature environments or in close proximity to heaters

#### Integrated high/low temperature alert signal relay

- Provides dry contact output to activate external alarm or process function
- Signals control status with three integrated LEDs
- Allows a signal of up to two amperes 30VAC/VDC, Form A to alert if process temperature is out of range limits



#### Health check diagnostics

- Monitors maximum heater process temperature, maximum ambient temperature and thermocouple operation
- Provides health check signal to inform operator that the process is working correctly

#### Universal power supply

- Allows an input of 85 to 264VAC, 50/60Hz
- Provides safe control of up to 2400 watts with
   10 amperes switching in both controller and safety limit

#### Can be switched from on-off and PID algorithm

- Increases product life (on-off control is default)
- Offers selectable PID control algorithm for tighter temperature uniformity

#### Universal <sup>1</sup>/<sub>8</sub> turn mounting bracket

- Allows mounting to most surfaces
- Provides flexible mounting—either horizontally or vertically

#### **Typical Applications**

#### Foodservice equipment

- Warming and serving equipment
- Food holding cabinets

#### Life sciences

- Laboratory equipment
- Medical equipment

#### **Packaging**

- Heat sealing bars
- Hot glue application equipment

#### Semiconductor processing

· Gas delivery lines

#### **SERIES EHG SL10**

#### **Technical Information**

#### **Specifications**

#### Operational

- Two, Type K thermocouple inputs process temperature control and safety limit
- Process temperature output 10A NO-ARC relay
- Safety limit alarm 10A relay
- High/low temperature alert 2A 30VAC/VDC, Form A (single pole, normally open contact)
- On-off temperature controller algorithm, upgraded via communications to PID algorithm (min. cycle time 30 seconds)

#### Standard Molex® connectors

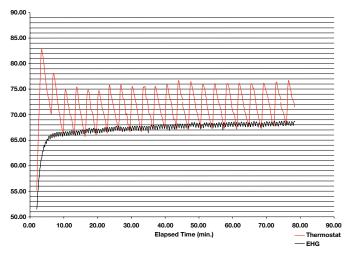
 Controllers are integral to the heater and are supplied by Watlow

#### **Power**

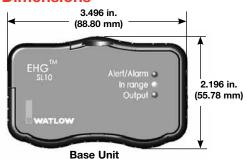
- Isolated universal power supply 85 to 264VAC, 50/60Hz
- Up to 2400 W with 10A switching capability

#### **NO-ARC Relay**

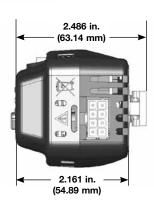
- 10A switching
- 4.5 million cycles


#### **Environmental**

 Ambient operating temperature range 32 to 158°F (0 to 70°C)


#### **Agency Approvals**

- UL® 1998/ C-UL®
- CE 60730
- Semi-S2


# SERIES EHG Versus Thermostat (typical application)



#### **Dimensions**







**Without Optional Module** 

**With Optional Module** 

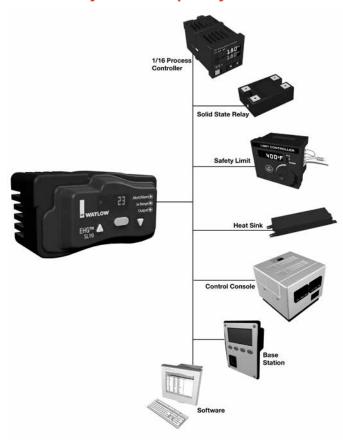
#### **Switching Device Comparison Chart**

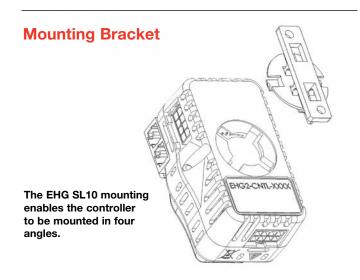
|                           | T-Stat                        | Solid State Relay                                       | Watlow NO-ARC Relay                             |
|---------------------------|-------------------------------|---------------------------------------------------------|-------------------------------------------------|
| Amperage at 77°F (25°C)   | 10A                           | 10A                                                     | 10A                                             |
| Amperage at 158°F (70°C)  | 10A                           | De-rate significantly and add heat sink and air cooling | 10A                                             |
| Output device life at 10A | Rated 100,000 at 158°F (70°C) | Greater than 10 million cycles at 77°F (25°C)           | Greater than 4.5 million cycles at 158°F (70°C) |

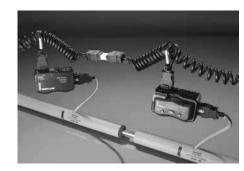
WATLOW® \_\_\_\_\_\_ 155

#### **SERIES EHG SL10**

**Technical Information** (Continued)


#### **EHG SL10 Software**


With the addition of an optional communication module, the EHG SL10 can be managed, monitored and manipulated via software. Change set points, label devices, change tuning parameters, check health status and much more all with the click of a key.






#### **Reduces System Complexity and Cost**







The EHG SL10 can be "daisy-chained" for gas line and other assemblies.

#### **SERIES EHG SL10**

**Technical Information** (Continued)

#### **Optional Upgrade Modules**

These upgrade modules are easy to install. There is no need to reconfigure, rewire or reorder the base unit. A technician is not needed for the installation, resulting in a seamless, cost-efficient system that can be upgraded.

|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diagnostics<br>Memory<br>Control<br>Parameters | Ability to<br>Change<br>Temperature<br>Parameters | Field<br>Adjustable<br>Set Point | 3-Digit<br>7-Segment<br>LED Display<br>Illuminated | Diagnostic<br>LED's | User<br>Interface<br>Software | Modbus®<br>RTU<br>Communication | RS 485   |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------|----------------------------------------------------|---------------------|-------------------------------|---------------------------------|----------|
| Base<br>Unit                                               | DNG \$10  April plant 1  In the stage 1  Copyril 1  WARTLOW  MARKENING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>✓</b>                                       | <b>✓</b>                                          |                                  |                                                    | <b>✓</b>            |                               |                                 |          |
| Optional<br>Display<br>Module                              | <b>E</b> 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>✓</b>                                       | <b>✓</b>                                          | <b>✓</b>                         | <b>✓</b>                                           | <b>✓</b>            |                               |                                 |          |
| Optional<br>Commun-<br>ication<br>Module                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>/</b>                                       | <b>/</b>                                          | <b>✓</b>                         |                                                    | <b>✓</b>            | <b>✓</b>                      | <b>~</b>                        | <b>✓</b> |
| Optional<br>Display<br>and<br>Commun-<br>ication<br>Module | TERRITORIAN TO THE PROPERTY OF | <b>✓</b>                                       | <b>/</b>                                          | <b>✓</b>                         | <b>/</b>                                           | <b>✓</b>            | <b>/</b>                      | <b>✓</b>                        | <b>✓</b> |

#### **Ordering Information**

#### **Part Number**



| 78    | Modules                           |  |  |
|-------|-----------------------------------|--|--|
| 001 = | Base unit                         |  |  |
| 007 = | Display module                    |  |  |
| 008 = | Communications module             |  |  |
| 002 = | Display and communications module |  |  |

# Additional cables for wiring parallel heater circuits (daisy-chaining) in gas line and other assemblies

4800-0012 - Long cable

4800-0022 - Long terminating cable

4800-0011 - Short cable

4800-0021 - Short terminating cable

#### **Compatible Accessories**

#### **Operator Interface Terminals (OIT)**



Silver Series touchscreen operator interface terminals provide a customizable user interface and log and graph data for Watlow controllers and other devices. A Silver Series operator interface terminal paired with Watlow controllers, is the perfect solution for industrial processes or machine control applications.

WATLOW® \_\_\_\_\_\_ 157

#### **SERIES EHG CL**

The SERIES EHG CL integrated, multi-function controller is a key component to a powerful system that includes a heater, an adjustable set point temperature controller, a high/low temperature alert, a power switching device and a high temperature safety limit. Its agency recognized controller/safety limit meets UL® 1998 and CE 60730 requirements.

An optional display/communications module can be easily added in the field to provide a digital display indication, an adjustment of set point, RS485 Modbus® communications and other Human Machine Interface (HMI) features. As a scalable system, only what is needed can be purchased.

The EHG CL controllers' easy to install, compact design, inherent reliability and integrated limit functions offer unmatched value. It is designed for easy integration with Watlow heaters to simplify engineering, reduce component count for new equipment and decrease ownership cost.

For original equipment manufacturers (OEMs), the EHG CL controller's CE, Semi-S2 compliance and UL® recognition reduces time and costs associated with global agency testing and validation. U.S. Patent Number 8,044,329

#### **Features and Benefits**

#### Temperature range -0.4 to 999°F (-18 to 537°C)

Ideal for high temperature applications

#### Process controller and safety limit in one package

- Meets UL® 1998 and CE 60730 requirements
- Eliminates the need for a thermal fuse on a heater
- Eliminates replacement of heater when fuse fails

#### Optional display/communications module

- Allows easy upgrade on to base device
- Offers low cost field upgrade
- Provides easy, snap-on installation

# Accurate and flexible temperature process controller

- Replaces problematic bi-metal thermostats with accurate electronic temperature process controller
- Allows easy change of process parameters

# Ambient operating temperature range 32 to 158°F (0 to 70°C)

 Increases reliability when mounting in harsh temperature environments or in close proximity to heaters



#### Health check diagnostics

- Monitors maximum heater process temperature, maximum ambient temperature and thermocouple operation
- Provides health check signal to inform operator that the process is working correctly

#### Universal power supply

- Allows an input of 85 to 264VAC, 50/60Hz
- Provides safe control of up to 2400 watts with
   10 amperes switching in both controller and safety limit

#### Can be switched from on-off and PID algorithm

- Increases product life (on-off control is default)
- Offers selectable PID control algorithm for tighter temperature uniformity

#### Universal <sup>1</sup>/<sub>8</sub> turn mounting bracket

- Allows mounting to most surfaces
- Provides flexible mounting—either horizontally or vertically

#### **Typical Applications**

#### Semiconductor processing

- · Gas delivery lines
- Exhaust/pump lines

#### Life sciences

- Laboratory equipment
- Medical equipment
- Pharmaceutical

#### **SERIES EHG CL**

#### **Technical Information**

#### **Specifications**

#### **Operational**

- Two, Type K thermocouple inputs process temperature control and safety limit
- Process temperature output 10A NO-ARC relay
- Safety limit alarm 10A relay
- On-off temperature controller algorithm, upgraded via communications or display module to PID algorithm (min. cycle time 30 seconds)

#### Standard Molex® connectors

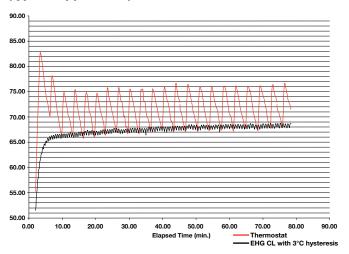
 Controllers are integral to the heater and are supplied by Watlow

#### **Power**

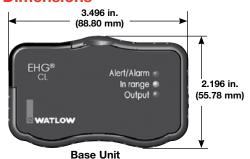
- Isolated universal power supply 85 to 264VAC, 50/60Hz
- Up to 2400 W with 10A switching capability

#### **NO-ARC Relay**

- 10A switching
- 4.5 million cycles


#### **Environmental**

 Ambient operating temperature range 32 to 158°F (0 to 70°C)


#### **Agency Approvals**

- UL® 1998/ C-UL®
- CE 60730
- Semi-S2

# SERIES EHG CL Versus Thermostat (typical application)



#### **Dimensions**





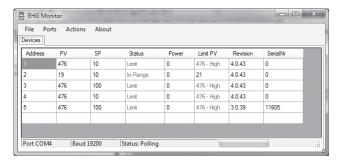


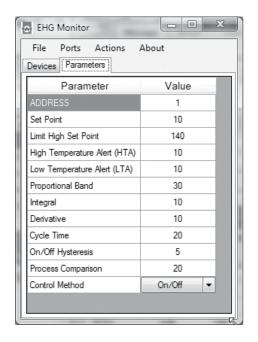
**Without Optional Module** 

With Optional Module

#### **Switching Device Comparison Chart**

|                           | T-Stat                        | Solid State Relay                                       | Watlow NO-ARC Relay                             |
|---------------------------|-------------------------------|---------------------------------------------------------|-------------------------------------------------|
| Amperage at 77°F (25°C)   | 10A                           | 10A                                                     | 10A                                             |
| Amperage at 158°F (70°C)  | 10A                           | De-rate significantly and add heat sink and air cooling | 10A                                             |
| Output device life at 10A | Rated 100,000 at 158°F (70°C) | Greater than 10 million cycles at 77°F (25°C)           | Greater than 4.5 million cycles at 158°F (70°C) |


**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 159


#### SERIES EHG CL

**Technical Information** (Continued)

#### **EHG CL Software**

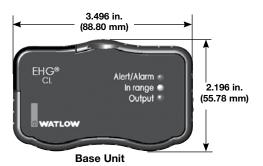
With the addition of an optional communication module, the EHG CL can be managed, monitored and manipulated via software. Change set points, label devices, change tuning parameters, check health status and much more all with the click of a key.





#### **Optional Upgrade Modules**

These upgrade modules are easy to install. There is no need to reconfigure, rewire or reorder the base unit. A technician is not needed for the installation, resulting in a seamless, cost-efficient system that can be upgraded.


|                                           | Diagnostics<br>Memory<br>Control<br>Parameters | Ability to<br>Change<br>Temperature<br>Parameters | Field<br>Adjustable<br>Set Point | 3-Digit<br>7-Segment<br>LED Display<br>Illuminated | Diagnostic<br>LED's | User<br>Interface<br>Software | Modbus <sup>®</sup><br>RTU<br>Communication | RS 485   |
|-------------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------|----------------------------------------------------|---------------------|-------------------------------|---------------------------------------------|----------|
| Base<br>Unit                              | <b>/</b>                                       | <b>✓</b>                                          |                                  |                                                    | <b>✓</b>            |                               |                                             |          |
| Optional Display Module                   | <b>/</b>                                       | <b>/</b>                                          | <b>✓</b>                         | <b>/</b>                                           | <b>✓</b>            |                               |                                             |          |
| Optional<br>Commun-<br>ication<br>Module  | <b>✓</b>                                       | <b>/</b>                                          | <b>✓</b>                         |                                                    | <b>✓</b>            | <b>✓</b>                      | <b>✓</b>                                    | <b>✓</b> |
| Optional Display and Communication Module | <b>✓</b>                                       | <b>/</b>                                          | <b>✓</b>                         | <b>/</b>                                           | <b>✓</b>            | <b>✓</b>                      | <b>✓</b>                                    | <b>✓</b> |

#### **SERIES EHG CL**

#### **Technical Information** (Continued)



Modules can be upgraded and are easily replaceable.





**Communications Only Module** 



**Display Only Module** 



**Display and Communications Module** 

#### **Ordering Information**

#### Part Number

| 1 2 3 4 5 6 | 789             |
|-------------|-----------------|
|             | Base/<br>Module |
| 265 EG3     |                 |

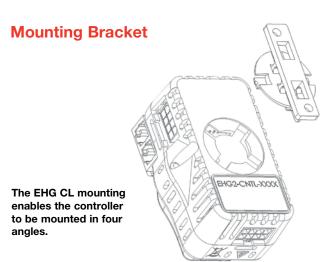
| 78    | Base/Module                                                     |
|-------|-----------------------------------------------------------------|
| 001 = | Base unit (extended temperature range)                          |
| 002 = | Display module (extended temperature range)                     |
| 003 = | Communications module (extended temperature range)              |
| 004 = | Display with communications module (extended temperature range) |

# Additional cables for wiring parallel heater circuits (daisy-chaining) in gas line and other assemblies

4800-0012 - Long cable

4800-0022 - Long terminating cable

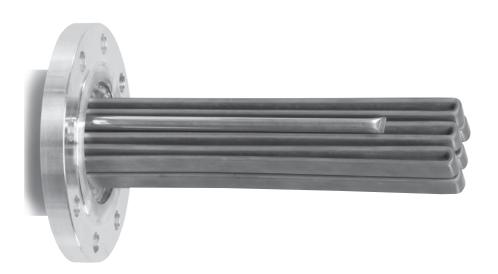
4800-0011 - Short cable


4800-0021 - Short terminating cable

#### **Availability**

The EHG CL is available for shipment; please contact your Watlow representative for more information.




The EHG CL can be "daisy-chained" for gas line and other assemblies.





# **Immersion Heaters**

| Immersion Heaters                | Sheath Materials    | _    | perating<br>ratures<br>°C |     | al Max.<br>ensities<br>W/cm² | Page |
|----------------------------------|---------------------|------|---------------------------|-----|------------------------------|------|
| WATROD and FIREBAR®              | Alloy 800/840       | 1600 | 870                       | 120 | 18.6                         |      |
| Screw Plug                       | Stainless steel     | 1200 | 650                       | 120 | 18.6                         | 165  |
|                                  | Steel               | 750  | 400                       | 120 | 18.6                         |      |
| Screw Plug with Control Assembly | Alloy 800           | 1600 | 870                       | 60  | 9.3                          | 235  |
| WATROD and FIREBAR               | Alloy 800           | 1600 | 870                       | 100 | 15.5                         |      |
| ANSI Flange                      | Stainless steel     | 1200 | 650                       | 100 | 15.5                         | 237  |
|                                  | Steel               | 750  | 400                       | 100 | 15.5                         |      |
| WATROD and FIREBAR Flar          | nge                 |      |                           |     |                              |      |
| Plate Flange                     | Alloy 800/840       | 1600 | 870                       | 60  | 9.3                          |      |
|                                  | 304 stainless steel | 1200 | 650                       | 100 | 15.5                         | 307  |
|                                  | Steel               | 750  | 400                       | 30  | 4.7                          |      |
| Square Flange                    | Alloy 800           | 1600 | 870                       | 100 | 15.5                         | 313  |
| Bayonet/Pipe Insert              | Alloy 800           | 1600 | 870                       | 10  | 1.6                          |      |
|                                  | Steel               | 750  | 400                       | 10  | 1.6                          | 316  |
| Over-the-Side                    |                     |      |                           |     |                              |      |
| L and O Shaped                   | Alloy 800           | 1600 | 870                       | 60  | 9.3                          | 318  |
| FIREROD®                         | Alloy 800           | 212  | 100                       | 300 | 46.5                         | 323  |



**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 163



### WATROD™ and FIREBAR® Screw Plug Immersion Heaters

Screw plug immersion heaters are ideal for direct immersion heating of liquids, including all types of oils and heat transfer solutions.

Available in a variety of sizes, Watlow<sup>®</sup> screw plug immersion heaters feature both WATROD™ round and FIREBAR<sup>®</sup> flat tubular elements.

Heating elements are hairpin bent and either welded or brazed into the screw plug—depending on element sheath and plug material compatibility.

General purpose terminal enclosures are standard; with optional moisture resistant, explosion resistant and explosion/moisture resistant enclosures available to meet specific application needs.

Optional thermostats provide convenient process temperature regulation.

#### **Performance Capabilities**

- Watt densities up to 120 W/in<sup>2</sup> (18.6 W/cm<sup>2</sup>)
- Wattages up to 38 kilowatts
- UL® and CSA component recognition up to 480VAC and 600VAC respectively
- Alloy 800/840 sheath temperatures up to 1600°F (870°C)
- Passivated 316 stainless steel sheath temperatures up to 1200°F (650°C)
- 304 stainless steel sheath temperatures up to 1200°F (650°C)
- Steel sheath temperatures up to 750°F (400°C)

#### **Features and Benefits**

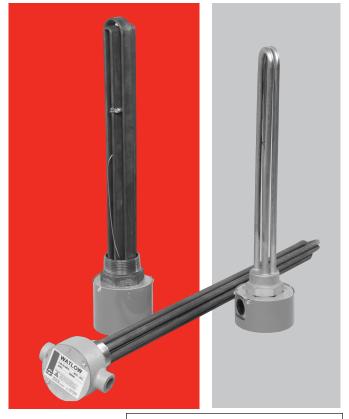
# A variety of element sheath and screw plug materials

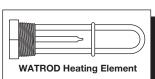
• Meets your application needs

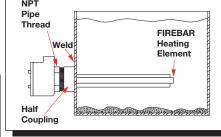
#### Integral thermowells

 Provides convenient temperature sensor insertion and replacement without draining the fluid being heated

#### **Terminal enclosures**


 Provides ability to be rotated to simplify connection with existing conduits


# Welding or brazing WATROD and FIREBAR elements to the screw plug


Provides a pressure tight seal

#### WATROD hairpins are repressed (recompacted)

Maintains MgO density, dielectric strength, heat transfer and life







# 2<sup>1</sup>/<sub>2</sub> in. (64 mm) NPT screw plug assemblies feature element support(s)

- Ensures proper spacing for maximizing heater performance and life
- · Screw plug and element sizes:

| 1 in. NPT                             | 0.260 and 0.315 in. WATROD |
|---------------------------------------|----------------------------|
| 1 <sup>1</sup> / <sub>4</sub> in. NPT | 0.260 and 0.315 in. WATROD |
|                                       | 1 in. FIREBAR              |
| 2 in. NPT                             | 0.430 and 0.475 in. WATROD |
| 21/2 in. NPT                          | 0.430 and 0.475 in. WATROD |
|                                       | 1 in. FIREBAR              |

Phase capability:

| 1 in. NPT                                                    | 1-Phase       |
|--------------------------------------------------------------|---------------|
| 1 <sup>1</sup> /4, 2, 2 <sup>1</sup> / <sub>2</sub> in., NPT | 1- or 3-Phase |

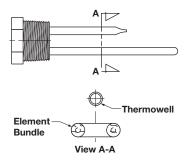
UL® and CSA component recognition under File E52951 and 31388 respectively, see pages 561 to 568 for details.

# WATROD and FIREBAR Screw Plug Immersion Heaters

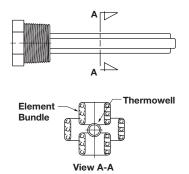
#### **Typical Applications**

- Water:
  - Deionized
  - Demineralized
  - Clean
  - Potable
  - **Process**
- · Industrial water rinse tanks
- Vapor degreasers

- Hydraulic oil, crude, asphalt
- Lubricating oils at API specified watt densities
- · Air and gas flow
- Caustic solutions
- Chemical baths
- Anti-freeze (glycol) solutions
- Paraffin

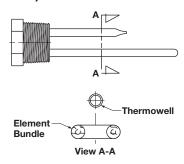

#### Screw Plug Orientation

Correct element/thermowell orientation assures proper process temperature sensing.

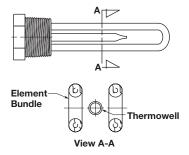

Correct horizontal mounting of WATROD and FIREBAR screw plugs is shown below. Correct orientation assures optimum performance and maximum heater life. Additional mounting information is provided in the *Installation and Maintenance Instructions*.

#### **FIREBAR Heating Elements**

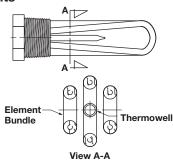
1<sup>1</sup>/<sub>4</sub> in. (32 mm) NPT-One Element




#### 2<sup>1</sup>/<sub>2</sub> in. (64 mm) NPT-Three Elements




#### **WATROD** Heating Element


1 in. (25 mm) NPT-One Element



# 1<sup>1</sup>/<sub>4</sub> in. (32 mm) and 2 in. (51 mm) NPT–Two Elements



# 2 in. (51 mm) and $2^{1}/_{2}$ in. (64 mm) NPT-Three Elements



#### WATROD and FIREBAR Screw Plug Immersion Heaters

#### **Options**

#### **Terminal Enclosures**

General purpose terminal enclosures, without thermostats, are available on all screw plug immersion heaters. To meet specific application requirements, Watlow offers the following optional terminal enclosures:

- General purpose with single- or double-pole thermostat
- Moisture-resistant or corrosion resistant—available with optional single- or double-pole thermostat
- Non-certified, explosion-resistant suitable for use in non-classified areas only—available with optional single or double-pole thermostat
- Non-certified, explosion and moisture-resistant combination suitable for use in non-classified areas only—available with optional single- or double-pole thermostat

**Note:** Unless otherwise stated on the accompanying illustrations, both WATROD and FIREBAR screw plugs are centered on the terminal enclosure. To order, add the suffix letter(s) to the screw plug heater's base part number. This is depicted on the ordering example on page 234. Also, specify class and group, if applicable.

#### **CSA Certified Enclosures**

These enclosures are suitable for Class 1, Groups B, C and D classified areas. CSA certified moisture and/or explosion-resistant terminal enclosures protect wiring in hazardous gas environments. These terminal enclosures, covered under CSA File number 61707, are available on all WATROD and FIREBAR screw plug immersion heaters. For additional information, contact your Watlow representative.

To order, specify **CSA certified enclosure**, **process temperature** (°F), maximum **working pressure** of application (psig), **media** being heated and heater **mounting orientation** (horizontal or vertical) and **screw plug size**.

#### **Pilot Light**

The optional pilot light gives the operator visual indication of heater on or off power status.

The PL10 pilot light is configured to a maximum 250VAC and supplied with 6 in. (152 mm) leads.

The PL11 pilot light is rated for 480VAC and supplied with 4 in. (102 mm) leads.

Pilot lights may be attached to either single- or doublepole thermostats with general purpose enclosure only.

#### **Thermostats**

To provide process temperature control, Watlow offers optional single-pole, single-throw (SPST) and double-pole, single-throw (DPST) thermostats.

Unless otherwise specified, thermostats are mounted inside the terminal enclosure. For details and ordering information, refer to *Thermostats* on pages 534 to 538. Please verify that the thermostat's sensing bulb O.D. is compatible with the screw plug's thermowell I.D.



#### Caution:

Certified explosion-resistant terminal enclosures are intended to provide explosion containment in the electrical termination/wiring enclosure only. No portion of the assembly outside of this enclosure is covered under this enclosure rating. Enclosure rating effectiveness may be compromised by abuse or misapplication.

WATLOW® \_\_\_\_\_\_ 167

#### WATROD and FIREBAR Screw Plug Immersion Heaters

**Options** (Continued)

#### **Thermocouples**

Type J or K thermocouples offer extremely accurate sensing of process and/or sheath temperatures. A thermocouple may be inserted into the thermowell or attached to the heater's sheath.

Thermocouples are supplied with 120 in. (3048 mm) leads (longer lead lengths available). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the *Thermocouple Types* chart.

Using a thermocouple requires an appropriate temperature and power controller and these must be purchased separately. Watlow offers a wide variety of temperature and power controllers to meet virtually all applications. Temperature controllers can be configured to accept process variable inputs, too. Contact your Watlow representative for details.

To order, specify **Type J** or **K** thermocouple and lead length. Indicate if the thermocouple is for **process temperature sensing** or heater sheath **high-limit protection**. Please specify if the screw plug will be mounted **vertical** or **horizontal** in the tank. **If vertical**, **indicate** if the **housing** is on top or **bottom**.

If the screw plug heater is mounted in an in-line circulation heating application, indicate flow direction relative to the heater's enclosure.

#### **Thermocouple Types**

| ASTM | Conductor C    | haracteristics |           | mended ①<br>iture Range |
|------|----------------|----------------|-----------|-------------------------|
| Type | Positive       | Negative       | °F        | (°C)                    |
| J    | Iron           | Constantan     | 0 to 1000 | (-20 to 540)            |
|      | (Magnetic)     | (Non-Magnetic) |           |                         |
| K    | Chromel®       | Alumel®        | 0 to 2000 | (-20 to 1100)           |
|      | (non-magnetic) | (Magnetic)     |           |                         |

① Type J and Type K thermocouples are rated 32 to 1382°F and 32 to 2282°F (0-750°C and 0-1250°C), respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.

#### Wattages and Voltages

Watlow routinely supplies screw plug immersion heaters with 120 to 480VAC as well as wattages from 250 watts to 38kW.

#### **Sheath Materials**

The following sheath materials are available on WATROD and FIREBAR heating elements:

#### **Standard Sheath Materials**

| WATROD  | Alloy 800/840 |  |
|---------|---------------|--|
|         | 316 SS        |  |
|         | Steel         |  |
| FIREBAR | Alloy 800     |  |

#### **Exotic Sheath Materials**

Contact your Watlow representative for details and availability.

#### **External Finishing**

#### **Passivation**

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode, produce rust spots and/or contaminate the process. For critical applications, passivation will remove free iron from the sheath. To order, specify **passivation**.

#### Other Finishes

Bright annealing available to meet cosmetic demands.

#### **Screw Plug Materials**

The following screw plug materials are available:

To order, specify **screw plug size** and **material**.

#### Standard Screw Plug Materials

| WATROD  | 304 SS, Brass |
|---------|---------------|
|         | Steel         |
| FIREBAR | 304 SS        |

#### **Made-to-Order Plug Materials**

For both WATROD and FIREBAR, contact your Watlow representative about details and availability.

# WATROD and FIREBAR Screw Plug Immersion Heaters

**Options** (Continued)

#### **Screw Plug Sizes**

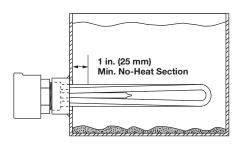
Including European

• **NPT** $-\frac{3}{4}$ , 1,  $\frac{11}{4}$ , 2,  $\frac{21}{2}$  in.

To order, specify **size**, **style** (NPT) and material.

#### **Screw Plug to Flange Adapters**

Screw plug to flange adapters permit replacing flange heaters with screw plug heaters. To order, specify the appropriate part number.


#### **Screw Plug to Flange Adapters**

| Screw Plug<br>to Flange                   |          |     | imated<br>ping Wt. |          | Part    |
|-------------------------------------------|----------|-----|--------------------|----------|---------|
| Adapter Sizes                             | Material | lbs | (kg)               | Delivery | Number  |
| 1 <sup>1</sup> / <sub>4</sub> to 3 in150# | Steel    | 13  | (5.9)              | RS       | 125X3SA |
| 2 <sup>1</sup> / <sub>2</sub> to 3 in150# | Steel    | 11  | (5.0)              | RS       | 250X3SA |
| 2 <sup>1</sup> / <sub>2</sub> to 4 in150# | Steel    | 16  | (7.3)              | RS       | 250X4SA |
| 2 <sup>1</sup> / <sub>2</sub> to 5 in150# | Steel    | 25  | (11.3)             | RS       | 250X5SA |
| 2 <sup>1</sup> / <sub>2</sub> to 6 in150# | Steel    | 33  | (15.0)             | RS       | 250X6SA |



#### **Application Hints**

- Select the recommended sheath material and watt density for the substance being heated. Use the Supplemental Applications Chart on pages 555 to 560.
   If unable to determine the correct heater material and type, contact your Watlow representative.
- Extend the element's no-heat section completely into the fluid being heated to help prevent premature heater failure. See illustration below for proper no-heat section placement.
- Locate screw plug heater low in the tank, but above the sludge level.



- Choose a FIREBAR element when the application requires a smaller system package or lower watt density.
- Ensure wiring integrity by making sure terminal enclosure temperature does not exceed 400°F (205°C).
- Keep electrical connections clean, dry and tight.
- Size power feeder wires in accordance with National Electrical Code guidelines and other applicable codes.
- Size power feeder wires in accordance with national electrical code guidelines and other applicable codes.
- Minimize problems associated with low liquid level conditions by using a low liquid level sensor or sheath temperature high-limit control.
- Periodically remove the screw plug assembly for inspection and clean the heating element(s). This preventive maintenance will reduce premature failure and optimize heater performance.
- Refer to the Installation and Maintenance Instructions for correct orientation of FIREBAR elements. Correct element orientation to flow minimizes pressure drop, increases buoyancy force and heater performance.



# Extended Capabilities For WATROD and FIREBAR Screw Plug Immersion Heaters

#### **Options**

#### **Pilot Light**

The optional pilot light gives the operator visual indication of heater on or off power status.

The PL10 pilot light is configured to a maximum 250VAC and supplied with 6 in. (152 mm) leads.

The PL11 pilot light is rated for 480VAC and supplied with 4 in. (102 mm) leads.

Pilot lights may be attached to either single or double pole thermostats with general purpose enclosure only. For moisture or explosion resistant terminal enclosures, contact your Watlow representative.

To order, refer to the Ordering Information on page 234.

#### **Wattages and Voltages**

Watlow routinely supplies screw plug immersion heaters with 120 to 480VAC as well as wattages from 250 watts to 38kW. If required, Watlow may configure heaters with voltages and wattages outside these parameters. For more information on special voltage and wattage configurations, contact your Watlow representative.

#### **Extended Sheath Materials**

The following sheath materials are available on WATROD and FIREBAR heating elements:

#### **Extended Sheath Materials**

| WATROD  | 304 and 321 SS<br>Alloy 400 and 600 |
|---------|-------------------------------------|
|         | Titanium<br>Hastelloy C276          |
| FIREBAR | 304 SS<br>Alloy 800                 |

#### **Screw Plug Materials**

The following screw plug materials are available: To order, specify **screw plug size** and **material**.

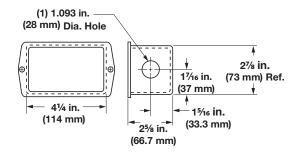
#### **Extended Screw Plug Materials**

| WATROD | 304, 304H, 316H, 321 SS |
|--------|-------------------------|
|        | Titanium                |
|        | Alloy 400 and 600       |
|        | Hastelloy C276          |
|        | Alloy 800/840           |

#### **Screw Plug Sizes**

Including European

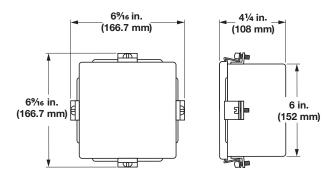
- Gas (Gas Pipe Standard) G1<sup>1</sup>/<sub>4</sub>, G1<sup>1</sup>/<sub>2</sub>, G2 in. (brass only)
- BSP (British Standard Pipe) 1<sup>1</sup>/<sub>2</sub>, 2 in. (stainless steel only)


Contact your Watlow representative for sizes and materials not listed.

# WATROD and FIREBAR Screw Plug Immersion Heaters

#### **Optional Moisture Resistant Housings**

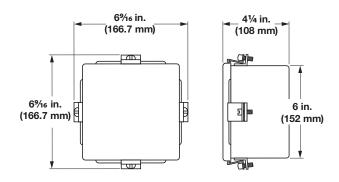
#### **Single-Pole Thermostat**


1 and 1<sup>1</sup>/<sub>4</sub> inch NPT-1 WATROD Element



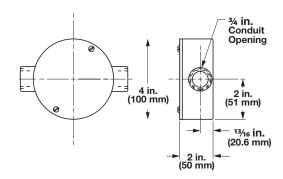
**Note:** The thermostat is not centered on the WATROD screw plug immersion heater.

#### **Single-Pole Thermostat**


All 2 and 21/2 inch NPT



**To order:** Reference "W" in the *Ordering Information* section on page 234.

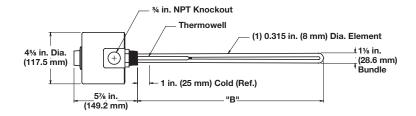

#### **Double-Pole Thermostat**

1<sup>1</sup>/<sub>4</sub> inch NPT-2 WATROD Elements 1<sup>1</sup>/<sub>4</sub> inch NPT-1 FIREBAR Element All 2 and 2<sup>1</sup>/<sub>2</sub> inch NPT screw plugs



**Note:** The thermostat is not centered on the screw plug immersion heater.

#### **Without Thermostat**




### **WATROD and FIREBAR Screw Plug Immersion Heaters**



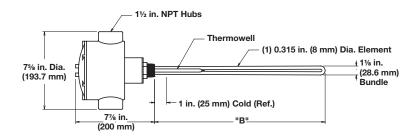
### **Application: Clean Water**

- 1 inch NPT screw plug
- WATROD elements
- With thermostat (SPST)
- General purpose enclosure



|                           |       |      |    |                                |              |             |             | Type 2 (30 to 25 | 0°F)      | Type 3 (175 to 5 | 50°F) |
|---------------------------|-------|------|----|--------------------------------|--------------|-------------|-------------|------------------|-----------|------------------|-------|
| Description               | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number   | Del.      | Part<br>Number ② | Del.  |
|                           |       |      |    |                                |              |             |             | C                | eneral Pu | rpose Enclosure  |       |
| 60 W/in²                  | 120   | 0.50 | 1  | 4 <sup>1</sup> /2              | (114.0)      | 3           | (2)         | BCN4J1S2         | RS        | BCN4J1S3         | RS    |
| Brass Plug<br>1-Alloy 800 | 240   | 0.50 | 1  | 41/2                           | (114.0)      | 3           | (2)         | BCN4J10S2        | RS        | BCN4J10S3        | RS    |
| Element                   | 120   | 0.75 | 1  | 6 <sup>1</sup> /2              | (165.0)      | 3           | (2)         | BCN6J1S2         | RS        | BCN6J1S3         | RS    |
|                           | 240   | 0.75 | 1  | 6 <sup>1</sup> / <sub>2</sub>  | (165.0)      | 3           | (2)         | BCN6J10S2        | RS        | BCN6J10S3        | RS    |
|                           | 120   | 1.00 | 1  | 6 <sup>5</sup> /8              | (168.3)      | 3           | (2)         | BCN6L1S2         | RS        | BCN6L1S3         | RS    |
|                           | 240   | 1.00 | 1  | 6 <sup>5</sup> /8              | (168.3)      | 3           | (2)         | BCN6L10S2        | RS        | BCN6L10S3        | RS    |
|                           | 120   | 1.25 | 1  | 8                              | (203.0)      | 4           | (2)         | BCN8A1S2         | RS        | BCN8A1S3         | RS    |
|                           | 240   | 1.25 | 1  | 8                              | (203.0)      | 4           | (2)         | BCN8A10S2        | RS        | BCN8A10S3        | RS    |
|                           | 120   | 1.50 | 1  | 10 <sup>5</sup> /8             | (269.9)      | 4           | (2)         | BCN10L1S2        | RS        | BCN10L1S3        | RS    |
|                           | 240   | 1.50 | 1  | 10 <sup>5</sup> /8             | (269.9)      | 4           | (2)         | BCN10L10S2       | RS        | BCN10L10S3       | RS    |
|                           | 120   | 2.00 | 1  | 12 <sup>1</sup> / <sub>2</sub> | (318.0)      | 5           | (3)         | BCN12J1S2        | RS        | BCN12J1S3        | RS    |
|                           | 240   | 2.00 | 1  | 12 <sup>1</sup> / <sub>2</sub> | (318.0)      | 5           | (3)         | BCN12J10S2       | RS        | BCN12J10S3       | RS    |
|                           | 120   | 2.50 | 1  | 14 <sup>3</sup> / <sub>4</sub> | (375.0)      | 5           | (3)         | BCN14N1S2        | RS        | BCN14N1S3        | RS    |
|                           | 240   | 2.50 | 1  | 14 <sup>3</sup> /4             | (375.0)      | 5           | (3)         | BCN14N10S2       | RS        | BCN14N10S3       | RS    |
|                           | 120   | 3.00 | 1  | 16 <sup>3</sup> /4             | (425.0)      | 6           | (3)         | BCN16N1S2        | RS        | BCN16N1S3        | RS    |
|                           | 240   | 3.00 | 1  | 16 <sup>3</sup> /4             | (425.0)      | 6           | (3)         | BCN16N10S2       | RS        | BCN16N10S3       | RS    |
|                           | 240   | 4.00 | 1  | 21                             | (533.0)      | 6           | (3)         | BCN21A10S2       | RS        | BCN21A10S3       | RS    |




 RS - Next day shipment up to 5 pieces **Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

2 UL® recognized only

# WATROD and FIREBAR Screw Plug Immersion Heaters

#### **Application: Clean Water**

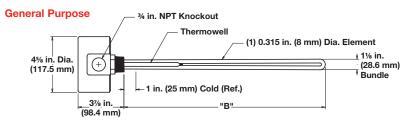
- 1 inch NPT screw plug
- WATROD elements
- With thermostat (SPST)
- Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)

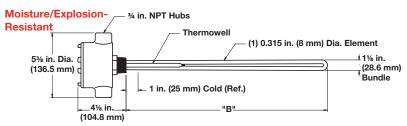


|                           |       |      |    |                                |              |             |             | Type 2 (30 to 25  | ю° <b>F</b> ) | Type 3 (175 to 5 | 50°F) |
|---------------------------|-------|------|----|--------------------------------|--------------|-------------|-------------|-------------------|---------------|------------------|-------|
| Description               | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number    | Del.          | Part<br>Number   | Del.  |
|                           |       |      |    |                                |              |             |             | Moisture/Explosio | n-Resistar    | nt Enclosure ⑤   |       |
| 60 W/in²                  | 120   | 0.50 | 1  | 41/2                           | (114.0)      | 3           | (2)         | BCN4J1C2          | RS            | BCN4J1C3         | RS    |
| Brass Plug<br>1-Alloy 800 | 240   | 0.50 | 1  | 41/2                           | (114.0)      | 3           | (2)         | BCN4J10C2         | RS            | BCN4J10C3        | RS    |
| Element                   | 120   | 0.75 | 1  | 6 <sup>1</sup> / <sub>2</sub>  | (165.0)      | 3           | (2)         | BCN6J1C2          | RS            | BCN6J1C3         | RS    |
| (9.3 W/cm <sup>2</sup> )  | 240   | 0.75 | 1  | 6 <sup>1</sup> / <sub>2</sub>  | (165.0)      | 3           | (2)         | BCN6J10C2         | RS            | BCN6J10C3        | RS    |
|                           | 120   | 1.00 | 1  | 6 <sup>5</sup> /8              | (168.3)      | 3           | (2)         | BCN6L1C2          | RS            | BCN6L1C3         | RS    |
|                           | 240   | 1.00 | 1  | 6 <sup>5</sup> /8              | (168.3)      | 3           | (2)         | BCN6L10C2         | RS            | BCN6L10C3        | RS    |
|                           | 120   | 1.25 | 1  | 8                              | (203.0)      | 4           | (2)         | BCN8A1C2          | RS            | BCN8A1C3         | RS    |
|                           | 240   | 1.25 | 1  | 8                              | (203.0)      | 4           | (2)         | BCN8A10C2         | RS            | BCN8A10C3        | RS    |
|                           | 120   | 1.50 | 1  | 10 <sup>5</sup> /8             | (269.9)      | 4           | (2)         | BCN10L1C2         | RS            | BCN10L1C3        | RS    |
|                           | 240   | 1.50 | 1  | 10 <sup>5</sup> /8             | (269.9)      | 4           | (2)         | BCN10L10C2        | RS            | BCN10L10C3       | RS    |
|                           | 120   | 2.00 | 1  | 12 <sup>1</sup> / <sub>2</sub> | (318.0)      | 5           | (3)         | BCN12J1C2         | RS            | BCN12J1C3        | RS    |
|                           | 240   | 2.00 | 1  | 12 <sup>1</sup> / <sub>2</sub> | (318.0)      | 5           | (3)         | BCN12J10C2        | RS            | BCN12J10C3       | RS    |
|                           | 120   | 2.50 | 1  | 14 <sup>3</sup> / <sub>4</sub> | (375.0)      | 5           | (3)         | BCN14N1C2         | RS            | BCN14N1C3        | RS    |
|                           | 240   | 2.50 | 1  | 14 <sup>3</sup> /4             | (375.0)      | 5           | (3)         | BCN14N10C2        | RS            | BCN14N10C3       | RS    |
|                           | 120   | 3.00 | 1  | 16 <sup>3</sup> /4             | (425.0)      | 6           | (3)         | BCN16N1C2         | RS            | BCN16N1C3        | RS    |
|                           | 240   | 3.00 | 1  | 16 <sup>3</sup> /4             | (425.0)      | 6           | (3)         | BCN16N10C2        | RS            | BCN16N10C3       | RS    |
|                           | 240   | 4.00 | 1  | 21                             | (533.0)      | 6           | (3)         | BCN21A10C2        | RS            | BCN21A10C3       | RS    |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


S No third party recognition


### WATROD and FIREBAR Screw Plug Immersion Heaters



### **Application: Clean Water**

- 1 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

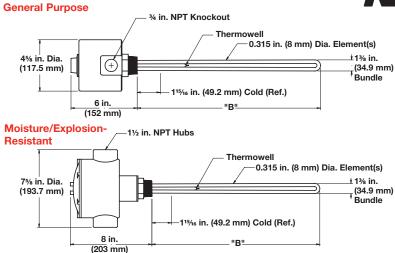




| Description               | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Part<br>Number | Del.      | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number ® | Del.        | Ship<br>Ibs | Wt.<br>(kg) |
|---------------------------|-------|------|----|--------------------------------|--------------|----------------|-----------|-------------|-------------|------------------|-------------|-------------|-------------|
|                           |       |      |    |                                |              | General P      | urpose En | closure     | •           | Moisture/Explosi | on-Resistan | t Encl      | osure       |
| 60 W/in <sup>2</sup>      | 120   | 0.50 | 1  | 41/2                           | (114.0)      | BCN4J1S        | RS        | 3           | (2)         | BCN4J1C          | RS          | 6           | (3)         |
| Brass Plug<br>1-Alloy 800 | 240   | 0.50 | 1  | 41/2                           | (114.0)      | BCN4J10S       | RS        | 3           | (2)         | BCN4J10C         | RS          | 6           | (3)         |
| Element                   | 120   | 0.75 | 1  | 6 <sup>1</sup> / <sub>2</sub>  | (165.0)      | BCN6J1S        | RS        | 3           | (2)         | BCN6J1C          | RS          | 6           | (3)         |
| (9.3 W/cm <sup>2</sup> )  | 240   | 0.75 | 1  | 6 <sup>1</sup> / <sub>2</sub>  | (165.0)      | BCN6J10S       | RS        | 3           | (2)         | BCN6J10C         | RS          | 6           | (3)         |
|                           | 120   | 1.00 | 1  | 6 <sup>5</sup> /8              | (168.3)      | BCN6L1S        | RS        | 3           | (2)         | BCN6L1C          | RS          | 6           | (3)         |
|                           | 240   | 1.00 | 1  | 6 <sup>5</sup> /8              | (168.3)      | BCN6L10S       | RS        | 3           | (2)         | BCN6L10C         | RS          | 6           | (3)         |
|                           | 120   | 1.25 | 1  | 8                              | (203.0)      | BCN8A1S        | RS        | 4           | (2)         | BCN8A1C          | RS          | 7           | (4)         |
|                           | 240   | 1.25 | 1  | 8                              | (203.0)      | BCN8A10S       | RS        | 4           | (2)         | BCN8A10C         | RS          | 7           | (4)         |
|                           | 120   | 1.50 | 1  | 10 <sup>5</sup> /8             | (269.9)      | BCN10L1S       | RS        | 4           | (2)         | BCN10L1C         | RS          | 7           | (4)         |
|                           | 240   | 1.50 | 1  | 10 <sup>5</sup> /8             | (269.9)      | BCN10L10S      | RS        | 4           | (2)         | BCN10L10C        | RS          | 7           | (4)         |
|                           | 120   | 2.00 | 1  | 12 <sup>1</sup> / <sub>2</sub> | (318.0)      | BCN12J1S       | RS        | 5           | (3)         | BCN12J1C         | RS          | 8           | (4)         |
|                           | 240   | 2.00 | 1  | 12 <sup>1</sup> / <sub>2</sub> | (318.0)      | BCN12J10S      | RS        | 5           | (3)         | BCN12J10C        | RS          | 8           | (4)         |
|                           | 120   | 2.50 | 1  | 143/4                          | (375.0)      | BCN14N1S       | RS        | 5           | (3)         | BCN14N1C         | RS          | 8           | (4)         |
|                           | 240   | 2.50 | 1  | 143/4                          | (375.0)      | BCN14N10S      | RS        | 5           | (3)         | BCN14N10C        | RS          | 8           | (4)         |
|                           | 120   | 3.00 | 1  | 16 <sup>3</sup> / <sub>4</sub> | (425.0)      | BCN16N1S       | RS        | 6           | (3)         | BCN16N1C         | RS          | 9           | (4)         |
|                           | 240   | 3.00 | 1  | 16 <sup>3</sup> /4             | (425.0)      | BCN16N10S      | RS        | 6           | (3)         | BCN16N10C        | RS          | 9           | (4)         |
|                           | 240   | 4.00 | 1  | 21                             | (533.0)      | BCN21A10S      | RS        | 6           | (3)         | BCN21A10C        | RS          | 9           | (4)         |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


S No third party recognition

### WATROD and FIREBAR Screw Plug Immersion Heaters General P

# Al

#### **Application: Clean Water**

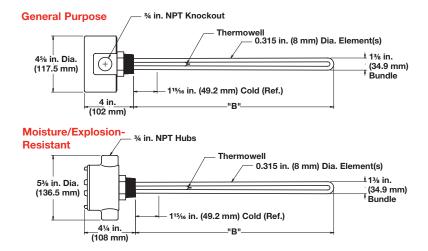
- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- WATROD elements
- With thermostat (SPST)
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



|                           |         |      |    |                                |              |             |     | Type 2 (30 to 2 | 50° <b>F</b> ) | Type 3 (175 to   | 550°F) |
|---------------------------|---------|------|----|--------------------------------|--------------|-------------|-----|-----------------|----------------|------------------|--------|
| Description               | Volts   | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs |     | Part<br>Number  | Del.           | Part<br>Number ® | Del.   |
|                           |         |      |    |                                |              |             |     |                 | 1              | pose Enclosure   |        |
| 60 W/in²                  | 120     | 0.50 | 1  | 4 <sup>3</sup> /8              | (111.1)      | 3           | (2) | BDN4G1S2        | RS             | BDN4G1S3         | RS     |
| Brass Plug<br>1-Alloy 800 | 240     | 0.50 | 1  | 4 <sup>3</sup> /8              | (111.1)      | 3           | (2) | BDN4G10S2       | RS             | BDN4G10S3        | RS     |
| Element                   | 120     | 0.75 | 1  | 6 <sup>3</sup> /8              | (161.9)      | 3           | (2) | BDN6G1S2        | RS             | BDN6G1S3         | RS     |
| (9.3 W/cm²)               | 240     | 0.75 | 1  | 6 <sup>3</sup> /8              | (161.9)      | 3           | (2) | BDN6G10S2       | RS             | BDN6G10S3        | RS     |
| 60 W/in² ④                | 120/240 | 1.00 | 1  | 4 <sup>3</sup> /8              | (111.1)      | 4           | (2) | BEN4G6S2        | RS             | BEN4G6S3         | RS     |
| Brass Plug                | 120/240 | 1.50 | 1  | 6 <sup>3</sup> /8              | (161.9)      | 4           | (2) | BEN6G6S2        | RS             | BEN6G6S3         | RS     |
| 2-Alloy 800<br>Elements   | 120/240 | 2.00 | 1  | 8 <sup>1</sup> / <sub>2</sub>  | (216.0)      | 5           | (3) | BEN8J6S2        | RS             | BEN8J6S3         | RS     |
| 9.3 W/cm²)                | 120/240 | 2.50 | 1  | 10 <sup>3</sup> /4             | (273.0)      | 5           | (3) | BEN10N6S2       | RS             | BEN10N6S3        | RS     |
|                           | 120/240 | 3.00 | 1  | 15                             | (381.0)      | 6           | (3) | BEN15A6S2       | RS             | BEN15A6S3        | RS     |
|                           | 240     | 4.00 | 1  | 19                             | (483.0)      | 7           | (4) | BEN19A10S2      | RS             | BEN19A10S3       | RS     |
|                           | 240     | 5.00 | 1  | 23 <sup>1</sup> / <sub>2</sub> | (597.0)      | 8           | (4) | BEN23J10S2      | RS             | BEN23J10S3       | RS     |
|                           | 240     | 6.00 | 1  | 27 <sup>1</sup> /2             | (699.0)      | 9           | (4) | BEN27J10S2      | RS             | BEN27J10S3       | RS     |
|                           |         |      |    |                                |              |             |     |                 |                |                  |        |
|                           |         |      |    |                                |              |             |     | Moisture/Explos | ion-Resist     | ant Enclosure 5  |        |
| 60 W/in²                  | 120     | 0.50 | 1  | 4 <sup>3</sup> /8              | (111.1)      | 7           | (4) | BDN4G1C2        | RS             | BDN4G1C3         | RS     |
| Brass Plug<br>1-Alloy 800 | 240     | 0.50 | 1  | 4 <sup>3</sup> /8              | (111.1)      | 7           | (4) | BDN4G10C2       | RS             | BDN4G10C3        | RS     |
| Element                   | 120     | 0.75 | 1  | 6 <sup>3</sup> /8              | (161.9)      | 7           | (4) | BDN6G1C2        | RS             | BDN6G1C3         | RS     |
| (9.3 W/cm²)               | 240     | 0.75 | 1  | 6 <sup>3</sup> /8              | (161.9)      | 7           | (4) | BDN6G10C2       | RS             | BDN6G10C3        | RS     |
|                           |         |      |    |                                |              |             |     |                 |                |                  |        |
| 60 W/in² ④                | 120/240 | 1.00 | 1  | 4 <sup>3</sup> /8              | (111.1)      | 8           | (4) | BEN4G6C2        | RS             | BEN4G6C3         | RS     |
| Brass Plug<br>2-Alloy 800 | 120/240 | 1.50 | 1  | 6 <sup>3</sup> /8              | (161.9)      | 8           | (4) | BEN6G6C2        | RS             | BEN6G6C3         | RS     |
| Elements                  | 120/240 | 2.00 | 1  | 8 <sup>1</sup> / <sub>2</sub>  | (216.0)      | 9           | (4) | BEN8J6C2        | RS             | BEN8J6C3         | RS     |
| (9.3 W/cm²)               | 120/240 | 2.50 | 1  | 10 <sup>3</sup> /4             | (273.0)      | 9           | (4) | BEN10N6C2       | RS             | BEN10N6C3        | RS     |
|                           | 120/240 | 3.00 | 1  | 15                             | (381.0)      | 10          | (5) | BEN15A6C2       | RS             | BEN15A6C3        | RS     |
|                           | 240     | 4.00 | 1  | 19                             | (483.0)      | 11          | (5) | BEN19A10C2      | RS             | BEN19A10C3       | RS     |
|                           | 240     | 5.00 | 1  | 23 <sup>1</sup> / <sub>2</sub> | (597.0)      | 12          | (6) | BEN23J10C2      | RS             | BEN23J10C3       | RS     |
|                           |         |      |    |                                |              |             |     |                 |                |                  |        |



 RS - Next day shipment up to 5 pieces **Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


- Wired for higher voltage
- S No third party recognition

### WATROD and FIREBAR Screw Plug Immersion Heaters



#### **Application: Clean Water**

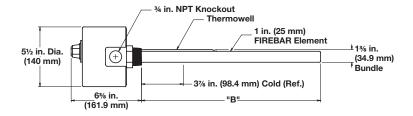
- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



| Description               | Volts   | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Part<br>Number | Del. | Ship Wt.<br>Ibs (kg) | Part<br>Number ⑤                       | Del. |    | o Wt.<br>(kg) |  |
|---------------------------|---------|------|----|--------------------------------|--------------|----------------|------|----------------------|----------------------------------------|------|----|---------------|--|
| Description               | Volta   | KVV  |    |                                | (11111)      | General Pu     |      |                      | Moisture/Explosion-Resistant Enclosure |      |    |               |  |
| 60 W/in²                  | 120     | 0.50 | 1  | 4 <sup>3</sup> /8              | (111.1)      | BDN4G1S        | RS   | 3 (2)                | BDN4G1C                                | RS   | 6  | (3)           |  |
| Brass Plug<br>1-Alloy 800 | 240     | 0.50 | 1  | 4 <sup>3</sup> /8              | (111.1)      | BDN4G10S       | RS   | 3 (2)                | BDN4G10C                               | RS   | 6  | (3)           |  |
| Element                   | 120     | 0.75 | 1  | 6 <sup>3</sup> /8              | (161.9)      | BDN6G1S        | RS   | 3 (2)                | BDN6G1C                                | RS   | 6  | (3)           |  |
| (9.3 W/cm²)               | 240     | 0.75 | 1  | 6 <sup>3</sup> /8              | (161.9)      | BDN6G10S       | RS   | 3 (2)                | BDN6G10C                               | RS   | 6  | (3)           |  |
| 60 W/in² ④                | 120/240 | 1.00 | 1  | 4 <sup>3</sup> /8              | (111.1)      | BEN4G6S        | RS   | 4 (2)                | BEN4G6C                                | RS   | 7  | (4)           |  |
| Brass Plug                | 120/240 | 1.50 | 1  | 6 <sup>3</sup> /8              | (161.9)      | BEN6G6S        | RS   | 4 (2)                | BEN6G6C                                | RS   | 7  | (4)           |  |
| 2-Alloy 800<br>Elements   | 120/240 | 2.00 | 1  | 8 <sup>1</sup> / <sub>2</sub>  | (216.0)      | BEN8J6S        | RS   | 5 (3)                | BEN8J6C                                | RS   | 8  | (4)           |  |
| (9.3 W/cm <sup>2</sup> )  | 120/240 | 2.50 | 1  | 10 <sup>3</sup> /4             | (273.0)      | BEN10N6S       | RS   | 5 (3)                | BEN10N6C                               | RS   | 8  | (4)           |  |
|                           | 120/240 | 3.00 | 1  | 15                             | (381.0)      | BEN15A6S       | RS   | 6 (3)                | BEN15A6C                               | RS   | 9  | (4)           |  |
|                           | 240     | 4.00 | 1  | 19                             | (483.0)      | BEN19A10S      | RS   | 7 (4)                | BEN19A10C                              | RS   | 10 | (5)           |  |
|                           | 240     | 5.00 | 1  | 23 <sup>1</sup> / <sub>2</sub> | (597.0)      | BEN23J10S      | RS   | 8 (4)                | BEN23J10C                              | RS   | 11 | (5)           |  |
|                           | 240     | 6.00 | 1  | 27 <sup>1</sup> /2             | (699.0)      | BEN27J10S      | RS   | 9 (4)                | BEN27J10C                              | RS   | 12 | (6)           |  |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


- Wired for higher voltage
- S No third party recognition

### **WATROD and FIREBAR Screw Plug Immersion Heaters**



#### **Application: Clean Water**

- 11/4 inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)
- General purpose enclosure

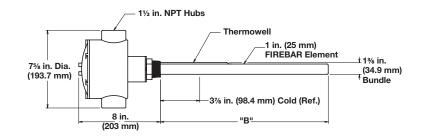


|                            |       |      |    |                    |              |    |             | Type 5A (60 to 2          | 50°F) | Type 7A (100 to 550°F) |      |  |  |  |  |
|----------------------------|-------|------|----|--------------------|--------------|----|-------------|---------------------------|-------|------------------------|------|--|--|--|--|
| Description                | Volts | kW   | Ph | "B"<br>in.         | Dim.<br>(mm) |    | Wt.<br>(kg) | Part<br>Number            | Del.  | Part<br>Number         | Del. |  |  |  |  |
|                            |       |      |    |                    |              |    |             | General Purpose Enclosure |       |                        |      |  |  |  |  |
| 90 W/in² ®                 | 240   | 1.5  | 1  | 7 <sup>5</sup> /8  | (193.7)      | 6  | (3)         | BDNF7R10S5A               | RS    | BDNF7R10S7A            | RS   |  |  |  |  |
| 304 SS Plug<br>1-Alloy 800 | 480   | 1.5  | 1  | 7 <sup>5</sup> /8  | (193.7)      | 6  | (3)         | BDNF7R11S5A               | RS    | BDNF7R11S7A            | RS   |  |  |  |  |
| Element                    | 240   | 3.0  | 1  | 11 <sup>1</sup> /8 | (282.6)      | 7  | (4)         | BDNF11G10S5A              | RS    | BDNF11G10S7A           | RS   |  |  |  |  |
| (14 W/cm²)                 | 480   | 3.0  | 1  | 11 <sup>1</sup> /8 | (282.6)      | 7  | (4)         | BDNF11G11S5A              | RS    | BDNF11G11S7A           | RS   |  |  |  |  |
|                            | 240   | 5.0  | 3  | 16 <sup>1</sup> /8 | (409.6)      | 8  | (4)         | BDNF16G3S5A               | RS    | BDNF16G3S7A            | RS   |  |  |  |  |
|                            | 480   | 5.0  | 3  | 16 <sup>1</sup> /8 | (409.6)      | 8  | (4)         | BDNF16G5S5A               | RS    | BDNF16G5S7A            | RS   |  |  |  |  |
|                            | 240   | 6.5  | 3  | 19 <sup>1</sup> /8 | (485.8)      | 9  | (4)         | BDNF19G3S5A               | RS    | BDNF19G3S7A            | RS   |  |  |  |  |
|                            | 480   | 6.5  | 3  | 19 <sup>1</sup> /8 | (485.8)      | 9  | (4)         | BDNF19G5S5A               | RS    | BDNF19G5S7A            | RS   |  |  |  |  |
|                            | 240   | 8.5  | 3  | 24 <sup>3</sup> /8 | (619.1)      | 10 | (5)         | BDNF24L3S5A               | RS    | BDNF24L3S7A            | RS   |  |  |  |  |
|                            | 480   | 8.5  | 3  | 24 <sup>3</sup> /8 | (619.1)      | 10 | (5)         | BDNF24L5S5A               | RS    | BDNF24L5S7A            | RS   |  |  |  |  |
|                            | 240   | 10.5 | 3  | 29 <sup>5</sup> /8 | (752.5)      | 11 | (5)         | BDNF29R3S5A               | RS    | BDNF29R3S7A            | RS   |  |  |  |  |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

® Can be wired for 1-phase operation


## WATROD and FIREBAR Screw Plug Immersion Heaters

#### **Application: Clean Water**

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

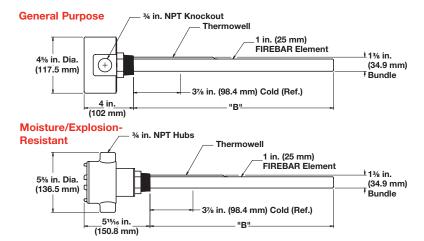
 Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)



|                            |       |     |    |                    |         |     |      | Type 5A (60 to 250°                      | F)   | Type 7A (100 to 550°I | =)   |  |  |  |
|----------------------------|-------|-----|----|--------------------|---------|-----|------|------------------------------------------|------|-----------------------|------|--|--|--|
|                            |       |     |    |                    | Dim.    |     | Wt.  | Part                                     |      | Part                  |      |  |  |  |
| Description                | Volts | kW  | Ph | in.                | (mm)    | lbs | (kg) | Number                                   | Del. | Number                | Del. |  |  |  |
|                            |       |     |    |                    |         |     |      | Moisture/Explosion-Resistant Enclosure 5 |      |                       |      |  |  |  |
| 90 W/in² ®                 | 240   | 1.5 | 1  | 7 <sup>5</sup> /8  | (193.7) | 9   | (4)  | BDNF7R10C5A                              | RS   | BDNF7R10C7A           | RS   |  |  |  |
| 304 SS Plug<br>1-Alloy 800 | 480   | 1.5 | 1  | 7 <sup>5</sup> /8  | (193.7) | 9   | (4)  | BDNF7R11C5A                              | RS   | BDNF7R11C7A           | RS   |  |  |  |
| Element                    | 240   | 3.0 | 1  | 11 <sup>1</sup> /8 | (282.6) | 10  | (5)  | BDNF11G10C5A                             | RS   | BDNF11G10C7A          | RS   |  |  |  |
| (14 W/cm²)                 | 480   | 3.0 | 1  | 11 <sup>1</sup> /8 | (282.6) | 10  | (5)  | BDNF11G11C5A                             | RS   | BDNF11G11C7A          | RS   |  |  |  |
|                            | 240   | 5.0 | 3  | 16 <sup>1</sup> /8 | (409.6) | 11  | (5)  | BDNF16G3C5A                              | RS   | BDNF16G3C7A           | RS   |  |  |  |
|                            | 480   | 5.0 | 3  | 16 <sup>1</sup> /8 | (409.6) | 11  | (5)  | BDNF16G5C5A                              | RS   | BDNF16G5C7A           | RS   |  |  |  |
|                            | 240   | 6.5 | 3  | 19 <sup>1</sup> /8 | (485.8) | 12  | (6)  | BDNF19G3C5A                              | RS   | BDNF19G3C7A           | RS   |  |  |  |
|                            | 480   | 6.5 | 3  | 19 <sup>1</sup> /8 | (485.8) | 12  | (6)  | BDNF19G5C5A                              | RS   | BDNF19G5C7A           | RS   |  |  |  |
|                            | 240   | 8.5 | 3  | 24 <sup>3</sup> /8 | (619.1) | 13  | (6)  | BDNF24L3C5A                              | RS   | BDNF24L3C7A           | RS   |  |  |  |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


- S No third party recognition
- 8 Can be wired for 1-phase operation

# WATROD and FIREBAR Screw Plug Immersion Heaters



#### **Application: Clean Water**

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



|                            |       |      |    | "B"                | Dim.     | Part       |           | Ship   | Wt.  | Part                                   |      | Ship | Wt.  |  |
|----------------------------|-------|------|----|--------------------|----------|------------|-----------|--------|------|----------------------------------------|------|------|------|--|
| Description                | Volts | kW   | Ph | in.                | (mm)     | Number     | Del.      | lbs    | (kg) | Number 5                               | Del. | lbs  | (kg) |  |
|                            |       |      |    |                    |          | General Pu | rpose Enc | losure |      | Moisture/Explosion-Resistant Enclosure |      |      |      |  |
| 90 W/in² ®                 | 240   | 1.5  | 1  | 7 <sup>5</sup> /8  | (193.7)  | BDNF7R10S  | RS        | 5      | (3)  | BDNF7R10C                              | RS   | 8    | (4)  |  |
| 304 SS Plug<br>1-Alloy 800 | 480   | 1.5  | 1  | 7 <sup>5</sup> /8  | (193.7)  | BDNF7R11S  | RS        | 5      | (3)  | BDNF7R11C                              | RS   | 8    | (4)  |  |
| Element                    | 240   | 3.0  | 1  | 11 <sup>1</sup> /8 | (282.6)  | BDNF11G10S | RS        | 6      | (3)  | BDNF11G10C                             | RS   | 9    | (4)  |  |
| (9.3 W/cm²)                | 480   | 3.0  | 1  | 11 <sup>1</sup> /8 | (282.6)  | BDNF11G11S | RS        | 6      | (3)  | BDNF11G11C                             | RS   | 9    | (4)  |  |
|                            | 240   | 5.0  | 3  | 16 <sup>1</sup> /8 | (409.6)  | BDNF16G3S  | RS        | 7      | (4)  | BDNF16G3C                              | RS   | 10   | (5)  |  |
|                            | 480   | 5.0  | 3  | 16 <sup>1</sup> /8 | (409.6)  | BDNF16G5S  | RS        | 7      | (4)  | BDNF16G5C                              | RS   | 10   | (5)  |  |
|                            | 240   | 6.5  | 3  | 19 <sup>1</sup> /8 | (485.8)  | BDNF19G3S  | RS        | 8      | (4)  | BDNF19G3C                              | RS   | 11   | (5)  |  |
|                            | 480   | 6.5  | 3  | 19 <sup>1</sup> /8 | (485.8)  | BDNF19G5S  | RS        | 8      | (4)  | BDNF19G5C                              | RS   | 11   | (5)  |  |
|                            | 240   | 8.5  | 3  | 24 <sup>3</sup> /8 | (619.1)  | BDNF24L3S  | RS        | 9      | (4)  | BDNF24L3C                              | RS   | 12   | (6)  |  |
|                            | 480   | 8.5  | 3  | 24 <sup>3</sup> /8 | (619.1)  | BDNF24L5S  | RS        | 9      | (4)  | BDNF24L5C                              | RS   | 12   | (6)  |  |
|                            | 240   | 10.5 | 3  | 29 <sup>5</sup> /8 | (752.5)  | BDNF29R3S  | RS        | 10     | (5)  | BDNF29R3C                              | RS   | 13   | (6)  |  |
|                            | 480   | 10.5 | 3  | 29 <sup>5</sup> /8 | (752.5)  | BDNF29R5S  | RS        | 10     | (5)  | BDNF29R5C                              | RS   | 13   | (6)  |  |
|                            | 240   | 12.7 | 3  | 34 <sup>5</sup> /8 | (879.5)  | BDNF34R3S  | RS        | 11     | (5)  | BDNF34R3C                              | RS   | 14   | (7)  |  |
|                            | 480   | 12.7 | 3  | 34 <sup>5</sup> /8 | (879.5)  | BDNF34R5S  | RS        | 11     | (5)  | BDNF34R5C                              | RS   | 14   | (7)  |  |
|                            | 240   | 17.0 | 3  | 45 <sup>1</sup> /8 | (1146.2) | BDNF45G3S  | RS        | 13     | (6)  | BDNF45G3C                              | RS   | 16   | (8)  |  |
|                            | 480   | 17.0 | 3  | 45 <sup>1</sup> /8 | (1146.2) | BDNF45G5S  | RS        | 13     | (6)  | BDNF45G5C                              | RS   | 16   | (8)  |  |
|                            | 480   | 21.5 | 3  | 55 <sup>5</sup> /8 | (1412.9) | BDNF55R5S  | RS        | 15     | (7)  | BDNF55R5C                              | RS   | 18   | (9)  |  |

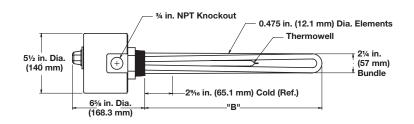


• **RS** - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- S No third party recognition
- 8 Can be wired for 1-phase operation

### WATROD and FIREBAR Screw Plug Immersion Heaters




#### **Application: Clean Water**

- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

• General purpose enclosure

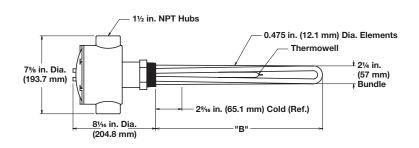


|                                                                   |         |     |    |                    |         |          |      | Type 4 (30 to 110°F)      |      | Type 5A (60 to 250°F) |      | Type 7A (100 to 550°F) |      |
|-------------------------------------------------------------------|---------|-----|----|--------------------|---------|----------|------|---------------------------|------|-----------------------|------|------------------------|------|
|                                                                   |         |     |    | "B"                | Dim.    | Ship Wt. |      | Part                      |      | Part                  |      | Part                   |      |
| Description                                                       | Volts   | kW  | Ph | in.                | (mm)    | lbs      | (kg) | Number                    | Del. | Number                | Del. | Number                 | Del. |
|                                                                   |         |     |    |                    |         |          |      | General Purpose Enclosure |      |                       |      |                        |      |
| 60 W/in²<br>304 SS Plug<br>2-Alloy 800<br>Elements<br>(9.3 W/cm²) | 120/240 | 2.0 | 1  | 8 <sup>1</sup> /8  | (206.4) | 5        | (3)  | BGN78C6S4                 | RS   | BGN78C6S5A            | RS   | BGN78C6S7A             | RS   |
|                                                                   | 240/480 | 2.0 | 1  | 8 <sup>1</sup> /8  | (206.4) | 5        | (3)  | BGN78C7S4                 | RS   | BGN78C7S5A            | RS   | BGN78C7S7A             | RS   |
|                                                                   | 120/240 | 3.0 | 1  | 11 <sup>1</sup> /8 | (282.6) | 6        | (3)  | BGN711C6S4                | RS   | BGN711C6S5A           | RS   | BGN711C6S7A            | RS   |
|                                                                   | 240/480 | 3.0 | 1  | 11 <sup>1</sup> /8 | (282.6) | 6        | (3)  | BGN711C7S4                | RS   | BGN711C7S5A           | RS   | BGN711C7S7A            | RS   |
|                                                                   | 120/240 | 4.0 | 1  | 15 <sup>1</sup> /8 | (384.2) | 7        | (4)  | BGN715C6S4                | RS   | BGN715C6S5A           | RS   | BGN715C6S7A            | RS   |
|                                                                   | 120/240 | 5.0 | 1  | 18 <sup>1</sup> /8 | (460.4) | 7        | (4)  | BGN718C6S4                | RS   | BGN718C6S5A           | RS   | BGN718C6S7A            | RS   |
| 60 W/in²<br>304 SS Plug<br>3-Alloy 800<br>Elements<br>(9.3 W/cm²) | 240     | 3.0 | 3  | 8 <sup>1</sup> /8  | (206.4) | 6        | (3)  | BHN78C3S4                 | RS   | BHN78C3S5A            | RS   | BHN78C3S7A             | RS   |
|                                                                   | 480     | 3.0 | 3  | 8 <sup>1</sup> /8  | (206.4) | 6        | (3)  | BHN68C13S4                | RS   | BHN68C13S5A           | RS   | BHN68C13S7A            | RS   |
|                                                                   | 240     | 4.5 | 3  | 11 <sup>1</sup> /8 | (282.6) | 7        | (4)  | BHN711C3S4                | RS   | BHN711C3S5A           | RS   | BHN711C3S7A            | RS   |
|                                                                   | 480     | 4.5 | 3  | 11 <sup>1</sup> /8 | (282.6) | 7        | (4)  | BHN611C13S4               | RS   | BHN611C13S5A          | RS   | BHN611C13S7A           | RS   |
|                                                                   | 240     | 6.0 | 3  | 15 <sup>1</sup> /8 | (384.2) | 8        | (4)  | BHN715C3S4                | RS   | BHN715C3S5A           | RS   | BHN715C3S7A            | RS   |
|                                                                   | 480     | 6.0 | 3  | 15 <sup>1</sup> /8 | (384.2) | 8        | (4)  | BHN715C5S4                | RS   | BHN715C5S5A           | RS   | BHN715C5S7A            | RS   |
|                                                                   | 240     | 7.5 | 3  | 18 <sup>1</sup> /8 | (460.4) | 8        | (4)  | BHN718C3S4                | RS   | BHN718C3S5A           | RS   | BHN718C3S7A            | RS   |
|                                                                   | 240     | 9.0 | 3  | 21 <sup>1</sup> /8 | (536.6) | 9        | (4)  | BHN721C3S4                | RS   | BHN721C3S5A           | RS   | BHN721C3S7A            | RS   |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

Wired for higher voltage


# WATROD and FIREBAR Screw Plug Immersion Heaters

#### **Application: Clean Water**

- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)



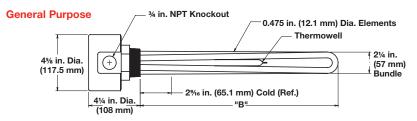
|                            |         |     |    |                    |              |             |             | Type 4 (30 to 1 | 10°F)  | Type 5A (60 to 2 | 250°F) | Type 7A (100 to | 550°F) |
|----------------------------|---------|-----|----|--------------------|--------------|-------------|-------------|-----------------|--------|------------------|--------|-----------------|--------|
| Description                | Volts   | kW  | Ph | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number  | Del.   | Part<br>Number   | Del.   | Part<br>Number  | Del.   |
|                            |         |     |    |                    |              |             |             |                 | Moistu | re/Explosion-Res | istant | Enclosure ⑤     |        |
| 60 W/in² ④                 | 120/240 | 2.0 | 1  | 8 <sup>1</sup> /8  | (206.4)      | 8           | (4)         | BGN78C6C4       | RS     | BGN78C6C5A       | RS     | BGN78C6C7A      | RS     |
| 304 SS Plug<br>2-Alloy 800 | 240/480 | 2.0 | 1  | 8 <sup>1</sup> /8  | (206.4)      | 8           | (4)         | BGN78C7C4       | RS     | BGN78C7C5A       | RS     | BGN78C7C7A      | RS     |
| Elements                   | 120/240 | 3.0 | 1  | 11 <sup>1</sup> /8 | (282.6)      | 9           | (4)         | BGN711C6C4      | RS     | BGN711C6C5A      | RS     | BGN711C6C7A     | RS     |
| (9.3 W/cm²)                | 240/480 | 3.0 | 1  | 11 <sup>1</sup> /8 | (282.6)      | 9           | (4)         | BGN711C7C4      | RS     | BGN711C7C5A      | RS     | BGN711C7C7A     | RS     |
|                            | 120/240 | 4.0 | 1  | 15 <sup>1</sup> /8 | (384.2)      | 10          | (5)         | BGN715C6C4      | RS     | BGN715C6C5A      | RS     | BGN715C6C7A     | RS     |
|                            | 120/240 | 5.0 | 1  | 18 <sup>1</sup> /8 | (460.4)      | 10          | (5)         | BGN718C6C4      | RS     | BGN718C6C5A      | RS     | BGN718C6C7A     | RS     |
| 60 W/in <sup>2</sup>       | 240     | 3.0 | 3  | 8 <sup>1</sup> /8  | (206.4)      | 9           | (4)         | BHN78C3C4       | RS     | BHN78C3C5A       | RS     | BHN78C3C7A      | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480     | 3.0 | 3  | 8 <sup>1</sup> /8  | (206.4)      | 9           | (4)         | BHN68C13C4      | RS     | BHN68C13C5A      | RS     | BHN68C13C7A     | RS     |
| Elements                   | 240     | 4.5 | 3  | 11 <sup>1</sup> /8 | (282.6)      | 10          | (5)         | BHN711C3C4      | RS     | BHN711C3C5A      | RS     | BHN711C3C7A     | RS     |
| (9.3 W/cm²)                | 480     | 4.5 | 3  | 11 <sup>1</sup> /8 | (282.6)      | 10          | (5)         | BHN611C13C4     | RS     | BHN611C13C5A     | RS     | BHN611C13C7A    | RS     |
|                            | 240     | 6.0 | 3  | 15 <sup>1</sup> /8 | (384.2)      | 11          | (5)         | BHN715C3C4      | RS     | BHN715C3C5A      | RS     | BHN715C3C7A     | RS     |
|                            | 480     | 6.0 | 3  | 15 <sup>1</sup> /8 | (384.2)      | 11          | (5)         | BHN715C5C4      | RS     | BHN715C5C5A      | RS     | BHN715C5C7A     | RS     |
|                            | 240     | 7.5 | 3  | 18 <sup>1</sup> /8 | (460.4)      | 11          | (5)         | BHN718C3C4      | RS     | BHN718C3C5A      | RS     | BHN718C3C7A     | RS     |
|                            | 240     | 9.0 | 3  | 21 <sup>1</sup> /8 | (536.6)      | 12          | (6)         | BHN721C3C4      | RS     | BHN721C3C5A      | RS     | BHN721C3C7A     | RS     |

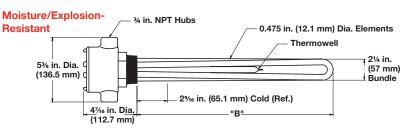


**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

Wired for higher voltage

S No third party recognition


WATLOW® \_\_\_\_\_\_ 181


# WATROD and FIREBAR Screw Plug Immersion Heaters



#### **Application: Clean Water**

- 2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





|                            |         |      |    | "B"                | Dim.    | Part        |          | Shi   | Wt.  | Part                |           | Ship  | Wt.  |
|----------------------------|---------|------|----|--------------------|---------|-------------|----------|-------|------|---------------------|-----------|-------|------|
| Description                | Volts   | kW   | Ph | in.                | (mm)    | Number      | Del.     | lbs   | (kg) | Number 5            | Del.      | lbs   | (kg) |
|                            |         |      |    |                    |         | General Pur | pose Enc | losur | Э    | Moisture/Explosion- | Resistant | Enclo | sure |
| 60 W/in² ④                 | 120/240 | 2.0  | 1  | 8 <sup>1</sup> /8  | (206.4) | BGN78C6S    | RS       | 4     | (2)  | BGN78C6C            | RS        | 7     | (4)  |
| 304 SS Plug<br>2-Alloy 800 | 240/480 | 2.0  | 1  | 8 <sup>1</sup> /8  | (206.4) | BGN78C7S    | RS       | 4     | (2)  | BGN78C7C            | RS        | 7     | (4)  |
| Elements                   | 120/240 | 3.0  | 1  | 11 <sup>1</sup> /8 | (282.6) | BGN711C6S   | RS       | 5     | (3)  | BGN711C6C           | RS        | 8     | (4)  |
| (9.3 W/cm²)                | 240/480 | 3.0  | 1  | 11 <sup>1</sup> /8 | (282.6) | BGN711C7S   | RS       | 5     | (3)  | BGN711C7C           | RS        | 8     | (4)  |
|                            | 120/240 | 4.0  | 1  | 15 <sup>1</sup> /8 | (384.2) | BGN715C6S   | RS       | 6     | (3)  | BGN715C6C           | RS        | 9     | (4)  |
|                            | 240/480 | 4.0  | 1  | 15 <sup>1</sup> /8 | (384.2) | BGN715C7S   | RS       | 6     | (3)  | BGN715C7C           | RS        | 9     | (4)  |
|                            | 120/240 | 5.0  | 1  | 18 <sup>1</sup> /8 | (460.4) | BGN718C6S   | RS       | 6     | (3)  | BGN718C6C           | RS        | 9     | (4)  |
|                            | 240/480 | 5.0  | 1  | 18 <sup>1</sup> /8 | (460.4) | BGN718C7S   | RS       | 6     | (3)  | BGN718C7C           | RS        | 9     | (4)  |
|                            | 240/480 | 6.0  | 1  | 21 <sup>1</sup> /8 | (536.6) | BGN721C7S   | RS       | 7     | (4)  | BGN721C7C           | RS        | 10    | (5)  |
|                            | 240/480 | 8.0  | 1  | 26 <sup>5</sup> /8 | (676.3) | BGN726L7S   | RS       | 7     | (4)  | BGN726L7C           | RS        | 10    | (5)  |
|                            | 240/480 | 10.0 | 1  | 32 <sup>1</sup> /8 | (816.0) | BGN732C7S   | RS       | 8     | (4)  | BGN732C7C           | RS        | 11    | (5)  |
| 60 W/in²                   | 120     | 3.0  | 1  | 8 <sup>1</sup> /8  | (206.4) | BHN78C1S    | RS       | 5     | (3)  | BHN78C1C            | RS        | 8     | (4)  |
| 304 SS Plug<br>3-Alloy 800 | 240     | 3.0  | 3  | 8 <sup>1</sup> /8  | (206.4) | BHN78C3S    | RS       | 5     | (3)  | BHN78C3C            | RS        | 8     | (4)  |
| Elements                   | 480     | 3.0  | 3  | 8 <sup>1</sup> /8  | (206.4) | BHN68C13S   | RS       | 5     | (3)  | BHN68C13C           | RS        | 8     | (4)  |
| (9.3 W/cm²)                | 120     | 4.5  | 1  | 11 <sup>1</sup> /8 | (282.6) | BHN711C1S   | RS       | 6     | (3)  | BHN711C1C           | RS        | 9     | (4)  |
|                            | 240     | 4.5  | 3  | 11 <sup>1</sup> /8 | (282.6) | BHN711C3S   | RS       | 6     | (3)  | BHN711C3C           | RS        | 9     | (4)  |
|                            | 480     | 4.5  | 3  | 11 <sup>1</sup> /8 | (282.6) | BHN611C13S  | RS       | 6     | (3)  | BHN611C13C          | RS        | 9     | (4)  |
|                            | 240     | 6.0  | 3  | 15 <sup>1</sup> /8 | (384.2) | BHN715C3S   | RS       | 7     | (4)  | BHN715C3C           | RS        | 10    | (5)  |
|                            | 480     | 6.0  | 3  | 15 <sup>1</sup> /8 | (384.2) | BHN715C5S   | RS       | 7     | (4)  | BHN715C5C           | RS        | 10    | (5)  |
|                            | 240     | 7.5  | 3  | 18 <sup>1</sup> /8 | (460.4) | BHN718C3S   | RS       | 7     | (4)  | BHN718C3C           | RS        | 10    | (5)  |
|                            | 480     | 7.5  | 3  | 18 <sup>1</sup> /8 | (460.4) | BHN718C5S   | RS       | 7     | (4)  | BHN718C5C           | RS        | 10    | (5)  |
|                            | 240     | 9.0  | 3  | 21 <sup>1</sup> /8 | (536.6) | BHN721C3S   | RS       | 8     | (4)  | BHN721C3C           | RS        | 11    | (5)  |
|                            | 480     | 9.0  | 3  | 21 <sup>1</sup> /8 | (536.6) | BHN721C5S   | RS       | 8     | (4)  | BHN721C5C           | RS        | 11    | (5)  |
|                            | 240     | 12.0 | 3  | 26 <sup>5</sup> /8 | (676.3) | BHN726L3S   | RS       | 8     | (4)  | BHN726L3C           | RS        | 11    | (5)  |
|                            | 480     | 12.0 | 3  | 26 <sup>5</sup> /8 | (676.3) | BHN726L5S   | RS       | 8     | (4)  | BHN726L5C           | RS        | 11    | (5)  |
|                            | 240     | 15.0 | 3  | 321/8              | (816.0) | BHN732C3S   | RS       | 9     | (4)  | BHN732C3C           | RS        | 12    | (6)  |
|                            | 480     | 15.0 | 3  | 321/8              | (816.0) | BHN732C5S   | RS       | 9     | (4)  | BHN732C5C           | RS        | 12    | (6)  |

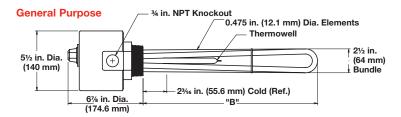


• **RS** - Next day shipment up to 5 pieces

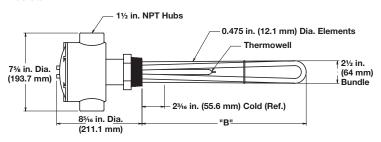
Wired for higher voltage

S No third party recognition

### WATROD and FIREBAR Screw Plug Immersion Heaters




#### **Application: Clean Water**


- 21/2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



#### Moisture/Explosion-Resistant



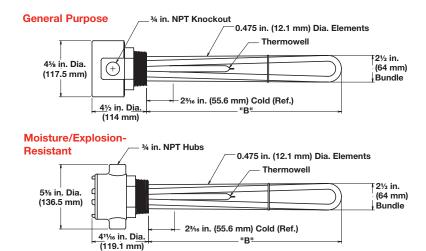
|                            |       |     |    |                    |              |             |             | Type 4 (30 to 1 | 10°F)    | Type 5A (60 to    | 250°F)  | Type 7A (100 to | 550°F) |
|----------------------------|-------|-----|----|--------------------|--------------|-------------|-------------|-----------------|----------|-------------------|---------|-----------------|--------|
| Description                | Volts | kW  | Ph | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number  | Del.     | Part<br>Number    | Del.    | Part<br>Number  | Del.   |
|                            |       |     |    |                    |              |             |             |                 | G        | eneral Purpose En | closure | •               |        |
| 60 W/in²                   | 240   | 3.0 | 3  | 7 <sup>5</sup> /8  | (193.7)      | 7           | (4)         | BLN77L3S4       | RS       | BLN77L3S5A        | RS      | BLN77L3S7A      | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 3.0 | 3  | 7 <sup>5</sup> /8  | (193.7)      | 7           | (4)         | BLN77L13S4      | RS       | BLN77L13S5A       | RS      | BLN77L13S7A     | RS     |
| Elements                   | 240   | 4.5 | 3  | 10 <sup>5</sup> /8 | (269.9)      | 8           | (4)         | BLN710L3S4      | RS       | BLN710L3S5A       | RS      | BLN710L3S7A     | RS     |
| (9.3 W/cm²)                | 480   | 4.5 | 3  | 10 <sup>5</sup> /8 | (269.9)      | 8           | (4)         | BLN610K13S4     | RS       | BLN610K13S5A      | RS      | BLN610K13S7A    | RS     |
|                            | 240   | 6.0 | 3  | 14 <sup>5</sup> /8 | (371.5)      | 10          | (5)         | BLN714L3S4      | RS       | BLN714L3S5A       | RS      | BLN714L3S7A     | RS     |
|                            | 480   | 6.0 | 3  | 14 <sup>5</sup> /8 | (371.5)      | 10          | (5)         | BLN714L5S4      | RS       | BLN714L5S5A       | RS      | BLN714L5S7A     | RS     |
|                            | 240   | 7.5 | 3  | 17 <sup>5</sup> /8 | (447.7)      | 10          | (5)         | BLN717L3S4      | RS       | BLN717L3S5A       | RS      | BLN717L3S7A     | RS     |
|                            | 240   | 9.0 | 3  | 20 <sup>5</sup> /8 | (523.9)      | 12          | (6)         | BLN720L3S4      | RS       | BLN720L3S5A       | RS      | BLN720L3S7A     | RS     |
|                            |       |     |    |                    |              |             |             |                 |          |                   |         |                 |        |
|                            |       |     |    |                    |              |             |             | Me              | oisture/ | Explosion-Resista | nt Encl | osure ⑤         |        |
| 60 W/in²                   | 240   | 3.0 | 3  | 7 <sup>5</sup> /8  | (193.7)      | 10          | (5)         | BLN77L3C4       | RS       | BLN77L3C5A        | RS      | BLN77L3C7A      | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 3.0 | 3  | 7 <sup>5</sup> /8  | (193.7)      | 10          | (5)         | BLN77L13C4      | RS       | BLN77L13C5A       | RS      | BLN77L13C7A     | RS     |
| Elements                   | 240   | 4.5 | 3  | 10 <sup>5</sup> /8 | (269.9)      | 11          | (5)         | BLN710L3C4      | RS       | BLN710L3C5A       | RS      | BLN710L3C7A     | RS     |
| (9.3 W/cm²)                | 480   | 4.5 | 3  | 10 <sup>5</sup> /8 | (269.9)      | 11          | (5)         | BLN610K13C4     | RS       | BLN610K13C5A      | RS      | BLN610K13C7A    | RS     |
|                            | 240   | 6.0 | 3  | 14 <sup>5</sup> /8 | (371.5)      | 13          | (6)         | BLN714L3C4      | RS       | BLN714L3C5A       | RS      | BLN714L3C7A     | RS     |
|                            | 480   | 6.0 | 3  | 14 <sup>5</sup> /8 | (371.5)      | 13          | (6)         | BLN714L5C4      | RS       | BLN714L5C5A       | RS      | BLN714L5C7A     | RS     |
|                            | 240   | 7.5 | 3  | 17 <sup>5</sup> /8 | (447.7)      | 13          | (6)         | BLN717L3C4      | RS       | BLN717L3C5A       | RS      | BLN717L3C7A     | RS     |
|                            | 240   | 9.0 | 3  | 20 <sup>5</sup> /8 | (523.9)      | 15          | (7)         | BLN720L3C4      | RS       | BLN720L3C5A       | RS      | BLN720L3C7A     | RS     |



up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

S No third party recognition


WATLOW<sup>®</sup> 183

### WATROD and FIREBAR Screw Plug Immersion Heaters



#### **Application: Clean Water**

- 21/2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

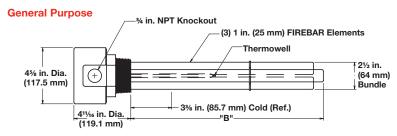


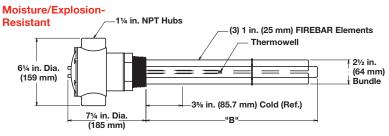
| Description                | Volts | kW   | Ph | "B"<br>in.         | Dim.<br>(mm) | Part<br>Number | Del.     | Ship<br>lbs | Wt.<br>(kg) | Part<br>Number <b>5</b> | Del.       |    | Wt.<br>(kg) |
|----------------------------|-------|------|----|--------------------|--------------|----------------|----------|-------------|-------------|-------------------------|------------|----|-------------|
|                            |       | '    |    |                    |              | General Purp   | ose Encl | •           | ,           | Moisture/Explosior      | n-Resistan |    |             |
| 60 W/in²                   | 120   | 3.0  | 1  | 7 <sup>5</sup> /8  | (193.7)      | BLN77L1S       | RS       | 6           | (3)         | BLN77L1C                | RS         | 9  | (4)         |
| 304 SS Plug<br>3-Alloy 800 | 240   | 3.0  | 3  | 7 <sup>5</sup> /8  | (193.7)      | BLN77L3S       | RS       | 6           | (3)         | BLN77L3C                | RS         | 9  | (4)         |
| Elements                   | 480   | 3.0  | 3  | 7 <sup>5</sup> /8  | (193.7)      | BLN77L13S      | RS       | 6           | (3)         | BLN77L13C               | RS         | 9  | (4)         |
| (9.3 W/cm²)                | 120   | 4.5  | 1  | 10 <sup>5</sup> /8 | (269.9)      | BLN710L1S      | RS       | 7           | (4)         | BLN710L1C               | RS         | 10 | (5)         |
|                            | 240   | 4.5  | 3  | 10 <sup>5</sup> /8 | (269.9)      | BLN710L3S      | RS       | 7           | (4)         | BLN710L3C               | RS         | 10 | (5)         |
|                            | 480   | 4.5  | 3  | 10 <sup>5</sup> /8 | (269.9)      | BLN610K13S     | RS       | 7           | (4)         | BLN610K13C              | RS         | 10 | (5)         |
|                            | 240   | 6.0  | 3  | 14 <sup>5</sup> /8 | (371.5)      | BLN714L3S      | RS       | 9           | (4)         | BLN714L3C               | RS         | 12 | (6)         |
|                            | 480   | 6.0  | 3  | 14 <sup>5</sup> /8 | (371.5)      | BLN714L5S      | RS       | 9           | (4)         | BLN714L5C               | RS         | 12 | (6)         |
|                            | 240   | 7.5  | 3  | 17 <sup>5</sup> /8 | (447.7)      | BLN717L3S      | RS       | 9           | (4)         | BLN717L3C               | RS         | 12 | (6)         |
|                            | 480   | 7.5  | 3  | 17 <sup>5</sup> /8 | (447.7)      | BLN717L5S      | RS       | 9           | (4)         | BLN717L5C               | RS         | 12 | (6)         |
|                            | 240   | 9.0  | 3  | 20 <sup>5</sup> /8 | (523.9)      | BLN720L3S      | RS       | 11          | (5)         | BLN720L3C               | RS         | 14 | (7)         |
|                            | 480   | 9.0  | 3  | 20 <sup>5</sup> /8 | (523.9)      | BLN720L5S      | RS       | 11          | (5)         | BLN720L5C               | RS         | 14 | (7)         |
|                            | 240   | 12.0 | 3  | 26 <sup>1</sup> /8 | (663.6)      | BLN726C3S      | RS       | 12          | (6)         | BLN726C3C               | RS         | 15 | (7)         |
|                            | 480   | 12.0 | 3  | 26 <sup>1</sup> /8 | (663.6)      | BLN726C5S      | RS       | 12          | (6)         | BLN726C5C               | RS         | 15 | (7)         |
|                            | 240   | 15.0 | 3  | 31 <sup>5</sup> /8 | (803.3)      | BLN731L3S      | RS       | 14          | (7)         | BLN731L3C               | RS         | 17 | (8)         |
|                            | 480   | 15.0 | 3  | 31 <sup>5</sup> /8 | (803.3)      | BLN731L5S      | RS       | 14          | (7)         | BLN731L5C               | RS         | 17 | (8)         |
|                            | 240   | 18.0 | 3  | 37 <sup>1</sup> /8 | (943.0)      | BLN737C3S      | RS       | 15          | (7)         | BLN737C3C               | RS         | 18 | (9)         |
|                            | 480   | 18.0 | 3  | 37 <sup>1</sup> /8 | (943.0)      | BLN737C5S      | RS       | 15          | (7)         | BLN737C5C               | RS         | 18 | (9)         |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

S No third party recognition


■ WATLOW®


### WATROD and FIREBAR Screw Plug Immersion Heaters



#### **Application: Clean Water**

- 21/2 inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





| Description                | Volts | kW   | Ph | "B"<br>in.         | Dim.<br>(mm) | Part<br>Number | Del.      | Ship<br>Ibs |     | Part<br>Number ⑤  | Del.       | Ship<br>Ibs | Wt.<br>(kg) |
|----------------------------|-------|------|----|--------------------|--------------|----------------|-----------|-------------|-----|-------------------|------------|-------------|-------------|
|                            |       |      |    |                    |              | General Pu     | rpose End | closur      | е   | Moisture/Explosio | n-Resistan | t Enclo     | sure        |
| 90 W/in² ®                 | 240   | 15.0 | 3  | 15 <sup>1</sup> /8 | (384.2)      | BLNF15C3S      | RS        | 11          | (5) | BLNF15C3C         | RS         | 14          | (7)         |
| 304 SS Plug<br>3-Alloy 800 | 480   | 15.0 | 3  | 15 <sup>1</sup> /8 | (384.2)      | BLNF15C5S      | RS        | 11          | (5) | BLNF15C5C         | RS         | 14          | (7)         |
| Elements                   | 240   | 20.0 | 3  | 18 <sup>1</sup> /8 | (460.4)      | BLNF18C3S      | RS        | 12          | (6) | BLNF18C3C         | RS         | 15          | (7)         |
| (14 W/cm²)                 | 480   | 20.0 | 3  | 18 <sup>1</sup> /8 | (460.4)      | BLNF18C5S 3    | RS        | 12          | (6) | BLNF18C5C 3       | RS         | 15          | (7)         |
|                            | 480   | 25.0 | 3  | 23 <sup>1</sup> /8 | (587.4)      | BLNF23C5S      | RS        | 14          | (7) | BLNF23C5C         | RS         | 17          | (8)         |
|                            | 480   | 32.0 | 3  | 28 <sup>5</sup> /8 | (727.1)      | BLNF28L5S      | RS        | 17          | (8) | BLNF28L5C         | RS         | 20          | (9)         |
|                            | 480   | 38.0 | 3  | 33 <sup>5</sup> /8 | (854.1)      | BLNF33L5S      | RS        | 18          | (9) | BLNF33L5C         | RS         | 21          | (10)        |

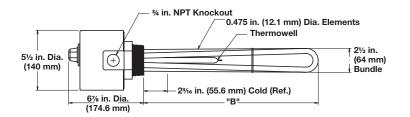


**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- 3 Wired for 3-phase operation only
- S No third party recognition
- 8 Can be wired for 1-phase operation

WATLOW<sup>®</sup> \_\_\_\_\_\_ 185

### WATROD and FIREBAR Screw Plug Immersion Heaters




#### Application: Deionized/ Demineralized Water

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

• General purpose enclosure



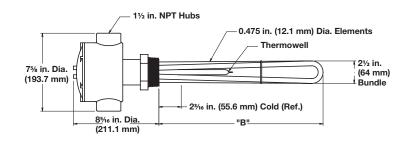
|                          |       |     |    |                    |              |             |             | Type 4 (30 to 1 | 10°F) | Type 5A (60 to 2  | 50°F)  | Type 7A (100 to | 550°F) |
|--------------------------|-------|-----|----|--------------------|--------------|-------------|-------------|-----------------|-------|-------------------|--------|-----------------|--------|
| Description              | Volts | kW  | Ph | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number  | Del.  | Part<br>Number    | Del.   | Part<br>Number  | Del.   |
|                          |       |     |    |                    |              |             |             |                 |       | General Purpose I | Enclos | ure             |        |
| 60 W/in <sup>2</sup>     | 240   | 3.0 | 3  | 7 <sup>5</sup> /8  | (193.7)      | 7           | (4)         | BLR77L3S4       | RS    | BLR77L3S5A        | RS     | BLR77L3S7A      | RS     |
| 316 SS Plug<br>3-316 SS  | 480   | 3.0 | 3  | 7 <sup>5</sup> /8  | (193.7)      | 7           | (4)         | BLR77L5S4       | RS    | BLR77L5S5A        | RS     | BLR77L5S7A      | RS     |
| Elements                 | 240   | 4.5 | 3  | 10 <sup>5</sup> /8 | (269.9)      | 8           | (4)         | BLR710L3S4      | RS    | BLR710L3S5A       | RS     | BLR710L3S7A     | RS     |
| (9.3 W/cm <sup>2</sup> ) | 480   | 4.5 | 3  | 10 <sup>5</sup> /8 | (269.9)      | 8           | (4)         | BLR710L5S4      | RS    | BLR710L5S5A       | RS     | BLR710L5S7A     | RS     |
| (Passivated)             | 240   | 6.0 | 3  | 14 <sup>5</sup> /8 | (371.5)      | 10          | (5)         | BLR714L3S4      | RS    | BLR714L3S5A       | RS     | BLR714L3S7A     | RS     |
|                          | 480   | 6.0 | 3  | 14 <sup>5</sup> /8 | (371.5)      | 10          | (5)         | BLR714L5S4      | RS    | BLR714L5S5A       | RS     | BLR714L5S7A     | RS     |
|                          | 240   | 7.5 | 3  | 17 <sup>5</sup> /8 | (447.7)      | 10          | (5)         | BLR717L3S4      | RS    | BLR717L3S5A       | RS     | BLR717L3S7A     | RS     |
|                          | 240   | 9.0 | 3  | 20 <sup>5</sup> /8 | (523.9)      | 12          | (6)         | BLR720L3S4      | RS    | BLR720L3S5A       | RS     | BLR720L3S7A     | RS     |



• RS - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

186 WATLOW®


# WATROD and FIREBAR Screw Plug Immersion Heaters

#### Application: Deionized/ Demineralized Water

- 21/2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)

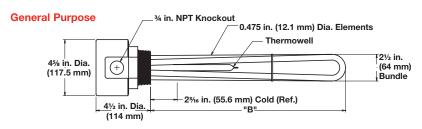


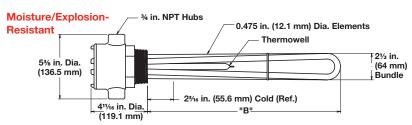
|                          |       |     |    |                    |         |     |       | Type 4 (30 to 1 | 10°F)   | Type 5A (60 to 2  | 50°F)  | Type 7A (100 to | 550°F) |
|--------------------------|-------|-----|----|--------------------|---------|-----|-------|-----------------|---------|-------------------|--------|-----------------|--------|
|                          |       |     |    | "B"                | Dim.    | Shi | o Wt. | Part            |         | Part              |        | Part            |        |
| Description              | Volts | kW  | Ph | in.                | (mm)    | lbs | (kg)  | Number          | Del.    | Number            | Del.   | Number          | Del.   |
|                          |       |     |    |                    |         |     |       | M               | oisture | /Explosion-Resist | ant En | closure ⑤       |        |
| 60 W/in²                 | 240   | 3.0 | 3  | 7 <sup>5</sup> /8  | (193.7) | 10  | (5)   | BLR77L3C4       | RS      | BLR77L3C5A        | RS     | BLR77L3C7A      | RS     |
| 316 SS Plug<br>3-316 SS  | 480   | 3.0 | 3  | 7 <sup>5</sup> /8  | (193.7) | 10  | (5)   | BLR77L5C4       | RS      | BLR77L5C5A        | RS     | BLR77L5C7A      | RS     |
| Elements                 | 240   | 4.5 | 3  | 10 <sup>5</sup> /8 | (269.9) | 11  | (5)   | BLR710L3C4      | RS      | BLR710L3C5A       | RS     | BLR710L3C7A     | RS     |
| (9.3 W/cm <sup>2</sup> ) | 480   | 4.5 | 3  | 10 <sup>5</sup> /8 | (269.9) | 11  | (5)   | BLR710L5C4      | RS      | BLR710L5C5A       | RS     | BLR710L5C7A     | RS     |
| (Passivated)             | 240   | 6.0 | 3  | 14 <sup>5</sup> /8 | (371.5) | 13  | (6)   | BLR714L3C4      | RS      | BLR714L3C5A       | RS     | BLR714L3C7A     | RS     |
|                          | 480   | 6.0 | 3  | 14 <sup>5</sup> /8 | (371.5) | 13  | (6)   | BLR714L5C4      | RS      | BLR714L5C5A       | RS     | BLR714L5C7A     | RS     |
|                          | 240   | 7.5 | 3  | 17 <sup>5</sup> /8 | (447.7) | 13  | (6)   | BLR717L3C4      | RS      | BLR717L3C5A       | RS     | BLR717L3C7A     | RS     |
|                          | 240   | 9.0 | 3  | 20 <sup>5</sup> /8 | (523.9) | 15  | (7)   | BLR720L3C4      | RS      | BLR720L3C5A       | RS     | BLR720L3C7A     | RS     |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

S No third party recognition


WATLOW® \_\_\_


### WATROD and FIREBAR Screw Plug Immersion Heaters



#### Application: Deionized/ Demineralized Water

- 21/2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





| Description             | Volts | kW   | Ph | "B"<br>in.         | Dim.<br>(mm) | Part<br>Number | Del.     | Ship Wt<br>lbs (kg |                    | Del.       | Ship<br>lbs | Wt.<br>(kg) |
|-------------------------|-------|------|----|--------------------|--------------|----------------|----------|--------------------|--------------------|------------|-------------|-------------|
|                         |       |      |    |                    |              | General Pur    | pose Enc | losure             | Moisture/Explosion | n-Resistan | t Enclo     | sure        |
| 60 W/in²                | 120   | 3.0  | 1  | 7 <sup>5</sup> /8  | (193.7)      | BLR77L1S       | RS       | 6 (3               | BLR77L1C           | RS         | 9           | (4)         |
| 316 SS Plug<br>3-316 SS | 240   | 3.0  | 3  | 7 <sup>5</sup> /8  | (193.7)      | BLR77L3S       | RS       | 6 (3               | BLR77L3C           | RS         | 9           | (4)         |
| Elements                | 480   | 3.0  | 3  | 7 <sup>5</sup> /8  | (193.7)      | BLR77L5S       | RS       | 6 (3               | BLR77L5C           | RS         | 9           | (4)         |
| (9.3 W/cm²)             | 120   | 4.5  | 1  | 10 <sup>5</sup> /8 | (269.9)      | BLR710L1S      | RS       | 7 (4               | BLR710L1C          | RS         | 10          | (5)         |
| (Passivated)            | 240   | 4.5  | 3  | 10 <sup>5</sup> /8 | (269.9)      | BLR710L3S      | RS       | 7 (4               | BLR710L3C          | RS         | 10          | (5)         |
|                         | 480   | 4.5  | 3  | 10 <sup>5</sup> /8 | (269.9)      | BLR710L5S      | RS       | 7 (4               | BLR710L5C          | RS         | 10          | (5)         |
|                         | 240   | 6.0  | 3  | 14 <sup>5</sup> /8 | (371.5)      | BLR714L3S      | RS       | 9 (4               | BLR714L3C          | RS         | 12          | (6)         |
|                         | 480   | 6.0  | 3  | 14 <sup>5</sup> /8 | (371.5)      | BLR714L5S      | RS       | 9 (4               | BLR714L5C          | RS         | 12          | (6)         |
|                         | 240   | 7.5  | 3  | 17 <sup>5</sup> /8 | (447.7)      | BLR717L3S      | RS       | 9 (4               | BLR717L3C          | RS         | 12          | (6)         |
|                         | 480   | 7.5  | 3  | 17 <sup>5</sup> /8 | (447.7)      | BLR717L5S      | RS       | 9 (4               | BLR717L5C          | RS         | 12          | (6)         |
|                         | 240   | 9.0  | 3  | 20 <sup>5</sup> /8 | (523.9)      | BLR720L3S      | RS       | 11 (5              | BLR720L3C          | RS         | 14          | (7)         |
|                         | 480   | 9.0  | 3  | 20 <sup>5</sup> /8 | (523.9)      | BLR720L5S      | RS       | 11 (5              | BLR720L5C          | RS         | 14          | (7)         |
|                         | 240   | 12.0 | 3  | 26 <sup>1</sup> /8 | (663.6)      | BLR726C3S      | RS       | 12 (6              | BLR726C3C          | RS         | 15          | (7)         |
|                         | 480   | 12.0 | 3  | 26 <sup>1</sup> /8 | (663.6)      | BLR726C5S      | RS       | 12 (6              | BLR726C5C          | RS         | 15          | (7)         |
|                         | 240   | 15.0 | 3  | 31 <sup>5</sup> /8 | (803.3)      | BLR731L3S      | RS       | 14 (7              | BLR731L3C          | RS         | 17          | (8)         |
|                         | 480   | 15.0 | 3  | 31 <sup>5</sup> /8 | (803.3)      | BLR731L5S      | RS       | 14 (7              | BLR731L5C          | RS         | 17          | (8)         |
|                         | 240   | 18.0 | 3  | 37 <sup>1</sup> /8 | (943.0)      | BLR737C3S      | RS       | 15 (7              | BLR737C3C          | RS         | 18          | (9)         |
|                         | 480   | 18.0 | 3  | 37 <sup>1</sup> /8 | (943.0)      | BLR737C5S      | RS       | 15 (7              | BLR737C5C          | RS         | 18          | (9)         |



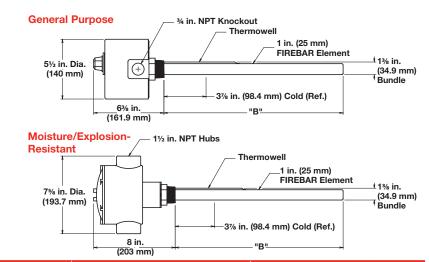
• RS - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

S No third party recognition

■ WATLOW®

#### WATROD and FIREBAR Screw Plug Immersion Heaters




#### **Application: Process Water**

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



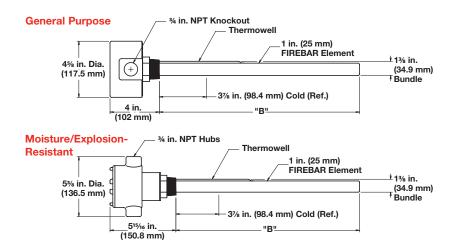
|                            |       |      |    |                                |        |      |      | Type 5A (60 to 25 | 50°F)       | Type 7A (100 to 5   | 50°F) |
|----------------------------|-------|------|----|--------------------------------|--------|------|------|-------------------|-------------|---------------------|-------|
|                            |       |      |    |                                | Dim.   | Ship |      | Part              |             | Part                |       |
| Description                | Volts | kW   | Ph | in.                            | (mm)   | lbs  | (kg) | Number            | Del.        | Number              | Del.  |
| 45 14/2 0 0                | 1     |      |    |                                |        |      |      |                   |             | Enclosure           |       |
| 45 W/in² ®<br>304 SS Plug  | 240   | 2.0  | 3  | 13                             | (330)  | 7    | (4)  | BDNF13A27S5A      | RS          | BDNF13A27S7A        | RS    |
| 1-Alloy 800                | 240   | 2.5  | 3  | 15 <sup>1</sup> /2             | (394)  | 8    | (4)  | BDNF15J27S5A      | RS          | BDNF15J27S7A        | RS    |
| Element                    | 240   | 3.0  | 3  | 18                             | (457)  | 9    | (4)  | BDNF18A27S5A      | RS          | BDNF18A27S7A        | RS    |
| (7 W/cm²)                  | 240   | 4.0  | 3  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 10   | (5)  | BDNF22J27S5A      | RS          | BDNF22J27S7A        | RS    |
|                            | 480   | 4.0  | 3  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 10   | (5)  | BDNF22J28S5A      | RS          | BDNF22J28S7A        | RS    |
|                            | 240   | 5.0  | 3  | 27 <sup>1</sup> /2             | (699)  | 11   | (5)  | BDNF27J27S5A      | RS          | BDNF27J27S7A        | RS    |
|                            | 480   | 5.0  | 3  | 27 <sup>1</sup> /2             | (699)  | 11   | (5)  | BDNF27J28S5A      | RS          | BDNF27J28S7A        | RS    |
|                            | 240   | 6.0  | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 12   | (6)  | BDNF32J27S5A      | RS          | BDNF32J27S7A        | RS    |
|                            | 480   | 6.0  | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 12   | (6)  | BDNF32J28S5A      | RS          | BDNF32J28S7A        | RS    |
|                            | 240   | 8.0  | 3  | 42                             | (1067) | 14   | (7)  | BDNF42A27S5A      | RS          | BDNF42A27S7A        | RS    |
|                            | 240   | 10.0 | 3  | 51 <sup>1</sup> /2             | (1308) | 16   | (8)  | BDNF51J27S5A      | RS          | BDNF51J27S7A        | RS    |
|                            |       |      |    |                                |        |      |      |                   |             |                     |       |
|                            |       |      |    |                                |        |      |      | Moisture/Ex       | plosion-Res | sistant Enclosure ⑤ |       |
| 45 W/in² ®                 | 240   | 2.0  | 3  | 13                             | (330)  | 10   | (5)  | BDNF13A27C5A      | RS          | BDNF13A27C7A        | RS    |
| 304 SS Plug<br>1-Alloy 800 | 240   | 2.5  | 3  | 15 <sup>1</sup> /2             | (394)  | 11   | (5)  | BDNF15J27C5A      | RS          | BDNF15J27C7A        | RS    |
| Element                    | 240   | 3.0  | 3  | 18                             | (457)  | 12   | (6)  | BDNF18A27C5A      | RS          | BDNF18A27C7A        | RS    |
| (7 W/cm²)                  | 240   | 4.0  | 3  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 13   | (6)  | BDNF22J27C5A      | RS          | BDNF22J27C7A        | RS    |
|                            | 480   | 4.0  | 3  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 13   | (6)  | BDNF22J28C5A      | RS          | BDNF22J28C7A        | RS    |
|                            | 240   | 5.0  | 3  | 27 <sup>1</sup> / <sub>2</sub> | (699)  | 14   | (7)  | BDNF27J27C5A      | RS          | BDNF27J27C7A        | RS    |
|                            | 480   | 5.0  | 3  | 27 <sup>1</sup> /2             | (699)  | 14   | (7)  | BDNF27J28C5A      | RS          | BDNF27J28C7A        | RS    |
|                            | 240   | 6.0  | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 15   | (7)  | BDNF32J27C5A      | RS          | BDNF32J27C7A        | RS    |
|                            | 480   | 6.0  | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 15   | (7)  | BDNF32J28C5A      | RS          | BDNF32J28C7A        | RS    |
|                            | 240   | 8.0  | 3  | 42                             | (1067) | 17   | (8)  | BDNF42A27C5A      | RS          | BDNF42A27C7A        | RS    |
|                            | 240   | 10.0 | 3  | 51 <sup>1</sup> /2             | (1308) | 19   | (9)  | BDNF51J27C5A      | RS          | BDNF51J27C7A        | RS    |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

**WATLOW®** 

⑤ No third party recognition


<sup>8</sup> Can be wired for 1-phase operation

#### WATROD and FIREBAR Screw Plug Immersion Heaters



#### **Application: Process Water**

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosures (suitable for use in non-classified areas only)



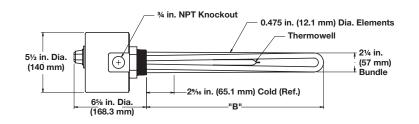
|                            |       |      |    |                    | Dim.   | Part       |            | Ship Wt. | Part            |            | Ship    |        |
|----------------------------|-------|------|----|--------------------|--------|------------|------------|----------|-----------------|------------|---------|--------|
| Description                | Volts | kW   | Ph | in.                | (mm)   | Number     | Del.       | lbs (kg) | Number 5        | Del.       | lbs     |        |
|                            |       |      |    |                    |        | General Pu | urpose End | closure  | Moisture/Explos | ion-Resist | ant Enc | losure |
| 45 W/in² ®                 | 240   | 2.0  | 3  | 13                 | (330)  | BDNF13A27S | RS         | 6 (3)    | BDNF13A27C      | RS         | 9       | (4)    |
| 304 SS Plug<br>1-Alloy 800 | 240   | 2.5  | 3  | 15 <sup>1</sup> /2 | (394)  | BDNF15J27S | RS         | 7 (4)    | BDNF15J27C      | RS         | 10      | (5)    |
| Element                    | 240   | 3.0  | 3  | 18                 | (457)  | BDNF18A27S | RS         | 8 (4)    | BDNF18A27C      | RS         | 11      | (5)    |
| (7 W/cm²)                  | 240   | 4.0  | 3  | 22 <sup>1</sup> /2 | (572)  | BDNF22J27S | RS         | 9 (4)    | BDNF22J27C      | RS         | 12      | (6)    |
|                            | 480   | 4.0  | 3  | 22 <sup>1</sup> /2 | (572)  | BDNF22J28S | RS         | 9 (4)    | BDNF22J28C      | RS         | 12      | (6)    |
|                            | 240   | 5.0  | 3  | 271/2              | (699)  | BDNF27J27S | RS         | 10 (5)   | BDNF27J27C      | RS         | 13      | (6)    |
|                            | 480   | 5.0  | 3  | 271/2              | (699)  | BDNF27J28S | RS         | 10 (5)   | BDNF27J28C      | RS         | 13      | (6)    |
|                            | 240   | 6.0  | 3  | 321/2              | (826)  | BDNF32J27S | RS         | 11 (5)   | BDNF32J27C      | RS         | 14      | (7)    |
|                            | 480   | 6.0  | 3  | 321/2              | (826)  | BDNF32J28S | RS         | 11 (5)   | BDNF32J28C      | RS         | 14      | (7)    |
|                            | 240   | 8.0  | 3  | 42                 | (1067) | BDNF42A27S | RS         | 13 (6)   | BDNF42A27C      | RS         | 16      | (8)    |
|                            | 480   | 8.0  | 3  | 42                 | (1067) | BDNF42A28S | RS         | 13 (6)   | BDNF42A28C      | RS         | 16      | (8)    |
|                            | 240   | 10.0 | 3  | 51 <sup>1</sup> /2 | (1308) | BDNF51J27S | RS         | 15 (7)   | BDNF51J27C      | RS         | 18      | (9)    |
|                            | 480   | 10.0 | 3  | 51 <sup>1</sup> /2 | (1308) | BDNF51J28S | RS         | 15 (7)   | BDNF51J28C      | RS         | 18      | (9)    |



• **RS** - Next day shipment up to 5 pieces

- S No third party recognition
- 8 Can be wired for 1-phase operation

### WATROD and FIREBAR Screw Plug Immersion Heaters




#### **Application: Process Water**

- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

• General purpose enclosure



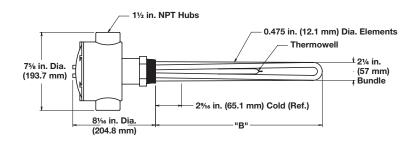
|                            |         |     |    |                                |       |     |       | Type 4 (30 to 1 | 10°F) | Type 5A (60 to 2 | 250°F)  | Type 7A (100 to | 550°F) |
|----------------------------|---------|-----|----|--------------------------------|-------|-----|-------|-----------------|-------|------------------|---------|-----------------|--------|
|                            |         |     |    | "B"                            | Dim.  | Shi | p Wt. | Part            |       | Part             |         | Part            |        |
| Description                | Volts   | kW  | Ph | in.                            | (mm)  | lbs | (kg)  | Number          | Del.  | Number           | Del.    | Number          | Del.   |
|                            |         |     |    |                                |       |     |       |                 | Ge    | neral Purpose En | closure | •               |        |
| 48 W/in² ④                 | 120/240 | 2.0 | 1  | 9 <sup>3</sup> /4              | (248) | 5   | (3)   | BGN79N6S4       | RS    | BGN79N6S5A       | RS      | BGN79N6S7       | RS     |
| 304 SS Plug<br>2-Alloy 800 | 240/480 | 2.0 | 1  | 9 <sup>3</sup> /4              | (248) | 5   | (3)   | BGN79N7S4       | RS    | BGN79N7S5A       | RS      | BGN79N7S7A      | RS     |
| Elements                   | 120/240 | 3.0 | 1  | 13 <sup>1</sup> /4             | (337) | 6   | (3)   | BGN713E6S4      | RS    | BGN713E6S5A      | RS      | BGN713E6S7A     | RS     |
| (7.5 W/cm <sup>2</sup> )   | 240/480 | 3.0 | 1  | 13 <sup>1</sup> /4             | (337) | 6   | (3)   | BGN713E7S4      | RS    | BGN713E7S5A      | RS      | BGN713E7S7A     | RS     |
|                            | 120/240 | 4.0 | 1  | 17 <sup>3</sup> /4             | (451) | 7   | (4)   | BGN717N6S4      | RS    | BGN717N6S5A      | RS      | BGN717N6S7A     | RS     |
|                            | 120/240 | 5.0 | 1  | 20 <sup>1</sup> /4             | (514) | 8   | (4)   | BGN720E6S4      | RS    | BGN720E6S5A      | RS      | BGN720E6S7A     | RS     |
| 48 W/in²                   | 240     | 3.0 | 3  | 9 <sup>3</sup> /4              | (248) | 6   | (3)   | BHN79N3S4       | RS    | BHN79N3S5A       | RS      | BHN79N3S7A      | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480     | 3.0 | 3  | 9 <sup>3</sup> /4              | (248) | 6   | (3)   | BHN79N5S4       | RS    | BHN79N5S5A       | RS      | BHN79N5S7A      | RS     |
| Elements                   | 240     | 4.5 | 3  | 13 <sup>1</sup> / <sub>4</sub> | (337) | 7   | (4)   | BHN713E3S4      | RS    | BHN713E3S5A      | RS      | BHN713E3S7A     | RS     |
| (7.5 W/cm <sup>2</sup> )   | 480     | 4.5 | 3  | 13 <sup>1</sup> / <sub>4</sub> | (337) | 7   | (4)   | BHN713E5S4      | RS    | BHN713E5S5A      | RS      | BHN713E5S7A     | RS     |
|                            | 240     | 6.0 | 3  | 17 <sup>3</sup> /4             | (451) | 8   | (4)   | BHN717N3S4      | RS    | BHN717N3S5A      | RS      | BHN717N3S7A     | RS     |
|                            | 480     | 6.0 | 3  | 17 <sup>3</sup> /4             | (451) | 8   | (4)   | BHN717N5S4      | RS    | BHN717N5S5A      | RS      | BHN717N5S7A     | RS     |
|                            | 240     | 7.5 | 3  | 201/4                          | (514) | 9   | (4)   | BHN720E3S4      | RS    | BHN720E3S5A      | RS      | BHN720E3S7A     | RS     |
|                            | 240     | 9.0 | 3  | 25 <sup>1</sup> / <sub>4</sub> | (641) | 10  | (5)   | BHN725E3S4      | RS    | BHN725E3S5A      | RS      | BHN725E3S7A     | RS     |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

Wired for higher voltage

WATLOW<sup>®</sup> 191


# WATROD and FIREBAR Screw Plug Immersion Heaters

#### **Application: Process Water**

- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

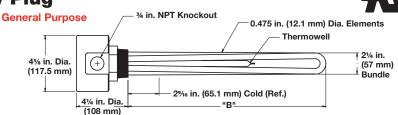
**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

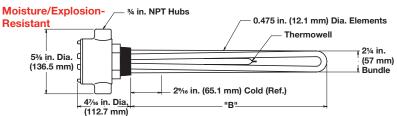
 Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)



|                            |         |     |    |                                |              |             |             | Type 4 (30 to 1 | 10°F)   | Type 5A (60 to 2  | 250°F) | Type 7A (100 to | 550°F) |
|----------------------------|---------|-----|----|--------------------------------|--------------|-------------|-------------|-----------------|---------|-------------------|--------|-----------------|--------|
| Description                | Volts   | kW  | Ph | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number  | Del.    | Part<br>Number    | Del.   | Part<br>Number  | Del.   |
|                            |         |     |    |                                |              |             |             | Mois            | sture/E | Explosion-Resista | nt Enc | osure ⑤         |        |
| 48 W/in² ④                 | 120/240 | 2.0 | 1  | 9 <sup>3</sup> /4              | (248)        | 8           | (4)         | BGN79N6C4       | RS      | BGN79N6C5A        | RS     | BGN79N6C7A      | RS     |
| 304 SS Plug<br>2-Alloy 800 | 240/480 | 2.0 | 1  | 9 <sup>3</sup> /4              | (248)        | 8           | (4)         | BGN79N7C4       | RS      | BGN79N7C5A        | RS     | BGN79N7C7A      | RS     |
| Elements                   | 120/240 | 3.0 | 1  | 13 <sup>1</sup> /4             | (337)        | 9           | (4)         | BGN713E6C4      | RS      | BGN713E6C5A       | RS     | BGN713E6C7A     | RS     |
| (7.5 W/cm²)                | 240/480 | 3.0 | 1  | 13 <sup>1</sup> /4             | (337)        | 9           | (4)         | BGN713E7C4      | RS      | BGN713E7C5A       | RS     | BGN713E7C7A     | RS     |
|                            | 120/240 | 4.0 | 1  | 17 <sup>3</sup> /4             | (451)        | 10          | (5)         | BGN717N6C4      | RS      | BGN717N6C5A       | RS     | BGN717N6C7A     | RS     |
|                            | 120/240 | 5.0 | 1  | 20 <sup>1</sup> /4             | (514)        | 11          | (5)         | BGN720E6C4      | RS      | BGN720E6C5A       | RS     | BGN720E6C7A     | RS     |
| 48 W/in <sup>2</sup>       | 240     | 3.0 | 3  | 93/4                           | (248)        | 9           | (4)         | BHN79N3C4       | RS      | BHN79N3C5A        | RS     | BHN79N3C7A      | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480     | 3.0 | 3  | 93/4                           | (248)        | 9           | (4)         | BHN79N5C4       | RS      | BHN79N5C5A        | RS     | BHN79N5C7A      | RS     |
| Elements                   | 240     | 4.5 | 3  | 13 <sup>1</sup> /4             | (337)        | 10          | (5)         | BHN713E3C4      | RS      | BHN713E3C5A       | RS     | BHN713E3C7A     | RS     |
| (7.5 W/cm²)                | 480     | 4.5 | 3  | 13 <sup>1</sup> /4             | (337)        | 10          | (5)         | BHN713E5C4      | RS      | BHN713E5C5A       | RS     | BHN713E5C7A     | RS     |
|                            | 240     | 6.0 | 3  | 17 <sup>3</sup> /4             | (451)        | 11          | (5)         | BHN717N3C4      | RS      | BHN717N3C5A       | RS     | BHN717N3C7A     | RS     |
|                            | 480     | 6.0 | 3  | 17 <sup>3</sup> /4             | (451)        | 11          | (5)         | BHN717N5C4      | RS      | BHN717N5C5A       | RS     | BHN717N5C7A     | RS     |
|                            | 240     | 7.5 | 3  | 20 <sup>1</sup> / <sub>4</sub> | (514)        | 12          | (6)         | BHN720E3C4      | RS      | BHN720E3C5A       | RS     | BHN720E3C7A     | RS     |
|                            | 240     | 9.0 | 3  | 25 <sup>1</sup> /4             | (641)        | 13          | (6)         | BHN725E3C4      | RS      | BHN725E3C5A       | RS     | BHN725E3C7A     | RS     |




• RS - Next day shipment up to 5 pieces


- Wired for higher voltage
- S No third party recognition

### WATROD and FIREBAR Screw Plug Immersion Heaters General Potential Potential Plug

## Application: Process Water

- 2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





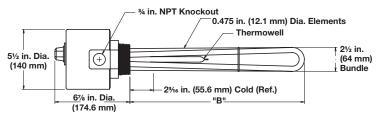
|                         |         |      | 1   | <b>""</b>                      |              |                        | (112.7 mn |             | 1471        |                  |      | 01.         | 1070        |
|-------------------------|---------|------|-----|--------------------------------|--------------|------------------------|-----------|-------------|-------------|------------------|------|-------------|-------------|
| Description             | Volts   | kW   | Ph  | in.                            | Dim.<br>(mm) | Part<br>Number         | Del.      | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number ⑤ | Del. | Ship<br>Ibs | Wt.<br>(kg) |
| Description             | VOILS   | KVV  | FII | 111.                           | (111111)     | General Pu             | 1         |             |             | Moisture/Explos  |      |             | • •         |
| 48 W/in² ④              | 120/240 | 2.0  | 1   | 93/4                           | (248)        | BGN79N6S               | RS        | 4           | (2)         | BGN79N6C         | RS   | 7           | (4)         |
| 304 SS Plug             | 240/480 | 2.0  | 1   | 93/4                           | (248)        | BGN79N7S               | RS        | 4           |             | BGN79N7C         | RS   | 7           |             |
| 2-Alloy 800             | 120/240 | 3.0  | 1   | 13 <sup>1</sup> / <sub>4</sub> | (337)        | BGN713E6S              | RS        | 5           | (2)         | BGN713E6C        | RS   | 8           | (4)         |
| Elements<br>(7.5 W/cm²) | 240/480 | 3.0  | 1   | 13 <sup>1</sup> / <sub>4</sub> | (337)        | BGN713E6S<br>BGN713E7S | RS        | 5           | (3)         | BGN713E7C        | RS   | 8           | (4)         |
| (7.5 W/Cill)            | 120/240 | 4.0  | 1   | 173/4                          | (451)        | BGN713E7S<br>BGN717N6S | RS        | 6           | . ,         | BGN717N6C        | RS   | 9           | (4)         |
|                         |         |      | 1   | 173/4                          | , ,          |                        | RS        | -           | (3)         |                  | RS   | 9           | (4)         |
|                         | 240/480 | 4.0  |     |                                | (451)        | BGN717N7S              |           | 6           | (3)         | BGN717N7C        |      | -           | (4)         |
|                         | 120/240 | 5.0  | 1   | 201/4                          | (514)        | BGN720E6S              | RS        | 7           | (4)         | BGN720E6C        | RS   | 10          | (5)         |
|                         | 240/480 | 5.0  | 1   | 201/4                          | (514)        | BGN720E7S              | RS        | 7           | (4)         | BGN720E7C        | RS   | 10          | (5)         |
|                         | 240/480 | 6.0  | 1   | 25 <sup>1</sup> / <sub>4</sub> | (641)        | BGN725E7S              | RS        | 7           | (4)         | BGN725E7C        | RS   | 10          | (5)         |
|                         | 240/480 | 8.0  | 1   | 32 <sup>3</sup> / <sub>4</sub> | (832)        | BGN732N7S              | RS        | 8           | (4)         | BGN732N7C        | RS   | 11          | (5)         |
| 40.14/7. 0              | 240/480 | 10.0 | 1   | 401/4                          | (1022)       | BGN740E7S              | RS        | 9           | (4)         | BGN740E7C        | RS   | 12          | (6)         |
| 48 W/in²<br>304 SS Plug | 120     | 3.0  | 1   | 93/4                           | (248)        | BHN79N1S               | RS        | 5           | (3)         | BHN79N1C         | RS   | 8           | (4)         |
| 3-Alloy 800             | 240     | 3.0  | 3   | 93/4                           | (248)        |                        | RS        | 5           | (3)         | BHN79N3C         | RS   | 8           | (4)         |
| Element                 | 480     | 3.0  | 3   | 93/4                           | (248)        | BHN79N5S               | RS        | 5           | (3)         | BHN79N5C         | RS   | 8           | (4)         |
| (7.5 W/cm²)             | 120     | 4.5  | 1   | 13 <sup>1</sup> / <sub>4</sub> | (337)        | BHN713E1S              | RS        | 6           | (3)         | BHN713E1C        | RS   | 9           | (4)         |
|                         | 240     | 4.5  | 3   | 13 <sup>1</sup> / <sub>4</sub> | (337)        | BHN713E3S              | RS        | 6           | (3)         | BHN713E3C        | RS   | 9           | (4)         |
|                         | 480     | 4.5  | 3   | 13 <sup>1</sup> /4             | (337)        | BHN713E5S              | RS        | 6           | (3)         | BHN713E5C        | RS   | 9           | (4)         |
|                         | 240     | 6.0  | 3   | 17 <sup>3</sup> /4             | (451)        | BHN717N3S              | RS        | 7           | (4)         | BHN717N3C        | RS   | 10          | (5)         |
|                         | 480     | 6.0  | 3   | 17 <sup>3</sup> /4             | (451)        | BHN717N5S              | RS        | 7           | (4)         | BHN717N5C        | RS   | 10          | (5)         |
|                         | 240     | 7.5  | 3   | 201/4                          | (514)        | BHN720E3S              | RS        | 8           | (4)         | BHN720E3C        | RS   | 11          | (5)         |
|                         | 480     | 7.5  | 3   | 201/4                          | (514)        | BHN720E5S              | RS        | 8           | (4)         | BHN720E5C        | RS   | 11          | (5)         |
|                         | 240     | 9.0  | 3   | 25 <sup>1</sup> / <sub>4</sub> | (641)        | BHN725E3S              | RS        | 9           | (4)         | BHN725E3C        | RS   | 12          | (6)         |
|                         | 480     | 9.0  | 3   | 25 <sup>1</sup> / <sub>4</sub> | (641)        | BHN725E5S              | RS        | 9           | (4)         | BHN725E5C        | RS   | 12          | (6)         |
|                         | 240     | 12.0 | 3   | 32 <sup>3</sup> /4             | (832)        | BHN732N3S              | RS        | 9           | (4)         | BHN732N3C        | RS   | 12          | (6)         |
|                         | 480     | 12.0 | 3   | 32 <sup>3</sup> /4             | (832)        | BHN732N5S              | RS        | 9           | (4)         | BHN732N5C        | RS   | 12          | (6)         |
|                         | 240     | 15.0 | 3   | 40 <sup>1</sup> / <sub>4</sub> | (1022)       | BHN740E3S              | RS        | 10          | (5)         | BHN740E3C        | RS   | 13          | (6)         |
|                         | 480     | 15.0 | 3   | 40 <sup>1</sup> / <sub>4</sub> | (1022)       | BHN740E5S              | RS        | 10          | (5)         | BHN740E5C        | RS   | 13          | (6)         |
|                         | 240     | 18.0 | 3   | 47 <sup>3</sup> /4             | (1213)       | BHN747N3S              | RS        | 11          | (5)         | BHN747N3C        | RS   | 14          | (7)         |
|                         | 480     | 18.0 | 3   | 47 <sup>3</sup> /4             | (1213)       | BHN747N5S              | RS        | 11          | (5)         | BHN747N5C        | RS   | 14          | (7)         |



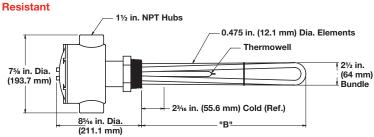
- Wired for higher voltage
- S No third party recognition

#### WATROD and FIREBAR Screw Plug Immersion Heaters




#### **Application: Process Water**

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- WATROD elements
- With thermostat (DPST)


**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

#### **General Purpose**



#### Moisture/Explosion-

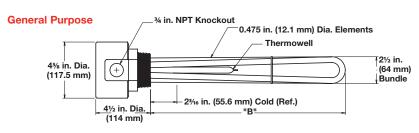


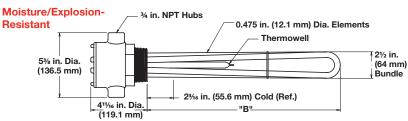
|                            |       |     |    |                    |              |             |             | Type 4 (30 to 1 | 110°F)  | Type 5A (60 to    | 250°F)  | Type 7A (100 to | 550°F) |
|----------------------------|-------|-----|----|--------------------|--------------|-------------|-------------|-----------------|---------|-------------------|---------|-----------------|--------|
| Description                | Volts | kW  | Ph | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number  | Del.    | Part<br>Number    | Del.    | Part<br>Number  | Del.   |
| _                          |       |     |    |                    |              |             |             |                 | Ger     | neral Purpose End | closure |                 |        |
| 48 W/in²                   | 240   | 3.0 | 3  | 93/8               | (238.1)      | 7           | (4)         | BLN79G3S4       | RS      | BLN79G3S5A        | RS      | BLN79G3S7A      | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 3.0 | 3  | 93/8               | (238.1)      | 7           | (4)         | BLN79G5S4       | RS      | BLN79G5S5A        | RS      | BLN79G5S7A      | RS     |
| Elements                   | 240   | 4.5 | 3  | 12 <sup>7</sup> /8 | (327.0)      | 8           | (4)         | BLN712R3S4      | RS      | BLN712R3S5A       | RS      | BLN712R3S7A     | RS     |
| (7.5 W/cm²)                | 480   | 4.5 | 3  | 12 <sup>7</sup> /8 | (327.0)      | 8           | (4)         | BLN712R5S4      | RS      | BLN712R5S5A       | RS      | BLN712R5S7A     | RS     |
|                            | 240   | 6.0 | 3  | 17 <sup>3</sup> /8 | (441.3)      | 10          | (5)         | BLN717G3S4      | RS      | BLN717G3S5A       | RS      | BLN717G3S7A     | RS     |
|                            | 480   | 6.0 | 3  | 17 <sup>3</sup> /8 | (441.3)      | 10          | (5)         | BLN717G5S4      | RS      | BLN717G5S5A       | RS      | BLN717G5S7A     | RS     |
|                            | 240   | 7.5 | 3  | 19 <sup>7</sup> /8 | (504.8)      | 12          | (6)         | BLN719R3S4      | RS      | BLN719R3S5A       | RS      | BLN719R3S7A     | RS     |
|                            | 240   | 9.0 | 3  | 24 <sup>7</sup> /8 | (631.8)      | 13          | (6)         | BLN724R3S4      | RS      | BLN724R3S5A       | RS      | BLN724R3S7A     | RS     |
|                            |       |     |    |                    |              |             |             |                 |         |                   |         |                 |        |
|                            |       |     |    |                    |              |             |             |                 | Moistur | e/Explosion-Resi  | stant E | nclosure ⑤      |        |
| 48 W/in²                   | 240   | 3.0 | 3  | 93/8               | (238.1)      | 10          | (5)         | BLN79G3C4       | RS      | BLN79G3C5A        | RS      | BLN79G3C7A      | RS     |
| 304 SS Plug<br>3-Allov 800 | 480   | 3.0 | 3  | 93/8               | (238.1)      | 10          | (5)         | BLN79G5C4       | RS      | BLN79G5C5A        | RS      | BLN79G5C7A      | RS     |
| Elements                   | 240   | 4.5 | 3  | 12 <sup>7</sup> /8 | (327.0)      | 11          | (5)         | BLN712R3C4      | RS      | BLN712R3C5A       | RS      | BLN712R3C7A     | RS     |
| (7.5 W/cm²)                | 480   | 4.5 | 3  | 12 <sup>7</sup> /8 | (327.0)      | 11          | (5)         | BLN712R5C4      | RS      | BLN712R5C5A       | RS      | BLN712R5C7A     | RS     |
|                            | 240   | 6.0 | 3  | 17 <sup>3</sup> /8 | (441.3)      | 13          | (6)         | BLN717G3C4      | RS      | BLN717G3C5A       | RS      | BLN717G3C7A     | RS     |
|                            | 480   | 6.0 | 3  | 17 <sup>3</sup> /8 | (441.3)      | 13          | (6)         | BLN717G5C4      | RS      | BLN717G5C5A       | RS      | BLN717G5C7A     | RS     |
|                            | 240   | 7.5 | 3  | 19 <sup>7</sup> /8 | (504.8)      | 15          | (7)         | BLN719R3C4      | RS      | BLN719R3C5A       | RS      | BLN719R3C7A     | RS     |
|                            | 240   | 9.0 | 3  | 24 <sup>7</sup> /8 | (631.8)      | 16          | (8)         | BLN724R3C4      | RS      | BLN724R3C5A       | RS      | BLN724R3C7A     | RS     |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

S No third party recognition


WATLOW<sup>®</sup>


### WATROD and FIREBAR Screw Plug Immersion Heaters



### **Application: Process Water**

- 21/2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





|                            |       |      |    | "B"                | Dim.     | Part      |          | Ship     |     | Part             |            |         | Wt.   |
|----------------------------|-------|------|----|--------------------|----------|-----------|----------|----------|-----|------------------|------------|---------|-------|
| Description                | Volts | kW   | Ph | in.                | (mm)     | Number    | Del.     | lbs      |     | Number ⑤         | Del.       |         | (kg)  |
|                            |       |      |    |                    |          | General P | urpose E | nclosure | •   | Moisture/Explosi | on-Resista | nt Encl | osure |
| 48 W/in²                   | 120   | 3.0  | 1  | 9 <sup>3</sup> /8  | (238.1)  | BLN79G1S  | RS       | 6        | (3) | BLN79G1C         | RS         | 9       | (4)   |
| 304 SS Plug<br>3-Alloy 800 | 240   | 3.0  | 3  | 93/8               | (238.1)  | BLN79G3S  | RS       | 6        | (3) | BLN79G3C         | RS         | 9       | (4)   |
| Elements                   | 480   | 3.0  | 3  | 93/8               | (238.1)  | BLN79G5S  | RS       | 6        | (3) | BLN79G5C         | RS         | 9       | (4)   |
| (7.5 W/cm²)                | 120   | 4.5  | 1  | 12 <sup>7</sup> /8 | (327.0)  | BLN712R1S | RS       | 7        | (4) | BLN712R1C        | RS         | 10      | (5)   |
|                            | 240   | 4.5  | 3  | 12 <sup>7</sup> /8 | (327.0)  | BLN712R3S | RS       | 7        | (4) | BLN712R3C        | RS         | 10      | (5)   |
|                            | 480   | 4.5  | 3  | 12 <sup>7</sup> /8 | (327.0)  | BLN712R5S | RS       | 7        | (4) | BLN712R5C        | RS         | 10      | (5)   |
|                            | 240   | 6.0  | 3  | 17 <sup>3</sup> /8 | (441.3)  | BLN717G3S | RS       | 9        | (4) | BLN717G3C        | RS         | 12      | (6)   |
|                            | 480   | 6.0  | 3  | 17 <sup>3</sup> /8 | (441.3)  | BLN717G5S | RS       | 9        | (4) | BLN717G5C        | RS         | 12      | (6)   |
|                            | 240   | 7.5  | 3  | 19 <sup>7</sup> /8 | (504.8)  | BLN719R3S | RS       | 11       | (5) | BLN719R3C        | RS         | 14      | (7)   |
|                            | 480   | 7.5  | 3  | 19 <sup>7</sup> /8 | (504.8)  | BLN719R5S | RS       | 11       | (5) | BLN719R5C        | RS         | 14      | (7)   |
|                            | 240   | 9.0  | 3  | 24 <sup>7</sup> /8 | (631.8)  | BLN724R3S | RS       | 12       | (6) | BLN724R3C        | RS         | 15      | (7)   |
|                            | 480   | 9.0  | 3  | 24 <sup>7</sup> /8 | (631.8)  | BLN724R5S | RS       | 12       | (6) | BLN724R5C        | RS         | 15      | (7)   |
|                            | 240   | 12.0 | 3  | 323/8              | (822.3)  | BLN732G3S | RS       | 14       | (7) | BLN732G3C        | RS         | 17      | (8)   |
|                            | 480   | 12.0 | 3  | 323/8              | (822.3)  | BLN732G5S | RS       | 14       | (7) | BLN732G5C        | RS         | 17      | (8)   |
|                            | 240   | 15.0 | 3  | 39 <sup>7</sup> /8 | (1012.8) | BLN739R3S | RS       | 15       | (7) | BLN739R3C        | RS         | 18      | (9)   |
|                            | 480   | 15.0 | 3  | 39 <sup>7</sup> /8 | (1012.8) | BLN739R5S | RS       | 15       | (7) | BLN739R5C        | RS         | 18      | (9)   |
|                            | 240   | 18.0 | 3  | 47 <sup>3</sup> /8 | (1203.3) | BLN747G3S | RS       | 17       | (8) | BLN747G3C        | RS         | 20      | (9)   |
|                            | 480   | 18.0 | 3  | 47 <sup>3</sup> /8 | (1203.3) | BLN747G5S | RS       | 17       | (8) | BLN747G5C        | RS         | 20      | (9)   |

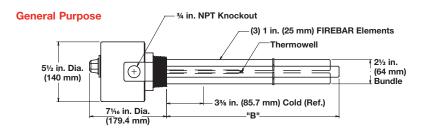


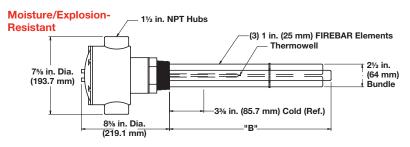
**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

S No third party recognition

WATLOW<sup>®</sup> 195

### WATROD and FIREBAR Screw Plug Immersion Heaters





#### **Application: Process Water**

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



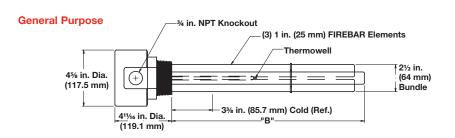


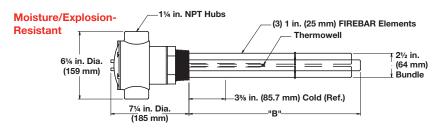
|                         |       |      |    |                                |              |                         |               | Type 5A (60 to 25 | 50°F)      | Type 7A (100 to 5    | 550°F) |
|-------------------------|-------|------|----|--------------------------------|--------------|-------------------------|---------------|-------------------|------------|----------------------|--------|
| Description             | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Shi <sub>l</sub><br>Ibs | p Wt.<br>(kg) | Part<br>Number    | Del.       | Part<br>Number       | Del.   |
| _                       | '     |      |    |                                |              |                         |               | Gene              | eral Purpo | se Enclosure         | '      |
| 45 W/in² ®              | 240   | 6.0  | 3  | 12                             | (305)        | 12                      | (6)           | BLNF12A27S5A      | RS         | BLNF12A27S7A         | RS     |
| 304 SS Plug             | 240   | 7.5  | 3  | 14 <sup>1</sup> /2             | (368)        | 12                      | (6)           | BLNF14J27S5A      | RS         | BLNF14J27S7A         | RS     |
| 3-Alloy 800<br>Elements | 240   | 9.0  | 3  | 17                             | (432)        | 13                      | (6)           | BLNF17A27S5A      | RS         | BLNF17A27S7A         | RS     |
| (7 W/cm²)               | 240   | 12.0 | 3  | 21 <sup>1</sup> / <sub>2</sub> | (546)        | 15                      | (7)           | BLNF21J27S5A      | RS         | BLNF21J27S7A         | RS     |
|                         |       |      |    |                                |              |                         |               |                   |            |                      |        |
|                         |       |      |    |                                |              |                         |               | Moisture/Ex       | plosion-R  | esistant Enclosure 5 |        |
| 45 W/in² ®              | 240   | 6.0  | 3  | 12                             | (305)        | 14                      | (7)           | BLNF12A27C5A      | RS         | BLNF12A27C7A         | RS     |
| 304 SS Plug             | 240   | 7.5  | 3  | 14 <sup>1</sup> /2             | (368)        | 15                      | (7)           | BLNF14J27C5A      | RS         | BLNF14J27C7A         | RS     |
| 3-Alloy 800<br>Elements | 240   | 9.0  | 3  | 17                             | (432)        | 16                      | (8)           | BLNF17A27C5A      | RS         | BLNF17A27C7A         | RS     |
| (7 W/cm²)               | 240   | 12.0 | 3  | 21 <sup>1</sup> /2             | (546)        | 18                      | (9)           | BLNF21J27C5A      | RS         | BLNF21J27C7A         | RS     |



 RS - Next day shipment up to 5 pieces **Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- S No third party recognition
- 8 Can be wired for 1-phase operation


■ WATLOW®


# WATROD and FIREBAR Screw Plug Immersion Heaters



#### **Application: Process Water**

- 21/2 inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





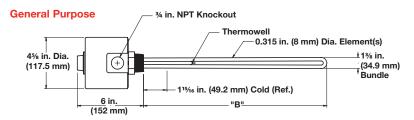
| Description                | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Part<br>Number | Del.      | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number ⑤ | Del.        |        | Wt.<br>(kg) |
|----------------------------|-------|------|----|--------------------------------|--------------|----------------|-----------|-------------|-------------|------------------|-------------|--------|-------------|
|                            |       |      |    |                                |              | General Po     | urpose Er | nclosure    | 9           | Moisture/Explos  | ion-Resista | nt End | closure     |
| 45 W/in² ®                 | 240   | 6.0  | 3  | 12                             | (305)        | BLNF12A27S     | RS        | 10          | (5)         | BLNF12A27C       | RS          | 13     | (6)         |
| 304 SS Plug<br>3-Alloy 800 | 240   | 7.5  | 3  | 14 <sup>1</sup> /2             | (368)        | BLNF14J27S     | RS        | 11          | (5)         | BLNF14J27C       | RS          | 14     | (7)         |
| Elements                   | 240   | 9.0  | 3  | 17                             | (432)        | BLNF17A27S     | RS        | 12          | (6)         | BLNF17A27C       | RS          | 15     | (7)         |
| (7 W/cm²)                  | 240   | 12.0 | 3  | 21 <sup>1</sup> /2             | (546)        | BLNF21J27S     | RS        | 14          | (7)         | BLNF21J27C       | RS          | 17     | (8)         |
|                            | 480   | 12.0 | 3  | 21 <sup>1</sup> /2             | (546)        | BLNF21J28S     | RS        | 14          | (7)         | BLNF21J28C       | RS          | 17     | (8)         |
|                            | 240   | 15.0 | 3  | 26 <sup>1</sup> / <sub>2</sub> | (673)        | BLNF26J27S     | RS        | 17          | (8)         | BLNF26J27C       | RS          | 20     | (9)         |
|                            | 480   | 15.0 | 3  | 26 <sup>1</sup> / <sub>2</sub> | (673)        | BLNF26J28S     | RS        | 17          | (8)         | BLNF26J28C       | RS          | 20     | (9)         |
|                            | 240   | 18.0 | 3  | 31 <sup>1</sup> /2             | (800)        | BLNF31J27S     | RS        | 18          | (9)         | BLNF31J27C       | RS          | 21     | (10)        |
|                            | 480   | 18.0 | 3  | 31 <sup>1</sup> /2             | (800)        | BLNF31J28S     | RS        | 18          | (9)         | BLNF31J28C       | RS          | 21     | (10)        |
|                            | 480   | 24.0 | 3  | 41                             | (1041)       | BLNF41A28S     | RS        | 20          | (9)         | BLNF41A28C       | RS          | 23     | (11)        |
|                            | 480   | 30.0 | 3  | 50 <sup>1</sup> /2             | (1283)       | BLNF50J28S     | RS        | 22          | (10)        | BLNF50J28C       | RS          | 25     | (12)        |

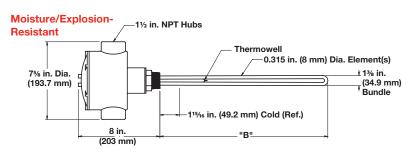


• **RS** - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- ⑤ No third party recognition
- ® Can be wired for 1-phase operation


WATLOW<sup>®</sup> \_\_\_\_\_\_ 197


### WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Forced Air and Caustic Solutions

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- WATROD elements
- With thermostat (SPST)
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





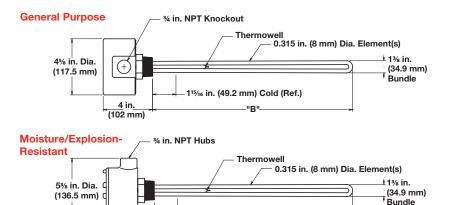
|                            |         |     |    |                    |              |             |             | Type 2 (30 to  | 250°F)      | Type 3 (175 to      | 550°F)   |
|----------------------------|---------|-----|----|--------------------|--------------|-------------|-------------|----------------|-------------|---------------------|----------|
| Description                | Volts   | kW  | Ph | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number | Del.        | Part<br>Number      | Del.     |
|                            |         |     |    |                    |              |             |             |                | Genera      | al Purpose Enclosur | е        |
| 23 W/in² ④                 | 120/240 | 1.0 | 1  | 13 <sup>3</sup> /8 | (339.7)      | 6           | (3)         | BEN13G6S2      | RS          | BEN13G6S3           | RS       |
| 304 SS Plug<br>2-Alloy 800 | 120/240 | 1.5 | 1  | 19                 | (483.0)      | 7           | (4)         | BEN19A6S2      | RS          | BEN19A6S3           | RS       |
| Elements                   | 120/240 | 2.0 | 1  | 24 <sup>3</sup> /8 | (619.1)      | 8           | (4)         | BEN24G6S2      | RS          | BEN24G6S3           | RS       |
| (3.6 W/cm²)                |         |     |    |                    | '            |             |             |                |             |                     |          |
|                            |         |     |    |                    |              |             |             |                |             |                     |          |
|                            |         |     |    |                    |              |             |             | Mo             | isture/Expl | osion-Resistant End | losure ⑤ |
| 23 W/in² ④                 | 120/240 | 1.0 | 1  | 13 <sup>3</sup> /8 | (339.7)      | 10          | (5)         | BEN13G6C2      | RS          | BEN13G6C3           | RS       |
| 304 SS Plug                | 120/240 | 1.5 | 1  | 19                 | (483.0)      | 11          | (5)         | BEN19A6C2      | RS          | BEN19A6C3           | RS       |
| 2-Alloy 800<br>Elements    | 120/240 | 2.0 | 1  | 24 <sup>3</sup> /8 | (619.1)      | 12          | (6)         | BEN24G6C2      | RS          | BEN24G6C3           | RS       |
|                            |         |     |    |                    |              |             |             |                |             |                     |          |



• **RS** - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- Wired for higher voltage
- S No third party recognition


**WATLOW®** 

### WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Forced Air and Caustic Solutions

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



115/16 in. (49.2 mm) Cold (Ref.)

| Description                | Volts   | kW  | Ph | "B"<br>in.         | Dim.<br>(mm) | Part<br>Number | Del.      | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number ⑤ | Del.        | Ship<br>Ibs | Wt.<br>(kg) |
|----------------------------|---------|-----|----|--------------------|--------------|----------------|-----------|-------------|-------------|------------------|-------------|-------------|-------------|
|                            |         |     |    |                    |              | General P      | urpose En | closure     |             | Moisture Explo   | sion-Resist | ant Enc     | losure      |
| 23 W/in² ④                 | 120/240 | 1.0 | 1  | 13 <sup>3</sup> /8 | (339.7)      | BEN13G6S       | RS        | 6           | (3)         | BEN13G6C         | RS          | 9           | (4)         |
| 304 SS Plug<br>2-Alloy 800 | 120/240 | 1.5 | 1  | 19                 | (483.0)      | BEN19A6S       | RS        | 7           | (4)         | BEN19A6C         | RS          | 10          | (5)         |
| Elements                   | 120/240 | 2.0 | 1  | 24 <sup>3</sup> /8 | (619.1)      | BEN24G6S       | RS        | 8           | (4)         | BEN24G6C         | RS          | 11          | (5)         |
| (3.6 W/cm <sup>2</sup> )   |         |     |    |                    |              |                |           |             |             |                  |             |             |             |

\_\_4¼ in.\_ (108 mm)



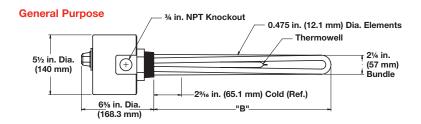
• RS - Next day shipment up to 5 pieces

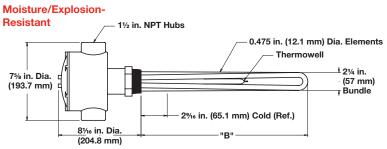
**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- Wired for higher voltage
- S No third party recognition

WATLOW<sup>®</sup> 199

### WATROD and FIREBAR Screw Plug Immersion Heaters





## Application: Forced Air and Caustic Solutions

- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

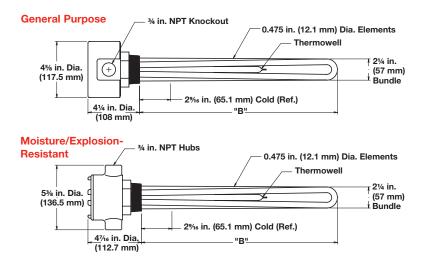




|                            |       |          |    |                                |          |      |      | Type 4 (30 to 1 | 10°F)   | Type 5A (60 to 2  | 250°F)   | Type 7A (100 to 5 | 550°F) |
|----------------------------|-------|----------|----|--------------------------------|----------|------|------|-----------------|---------|-------------------|----------|-------------------|--------|
|                            |       | Ι        | Ι  | "B"                            | Dim.     | Shir | Wt.  | Part            |         | Part              |          | Part              |        |
| Description                | Volts | kW       | Ph | in.                            | (mm)     | lbs  | (kg) | Number          | Del.    | Number            | Del.     | Number            | Del.   |
|                            |       |          |    |                                |          |      |      |                 | G       | eneral Purpose E  | nclosu   | re                |        |
| 23 W/in <sup>2</sup> 6     | 240   | 3.0      | 3  | 17 <sup>3</sup> /4             | (451)    | 8    | (4)  | BHNA17N3S4      | RS      | BHNA17N3S5A       | RS       | BHNA17N3S7A       | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 3.0      | 3  | 17 <sup>3</sup> /4             | (451)    | 8    | (4)  | BHNA17N5S4      | RS      | BHNA17N5S5A       | RS       | BHNA17N5S7A       | RS     |
| Elements                   | 240   | 4.5      | 3  | 25 <sup>1</sup> / <sub>4</sub> | (641)    | 10   | (5)  | BHNA25E3S4      | RS      | BHNA25E3S5A       | RS       | BHNA25E3S7A       | RS     |
| (3.6 W/cm²)                | 480   | 4.5      | 3  | 25 <sup>1</sup> /4             | (641)    | 10   | (5)  | BHNA25E5S4      | RS      | BHNA25E5S5A       | RS       | BHNA25E5S7A       | RS     |
|                            | 240   | 6.0      | 3  | 32 <sup>3</sup> /4             | (832)    | 10   | (5)  | BHNA32N3S4      | RS      | BHNA32N3S5A       | RS       | BHNA32N3S7A       | RS     |
|                            | 480   | 6.0      | 3  | 32 <sup>3</sup> /4             | (832)    | 10   | (5)  | BHNA32N5S4      | RS      | BHNA32N5S5A       | RS       | BHNA32N5S7A       | RS     |
|                            | 240   | 7.5      | 3  | 40 <sup>1</sup> / <sub>4</sub> | (1022)   | 11   | (5)  | BHNA40E3S4      | RS      | BHNA40E3S5A       | RS       | BHNA40E3S7A       | RS     |
|                            | 240   | 9.0      | 3  | 47 <sup>3</sup> /4             | (1213)   | 12   | (6)  | BHNA47N3S4      | RS      | BHNA47N3S5A       | RS       | BHNA47N3S7A       | RS     |
|                            | ,     | <u> </u> |    |                                | <u> </u> |      |      |                 |         |                   | <u> </u> | <u>'</u>          |        |
|                            |       |          |    |                                |          |      |      | M               | oisture | /Explosion-Resist | ant En   | closure ⑤         |        |
| 23 W/in <sup>2</sup> ⑥     | 240   | 3.0      | 3  | 17 <sup>3</sup> /4             | (451)    | 11   | (5)  | BHNA17N3C4      | RS      | BHNA17N3C5A       | RS       | BHNA17N3C7A       | RS     |
| 304 SS Plug                | 480   | 3.0      | 3  | 17 <sup>3</sup> /4             | (451)    | 11   | (5)  | BHNA17N5C4      | RS      | BHNA17N5C5A       | RS       | BHNA17N5C7A       | RS     |
| 3-Alloy 800<br>Elements    | 240   | 4.5      | 3  | 25 <sup>1</sup> /4             | (641)    | 13   | (6)  | BHNA25E3C4      | RS      | BHNA25E3C5A       | RS       | BHNA25E3C7A       | RS     |
| (3.6 W/cm²)                | 480   | 4.5      | 3  | 25 <sup>1</sup> /4             | (641)    | 13   | (6)  | BHNA25E5C4      | RS      | BHNA25E5C5A       | RS       | BHNA25E5C7A       | RS     |
|                            | 240   | 6.0      | 3  | 32 <sup>3</sup> /4             | (832)    | 13   | (6)  | BHNA32N3C4      | RS      | BHNA32N3C5A       | RS       | BHNA32N3C7A       | RS     |
|                            | 480   | 6.0      | 3  | 32 <sup>3</sup> /4             | (832)    | 13   | (6)  | BHNA32N5C4      | RS      | BHNA32N5C5A       | RS       | BHNA32N5C7A       | RS     |
|                            | 240   | 7.5      | 3  | 40 <sup>1</sup> / <sub>4</sub> | (1022)   | 14   | (7)  | BHNA40E3C4      | RS      | BHNA40E3C5A       | RS       | BHNA40E3C7A       | RS     |
|                            | 240   | 9.0      | 3  | 47 <sup>3</sup> /4             | (1213)   | 15   | (7)  | BHNA47N3C4      | RS      | BHNA47N3C5A       | RS       | BHNA47N3C7A       | RS     |



• **RS** - Next day shipment up to 5 pieces


- S No third party recognition
- 6 Can be rewired wye to produce % of the original kW and watt density (3-phase only)

### WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Forced Air and Caustic Solutions

- 2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



| Description                | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Part<br>Number | Del.      | Ship<br>lbs | Wt.<br>(kg) | Part<br>Number 5 | Del.       | Ship<br>Ibs |      |
|----------------------------|-------|------|----|--------------------------------|--------------|----------------|-----------|-------------|-------------|------------------|------------|-------------|------|
|                            |       |      |    |                                | ()           |                | Purpose E |             |             | Moisture/Explos  | ion-Resist |             |      |
| 23 W/in² 6                 | 120   | 3.0  | 1  | 17 <sup>3</sup> /4             | (451)        | BHNA17N1S      | RS        | 7           | (4)         | BHNA17N1C        | RS         | 10          | (5)  |
| 304 SS Plug<br>3-Alloy 800 | 240   | 3.0  | 3  | 17 <sup>3</sup> /4             | (451)        | BHNA17N3S      | RS        | 7           | (4)         | BHNA17N3C        | RS         | 10          | (5)  |
| Elements                   | 480   | 3.0  | 3  | 17 <sup>3</sup> /4             | (451)        | BHNA17N5S      | RS        | 7           | (4)         | BHNA17N5C        | RS         | 10          | (5)  |
| (3.6 W/cm²)                | 120   | 4.5  | 1  | 25 <sup>1</sup> /4             | (641)        | BHNA25E1S      | RS        | 8           | (4)         | BHNA25E1C        | RS         | 11          | (5)  |
|                            | 240   | 4.5  | 3  | 25 <sup>1</sup> /4             | (641)        | BHNA25E3S      | RS        | 8           | (4)         | BHNA25E3C        | RS         | 11          | (5)  |
|                            | 480   | 4.5  | 3  | 25 <sup>1</sup> /4             | (641)        | BHNA25E5S      | RS        | 8           | (4)         | BHNA25E5C        | RS         | 11          | (5)  |
|                            | 240   | 6.0  | 3  | 32 <sup>3</sup> /4             | (832)        | BHNA32N3S      | RS        | 9           | (4)         | BHNA32N3C        | RS         | 12          | (6)  |
|                            | 480   | 6.0  | 3  | 32 <sup>3</sup> /4             | (832)        | BHNA32N5S      | RS        | 9           | (4)         | BHNA32N5C        | RS         | 12          | (6)  |
|                            | 240   | 7.5  | 3  | 40 <sup>1</sup> /4             | (1022)       | BHNA40E3S      | RS        | 10          | (5)         | BHNA40E3C        | RS         | 13          | (6)  |
|                            | 480   | 7.5  | 3  | 40 <sup>1</sup> /4             | (1022)       | BHNA40E5S      | RS        | 10          | (5)         | BHNA40E5C        | RS         | 13          | (6)  |
|                            | 240   | 9.0  | 3  | 47 <sup>3</sup> /4             | (1213)       | BHNA47N3S      | RS        | 11          | (5)         | BHNA47N3C        | RS         | 14          | (7)  |
|                            | 480   | 9.0  | 3  | 47 <sup>3</sup> /4             | (1213)       | BHNA47N5S      | RS        | 11          | (5)         | BHNA47N5C        | RS         | 14          | (7)  |
|                            | 240   | 12.5 | 3  | 64 <sup>1</sup> / <sub>4</sub> | (1632)       | BHNA64E3S      | RS        | 15          | (7)         | BHNA64E3C        | RS         | 18          | (9)  |
|                            | 480   | 12.5 | 3  | 64 <sup>1</sup> / <sub>4</sub> | (1632)       | BHNA64E5S      | RS        | 15          | (7)         | BHNA64E5C        | RS         | 18          | (9)  |
|                            | 240   | 15.0 | 3  | 76 <sup>3</sup> /4             | (1950)       | BHNA76E3S      | RS        | 18          | (9)         | BHNA76E3C        | RS         | 21          | (10) |
|                            | 480   | 15.0 | 3  | 76 <sup>3</sup> /4             | (1950)       | BHNA76E5S      | RS        | 18          | (9)         | BHNA76E5C        | RS         | 21          | (10) |

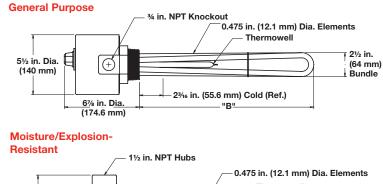


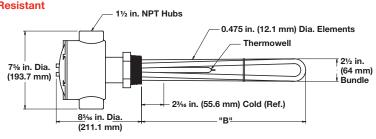
**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- S No third party recognition
- © Can be rewired wye to produce ½ of the original kW and watt density (3-phase only)

WATLOW® 201

### WATROD and FIREBAR Screw Plug Immersion Heaters





## Application: Forced Air and Caustic Solutions

- 21/2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

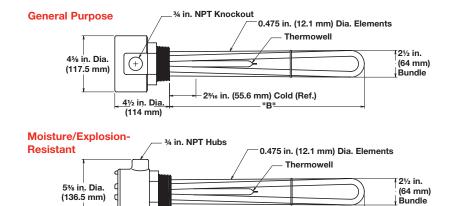




|                            |       |     |    |                      |              |             |             | Type 4 (30 to  | 110°F) | Type 5A (60 to    | 250°F)  | Type 7A (100 to | 550°F) |
|----------------------------|-------|-----|----|----------------------|--------------|-------------|-------------|----------------|--------|-------------------|---------|-----------------|--------|
| Description                | Volts | kW  | Ph | "B"<br>in.           | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number | Del.   | Part<br>Number    | Del.    | Part<br>Number  | Del.   |
|                            |       |     |    |                      |              |             |             |                |        | General Purpose   | Enclosu | ire             |        |
| 23 W/in <sup>2</sup> ⑥     | 240   | 3.0 | 3  | 17 <sup>3</sup> /8   | (441.3)      | 10          | (5)         | BLNA17G3S4     | RS     | BLNA17G3S5A       | RS      | BLNA17G3S7A     | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 3.0 | 3  | 17 <sup>3</sup> /8   | (441.3)      | 10          | (5)         | BLNA17G5S4     | RS     | BLNA17G5S5A       | RS      | BLNA17G5S7A     | RS     |
| Elements                   | 240   | 4.5 | 3  | 24 <sup>7</sup> /8   | (631.8)      | 13          | (6)         | BLNA24R3S4     | RS     | BLNA24R3S5A       | RS      | BLNA24R3S7A     | RS     |
| (3.6 W/cm <sup>2</sup> )   | 480   | 4.5 | 3  | 24 <sup>7</sup> /8   | (631.8)      | 13          | (6)         | BLNA24R5S4     | RS     | BLNA24R5S5A       | RS      | BLNA24R5S7A     | RS     |
|                            | 240   | 6.0 | 3  | 32 <sup>3</sup> /8   | (822.3)      | 15          | (7)         | BLNA32G3S4     | RS     | BLNA32G3S5A       | RS      | BLNA32G3S7A     | RS     |
|                            | 480   | 6.0 | 3  | 323/8                | (822.3)      | 15          | (7)         | BLNA32G5S4     | RS     | BLNA32G5S5A       | RS      | BLNA32G5S7A     | RS     |
|                            | 240   | 7.5 | 3  | 39 <sup>7</sup> /8   | (1012.8)     | 16          | (8)         | BLNA39R3S4     | RS     | BLNA39R3S5A       | RS      | BLNA39R3S7A     | RS     |
|                            | 240   | 9.0 | 3  | 47 <sup>3</sup> /8   | (1203.3)     | 18          | (9)         | BLNA47G3S4     | RS     | BLNA47G3S5A       | RS      | BLNA47G3S7A     | RS     |
|                            |       |     |    |                      |              |             |             |                |        |                   |         |                 |        |
|                            |       |     |    |                      |              |             |             |                | Moistu | re/Explosion-Resi | stant E | nclosure ⑤      |        |
| 23 W/in² 6                 | 240   | 3.0 | 3  | 17 <sup>3</sup> /8   | (441.3)      | 13          | (6)         | BLNA17G3C4     | RS     | BLNA17G3C5A       | RS      | BLNA17G3C7A     | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 3.0 | 3  | 17 <sup>3</sup> /8   | (441.3)      | 13          | (6)         | BLNA17G5C4     | RS     | BLNA17G5C5A       | RS      | BLNA17G5C7A     | RS     |
| Elements                   | 240   | 4.5 | 3  | 24 <sup>7</sup> /8   | (631.8)      | 16          | (8)         | BLNA24R3C4     | RS     | BLNA24R3C5A       | RS      | BLNA24R3C7A     | RS     |
| (3.6 W/cm²)                | 480   | 4.5 | 3  | 24 <sup>7</sup> /8   | (631.8)      | 16          | (8)         | BLNA24R5C4     | RS     | BLNA24R5C5A       | RS      | BLNA24R5C7A     | RS     |
|                            | 240   | 6.0 | 3  | 32 <sup>3</sup> /8   | (822.3)      | 18          | (9)         | BLNA32G3C4     | RS     | BLNA32G3C5A       | RS      | BLNA32G3C7A     | RS     |
|                            | 480   | 6.0 | 3  | 32 <sup>3</sup> /8   | (822.3)      | 18          | (9)         | BLNA32G5C4     | RS     | BLNA32G5C5A       | RS      | BLNA32G5C7A     | RS     |
|                            | 240   | 7.5 | 3  | 39 <sup>7</sup> /8 ( | (1012.8)     | 19          | (9)         | BLNA39R3C4     | RS     | BLNA39R3C5A       | RS      | BLNA39R3C7A     | RS     |
|                            | 240   | 9.0 | 3  | 47 <sup>3</sup> /8 ( | (1203.3)     | 21          | (10)        | BLNA47G3C4     | RS     | BLNA47G3C5A       | RS      | BLNA47G3C7A     | RS     |



up to 5 pieces


- S No third party recognition
- ⑥ Can be rewired wye to produce ½ of the original kW and watt density (3-phase only)

# WATROD and FIREBAR Screw Plug Immersion Heaters



## **Application: Forced Air and Caustic Solutions**

- 21/2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



23/16 in. (55.6 mm) Cold (Ref.)

"B"

| Barrell Marie              | .,    |      | DI. |                    | Dim.     | Part      | D.,          | Ship     |      | Part            | 5.1        | Ship    |        |
|----------------------------|-------|------|-----|--------------------|----------|-----------|--------------|----------|------|-----------------|------------|---------|--------|
| Description                | voits | kW   | Ph  | in.                | (mm)     | Number    | Del.         |          | (kg) | Number 5        | Del.       |         | (kg)   |
|                            |       |      |     |                    |          | Genera    | l Purpose Er | iciosure |      | Moisture/Explos | ion-Resist | ant Enc | losure |
| 23 W/in² 6                 | 120   | 3.0  | 1   | 17 <sup>3</sup> /8 | (441.3)  | BLNA17G1S | RS           | 9        | (4)  | BLNA17G1C       | RS         | 12      | (6)    |
| 304 SS Plug<br>3-Alloy 800 | 240   | 3.0  | 3   | 17 <sup>3</sup> /8 | (441.3)  | BLNA17G3S | RS           | 9        | (4)  | BLNA17G3C       | RS         | 12      | (6)    |
| Elements                   | 480   | 3.0  | 3   | 17 <sup>3</sup> /8 | (441.3)  | BLNA17G5S | RS           | 9        | (4)  | BLNA17G5C       | RS         | 12      | (6)    |
| (3.6 W/cm <sup>2</sup> )   | 120   | 4.5  | 1   | 24 <sup>7</sup> /8 | (631.8)  | BLNA24R1S | RS           | 12       | (6)  | BLNA24R1C       | RS         | 15      | (7)    |
|                            | 240   | 4.5  | 3   | 24 <sup>7</sup> /8 | (631.8)  | BLNA24R3S | RS           | 12       | (6)  | BLNA24R3C       | RS         | 15      | (7)    |
|                            | 480   | 4.5  | 3   | 24 <sup>7</sup> /8 | (631.8)  | BLNA24R5S | RS           | 12       | (6)  | BLNA24R5C       | RS         | 15      | (7)    |
|                            | 240   | 6.0  | 3   | 32 <sup>3</sup> /8 | (822.3)  | BLNA32G3S | RS           | 14       | (7)  | BLNA32G3C       | RS         | 17      | (8)    |
|                            | 480   | 6.0  | 3   | 32 <sup>3</sup> /8 | (822.3)  | BLNA32G5S | RS           | 14       | (7)  | BLNA32G5C       | RS         | 17      | (8)    |
|                            | 240   | 7.5  | 3   | 39 <sup>7</sup> /8 | (1012.8) | BLNA39R3S | RS           | 15       | (7)  | BLNA39R3C       | RS         | 18      | (9)    |
|                            | 480   | 7.5  | 3   | 39 <sup>7</sup> /8 | (1012.8) | BLNA39R5S | RS           | 15       | (7)  | BLNA39R5C       | RS         | 18      | (9)    |
|                            | 240   | 9.0  | 3   | 47 <sup>3</sup> /8 | (1203.3) | BLNA47G3S | RS           | 17       | (8)  | BLNA47G3C       | RS         | 20      | (9)    |
|                            | 480   | 9.0  | 3   | 47 <sup>3</sup> /8 | (1203.3) | BLNA47G5S | RS           | 17       | (8)  | BLNA47G5C       | RS         | 20      | (9)    |
|                            | 240   | 12.5 | 3   | 63 <sup>7</sup> /8 | (1622.4) | BLNA63R3S | RS           | 20       | (9)  | BLNA63R3C       | RS         | 23      | (11)   |
|                            | 480   | 12.5 | 3   | 63 <sup>7</sup> /8 | (1622.4) | BLNA63R5S | RS           | 20       | (9)  | BLNA63R5C       | RS         | 23      | (11)   |
|                            | 240   | 15.0 | 3   | 76 <sup>3</sup> /8 | (1939.9) | BLNA76G3S | RS           | 23       | (11) | BLNA76G3C       | RS         | 26      | (12)   |
|                            | 480   | 15.0 | 3   | 76 <sup>3</sup> /8 | (1939.9) | BLNA76G5S | RS           | 23       | (11) | BLNA76G5C       | RS         | 26      | (12)   |

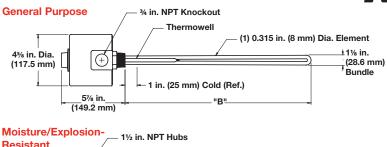
411/16 in. Dia

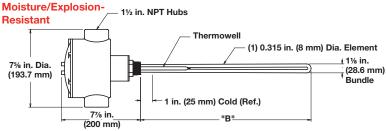
(119.1 mm)



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- S No third party recognition
- © Can be rewired wye to produce ½ of the original kW and watt density (3-phase only)


WATLOW<sup>®</sup> \_\_\_\_\_\_\_ 203


# WATROD and FIREBAR Screw Plug Immersion Heaters

## **FI**®

## Application: Lightweight Oils and Heat Transfer Oils

- 1 inch NPT screw plug
- WATROD elements
- With thermostat (SPST)
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

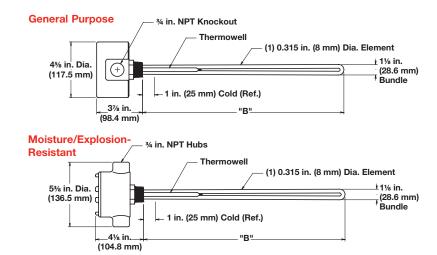




|                          |       |      |    |                                |       |     |      | Type 2 (30 to 2 | 250°F)     | Type 3 (175 to             | 550°F) |
|--------------------------|-------|------|----|--------------------------------|-------|-----|------|-----------------|------------|----------------------------|--------|
|                          |       |      |    | "B"                            | Dim.  |     | Wt.  | Part            |            | Part                       |        |
| Description              | Volts | kW   | Ph | in.                            | (mm)  | lbs | (kg) | Number          | Del.       | Number                     | Del.   |
|                          |       |      |    |                                |       |     |      | Ge              | neral Purp | ose Enclosure              |        |
| 23 W/in²                 | 120   | 0.25 | 1  | 6 <sup>1</sup> /2              | (165) | 3   | (2)  | BCS6J1S2        | RS         | BCS6J1S3                   | RS     |
| Steel Plug<br>1-Steel    | 240   | 0.25 | 1  | 6 <sup>1</sup> /2              | (165) | 3   | (2)  | BCS6J10S2       | RS         | BCS6J10S3                  | RS     |
| Element                  | 120   | 0.35 | 1  | 91/4                           | (235) | 4   | (2)  | BCS9E1S2        | RS         | BCS9E1S3                   | RS     |
| (3.6 W/cm <sup>2</sup> ) | 240   | 0.35 | 1  | 91/4                           | (235) | 4   | (2)  | BCS9E10S2       | RS         | BCS9E10S3                  | RS     |
|                          | 120   | 0.50 | 1  | 93/8                           | (238) | 4   | (2)  | BCS9G1S2        | RS         | BCS9G1S3                   | RS     |
|                          | 240   | 0.50 | 1  | 93/8                           | (238) | 4   | (2)  | BCS9G10S2       | RS         | BCS9G10S3                  | RS     |
|                          | 120   | 0.75 | 1  | 13 <sup>1</sup> /2             | (343) | 5   | (3)  | BCS13J1S2       | RS         | BCS13J1S3                  | RS     |
|                          | 240   | 0.75 | 1  | 13 <sup>1</sup> / <sub>2</sub> | (343) | 5   | (3)  | BCS13J10S2      | RS         | BCS13J10S3                 | RS     |
|                          | 120   | 1.00 | 1  | 16 <sup>3</sup> /4             | (426) | 6   | (3)  | BCS16N1S2       | RS         | BCS16N1S3                  | RS     |
|                          | 240   | 1.00 | 1  | 16 <sup>3</sup> /4             | (426) | 6   | (3)  | BCS16N10S2      | RS         | BCS16N10S3                 | RS     |
|                          | 120   | 1.50 | 1  | 23 <sup>3</sup> /4             | (603) | 7   | (4)  | BCS23N1S2       | RS         | BCS23N1S3                  | RS     |
|                          | 240   | 1.50 | 1  | 23 <sup>3</sup> /4             | (603) | 7   | (4)  | BCS23N10S2      | RS         | BCS23N10S3                 | RS     |
|                          |       |      |    |                                |       |     |      |                 |            |                            |        |
|                          |       |      |    |                                |       |     |      | Moisture/I      | Explosion- | Resistant Enclosure ®      | )      |
| 23 W/in²                 | 120   | 0.25 | 1  | 6 <sup>1</sup> / <sub>2</sub>  | (165) | 3   | (2)  | BCS6J1C2        | RS         | BCS6J1C3                   | RS     |
| Steel Plug               | 240   | 0.25 | 1  | 6 <sup>1</sup> /2              | (165) | 3   | (2)  | BCS6J10C2       | RS         | BCS6J10C3                  | RS     |
| 1-Steel<br>Element       | 120   | 0.35 | 1  | 9 <sup>1</sup> / <sub>4</sub>  | (235) | 4   | (2)  | BCS9E1C2        | RS         | BCS9E1C3                   | RS     |
| (3.6 W/cm²)              | 240   | 0.35 | 1  | 9 <sup>1</sup> / <sub>4</sub>  | (235) | 4   | (2)  | BCS9E10C2       | RS         | BCS9E10C3                  | RS     |
|                          | 120   | 0.50 | 1  | 9 <sup>3</sup> /8              | (238) | 4   | (2)  | BCS9G1C2        | RS         | BCS9G1C3                   | RS     |
|                          | 240   | 0.50 | 1  | 9 <sup>3</sup> /8              | (238) | 4   | (2)  | BCS9G10C2       | RS         | BCS9G10C3                  | RS     |
|                          | 120   | 0.75 | 1  | 13 <sup>1</sup> /2             | (343) | 5   | (3)  | BCS13J1C2       | RS         | BCS13J1C3                  | RS     |
|                          | 240   | 0.75 | 1  | 13 <sup>1</sup> / <sub>2</sub> | (343) | 5   | (3)  | BCS13J10C2      | RS         | BCS13J10C3                 | RS     |
|                          | 120   | 1.00 | 1  | 16 <sup>3</sup> /4             | (426) | 6   | (3)  | BCS16N1C2       | RS         | BCS16N1C3                  | RS     |
|                          | 240   | 1.00 | 1  | 16 <sup>3</sup> / <sub>4</sub> | (426) | 6   | (3)  | BCS16N10C2      | RS         | BCS16N10C3                 | RS     |
|                          | 120   | 1.50 | 1  | 23 <sup>3</sup> /4             | (603) | 7   | (4)  | BCS23N1C2       | RS         | BCS23N1C3                  | RS     |
|                          | 240   | 1.50 | 1  | 23 <sup>3</sup> / <sub>4</sub> | (603) | 7   | (4)  | BCS23N10C2      | RS         | BCS23N10C3                 | RS     |
|                          | 2-10  | 1.00 |    | 20 /4                          | (000) |     | (¬1) |                 |            | are designed to fit the in |        |



 RS - Next day shipment up to 5 pieces **Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


S No third party recognition

#### WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Lightweight Oils and Heat Transfer Oils

- 1 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



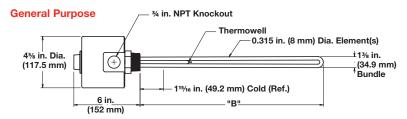
| Description           | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Part<br>Number | Del.       | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number ⑤ | Del.         | Ship<br>Ibs |        |
|-----------------------|-------|------|----|--------------------------------|--------------|----------------|------------|-------------|-------------|------------------|--------------|-------------|--------|
|                       |       |      |    |                                |              | General        | Purpose Er | nclosur     | ·e          | Moisture/Explo   | sion-Resista | ant Encl    | losure |
| 23 W/in <sup>2</sup>  | 120   | 0.25 | 1  | 6 <sup>1</sup> / <sub>2</sub>  | (165)        | BCS6J1S        | RS         | 3           | (2)         | BCS6J1C          | RS           | 6           | (3)    |
| Steel Plug<br>1-Steel | 240   | 0.25 | 1  | 6 <sup>1</sup> / <sub>2</sub>  | (165)        | BCS6J10S       | RS         | 3           | (2)         | BCS6J10C         | RS           | 6           | (3)    |
| Element               | 120   | 0.35 | 1  | 91/4                           | (235)        | BCS9E1S        | RS         | 4           | (2)         | BCS9E1C          | RS           | 7           | (4)    |
| (3.6 W/cm²)           | 240   | 0.35 | 1  | 91/4                           | (235)        | BCS9E10S       | RS         | 4           | (2)         | BCS9E10C         | RS           | 7           | (4)    |
|                       | 120   | 0.50 | 1  | 93/8                           | (238)        | BCS9G1S        | RS         | 4           | (2)         | BCS9G1C          | RS           | 7           | (4)    |
|                       | 240   | 0.50 | 1  | 93/8                           | (238)        | BCS9G10S       | RS         | 4           | (2)         | BCS9G10C         | RS           | 7           | (4)    |
|                       | 120   | 0.75 | 1  | 13 <sup>1</sup> / <sub>2</sub> | (343)        | BCS13J1S       | RS         | 5           | (3)         | BCS13J1C         | RS           | 8           | (4)    |
|                       | 240   | 0.75 | 1  | 13 <sup>1</sup> / <sub>2</sub> | (343)        | BCS13J10S      | RS         | 5           | (3)         | BCS13J10C        | RS           | 8           | (4)    |
|                       | 120   | 1.00 | 1  | 16 <sup>3</sup> /4             | (426)        | BCS16N1S       | RS         | 6           | (3)         | BCS16N1C         | RS           | 9           | (4)    |
|                       | 240   | 1.00 | 1  | 16 <sup>3</sup> /4             | (426)        | BCS16N10S      | RS         | 6           | (3)         | BCS16N10C        | RS           | 9           | (4)    |
|                       | 120   | 1.50 | 1  | 23 <sup>3</sup> /4             | (603)        | BCS23N1S       | RS         | 7           | (4)         | BCS23N1C         | RS           | 10          | (5)    |
|                       | 240   | 1.50 | 1  | 23 <sup>3</sup> / <sub>4</sub> | (603)        | BCS23N10S      | RS         | 7           | (4)         | BCS23N10C        | RS           | 10          | (5)    |

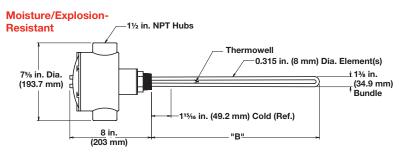


• RS - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

S No third party recognition


WATLOW® 205


# WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Lightweight Oils and Heat Transfer Oils

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- WATROD elements
- With thermostat (SPST)
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





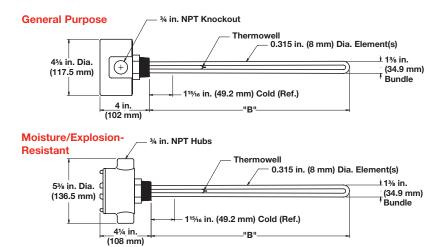
|                       |         |      |    |                     |              |             |             | Type 2 (30 to 2 | 250°F)     | Type 3 (175 to      | 550°F) |
|-----------------------|---------|------|----|---------------------|--------------|-------------|-------------|-----------------|------------|---------------------|--------|
| Description           | Volts   | kW   | Ph | "B" l<br>in.        | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number  | Del.       | Part<br>Number      | Del.   |
|                       |         |      |    |                     |              |             |             | Ge              | neral Purp | ose Enclosure       |        |
| 23 W/in² 4            | 120/240 | 0.50 | 1  | 6 <sup>3</sup> /8   | (161.9)      | 4           | (2)         | BES6G6S2        | RS         | BES6G6S3            | RS     |
| Steel Plug<br>2-Steel | 120/240 | 0.50 | 1  | 7 <sup>3</sup> /8   | (187.3)      | 4           | (2)         | BES7G6S2        | RS         | BES7G6S3            | RS     |
| Elements              | 120/240 | 0.70 | 1  | 8 <sup>7</sup> /8   | (225.4)      | 5           | (3)         | BES8R6S2        | RS         | BES8R6S3            | RS     |
| (3.6 W/cm²)           | 120/240 | 0.75 | 1  | 10 <sup>1</sup> /16 | (255.6)      | 5           | (3)         | BES10B6S2       | RS         | BES10B6S3           | RS     |
|                       | 120/240 | 1.00 | 1  | 123/4               | (324.0)      | 6           | (3)         | BES12N6S2       | RS         | BES12N6S3           | RS     |
|                       | 120/240 | 1.50 | 1  | 19 <sup>3</sup> /8  | (492.1)      | 7           | (4)         | BES19G6S2       | RS         | BES19G6S3           | RS     |
|                       | 120/240 | 2.00 | 1  | 25 <sup>3</sup> /8  | (644.5)      | 8           | (4)         | BES25G6S2       | RS         | BES25G6S3           | RS     |
|                       | 120/240 | 3.00 | 1  | 36 <sup>7</sup> /8  | (936.6)      | 9           | (4)         | BES36R6S2       | RS         | BES36R6S3           | RS     |
|                       |         |      |    |                     |              |             |             |                 |            |                     |        |
|                       |         |      |    |                     |              |             |             | Moisture/I      | Explosion- | Resistant Enclosure | 5      |
| 23 W/in² ④            | 120/240 | 0.50 | 1  | 6 <sup>3</sup> /8   | (161.9)      | 8           | (4)         | BES6G6C2        | RS         | BES6G6C3            | RS     |
| Steel Plug<br>2-Steel | 120/240 | 0.50 | 1  | 7 <sup>3</sup> /8   | (187.3)      | 8           | (4)         | BES7G6C2        | RS         | BES7G6C3            | RS     |
| Elements              | 120/240 | 0.70 | 1  | 8 <sup>7</sup> /8   | (225.6)      | 9           | (4)         | BES8R6C2        | RS         | BES8R6C3            | RS     |
| (3.6 W/cm²)           | 120/240 | 0.75 | 1  | 10 <sup>1</sup> /16 | (256.0)      | 9           | (4)         | BES10B6C2       | RS         | BES10B6C3           | RS     |
|                       | 120/240 | 1.00 | 1  | 12 <sup>3</sup> /4  | (324.0)      | 10          | (5)         | BES12N6C2       | RS         | BES12N6C3           | RS     |
|                       | 120/240 | 1.50 | 1  | 19 <sup>3</sup> /8  | (492.1)      | 11          | (5)         | BES19G6C2       | RS         | BES19G6C3           | RS     |
|                       | 120/240 | 2.00 | 1  | 25 <sup>3</sup> /8  | (644.5)      | 12          | (6)         | BES25G6C2       | RS         | BES25G6C3           | RS     |
|                       | 120/240 | 3.00 | 1  | 36 <sup>7</sup> /8  | (936.7)      | 13          | (6)         | BES36R6C2       | RS         | BES36R6C3           | RS     |



• **RS** - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- Wired for higher voltage
- S No third party recognition


**WATLOW®** 

#### WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Lightweight Oils and Heat Transfer Oils

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



| Description         | Volts   | kW   | Ph | "B" l<br>in.        | Dim.<br>(mm) | Part<br>Number | Del.        | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number ⑤ | Del.        | Ship lbs |        |
|---------------------|---------|------|----|---------------------|--------------|----------------|-------------|-------------|-------------|------------------|-------------|----------|--------|
|                     |         |      |    |                     |              | Genera         | I Purpose E | nclosu      | e e         | Moisture/Expl    | osion-Resis | tant Enc | losure |
| 23 W/in² ④          | 120/240 | 0.50 | 1  | 6 <sup>3</sup> /8   | (161.9)      | BES6G6S        | RS          | 4           | (2)         | BES6G6C          | RS          | 7        | (4)    |
| Steel Plug          | 120/240 | 0.50 | 1  | 7 <sup>3</sup> /8   | (187.3)      | BES7G6S        | RS          | 4           | (2)         | BES7G6C          | RS          | 7        | (4)    |
| 2-Steel<br>Elements | 120/240 | 0.70 | 1  | 8 <sup>7</sup> /8   | (225.4)      | BES8R6S        | RS          | 5           | (3)         | BES8R6C          | RS          | 8        | (4)    |
| (3.6 W/cm²)         | 120/240 | 0.75 | 1  | 10 <sup>1</sup> /16 | (255.6)      | BES10B6S       | RS          | 5           | (3)         | BES10B6C         | RS          | 8        | (4)    |
| ,                   | 120/240 | 1.00 | 1  | 12 <sup>3</sup> /4  | (324.0)      | BES12N6S       | RS          | 6           | (3)         | BES12N6C         | RS          | 9        | (4)    |
|                     | 120/240 | 1.50 | 1  | 19 <sup>3</sup> /8  | (492.1)      | BES19G6S       | RS          | 7           | (4)         | BES19G6C         | RS          | 10       | (5)    |
|                     | 120/240 | 2.00 | 1  | 25 <sup>3</sup> /8  | (644.5)      | BES25G6S       | RS          | 8           | (4)         | BES25G6C         | RS          | 11       | (5)    |
|                     | 120/240 | 3.00 | 1  | 36 <sup>7</sup> /8  | (936.6)      | BES36R6S       | RS          | 9           | (4)         | BES36R6C         | RS          | 12       | (6)    |



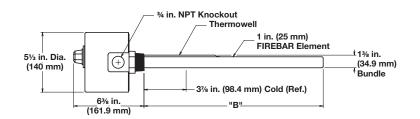
• **RS** - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- Wired for higher voltage
- S No third party recognition

WATLOW® \_\_\_\_\_\_\_ 207

#### WATROD and FIREBAR Screw Plug Immersion Heaters




## **Application: Lightweight Oils and Heat Transfer Oils**

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller, please see following pages for available heaters without thermostats

• General purpose enclosure

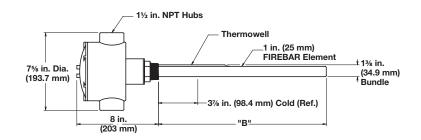


|                            |       |      |    |                    |          |     |       | Type 5A (60 to | 250°F) | Type 7A (100 to | 550°F) |
|----------------------------|-------|------|----|--------------------|----------|-----|-------|----------------|--------|-----------------|--------|
|                            |       |      |    |                    | Dim.     | _   | p Wt. | Part           |        | Part            |        |
| Description                | Volts | kW   | Ph | in.                | (mm)     | lbs | (kg)  | Number         | Del.   | Number          | Del.   |
|                            |       |      | 1  |                    |          |     |       |                | ·      | oose Enclosure  | 1      |
| 30 W/in² ③<br>304 SS Plug  | 240   | 1.70 | 3  | 16 <sup>1</sup> /8 | (409.6)  | 8   | (4)   | BDNF16G12S5A   | RS     | BDNF16G12S7A    | RS     |
| 1-Alloy 800                | 480   | 1.70 | 3  | 16 <sup>1</sup> /8 | (409.6)  | 8   | (4)   | BDNF16G13S5A   | RS     | BDNF16G13S7A    | RS     |
| Element                    | 240   | 2.20 | 3  | 19 <sup>1</sup> /8 | (485.8)  | 9   | (4)   | BDNF19G12S5A   | RS     | BDNF19G12S7A    | RS     |
| (4.7 W/cm²)                | 480   | 2.20 | 3  | 19 <sup>1</sup> /8 | (485.8)  | 9   | (4)   | BDNF19G13S5A   | RS     | BDNF19G13S7A    | RS     |
|                            | 240   | 2.80 | 3  | 24 <sup>3</sup> /8 | (619.1)  | 10  | (5)   | BDNF24L12S5A   | RS     | BDNF24L12S7A    | RS     |
|                            | 480   | 2.80 | 3  | 24 <sup>3</sup> /8 | (619.1)  | 10  | (5)   | BDNF24L13S5A   | RS     | BDNF24L13S7A    | RS     |
|                            | 240   | 3.50 | 3  | 29 <sup>5</sup> /8 | (752.5)  | 11  | (5)   | BDNF29R12S5A   | RS     | BDNF29R12S7A    | RS     |
|                            | 480   | 3.50 | 3  | 29 <sup>5</sup> /8 | (752.5)  | 11  | (5)   | BDNF29R13S5A   | RS     | BDNF29R13S7A    | RS     |
|                            | 240   | 4.25 | 3  | 34 <sup>5</sup> /8 | (879.5)  | 12  | (6)   | BDNF34R12S5A   | RS     | BDNF34R12S7A    | RS     |
|                            | 480   | 4.25 | 3  | 34 <sup>5</sup> /8 | (879.5)  | 12  | (6)   | BDNF34R13S5A   | RS     | BDNF34R13S7A    | RS     |
|                            | 240   | 5.70 | 3  | 45 <sup>1</sup> /8 | (1146.2) | 14  | (7)   | BDNF45G12S5A   | RS     | BDNF45G12S7A    | RS     |
|                            | 480   | 5.70 | 3  | 45 <sup>1</sup> /8 | (1146.2) | 14  | (7)   | BDNF45G13S5A   | RS     | BDNF45G13S7A    | RS     |
|                            | 240   | 7.20 | 3  | 55 <sup>5</sup> /8 | (1412.9) | 16  | (8)   | BDNF55R12S5A   | RS     | BDNF55R12S7A    | RS     |
| 23 W/in <sup>2</sup> ®     | 240   | 1.25 | 3  | 16 <sup>1</sup> /8 | (409.6)  | 8   | (4)   | BDNF16G20S5A   | RS     | BDNF16G20S7A    | RS     |
| 304 SS Plug<br>1-Alloy 800 | 240   | 1.65 | 3  | 19 <sup>1</sup> /8 | (485.8)  | 9   | (4)   | BDNF19G20S5A   | RS     | BDNF19G20S7A    | RS     |
| Element                    | 240   | 2.15 | 3  | 24 <sup>3</sup> /8 | (619.1)  | 10  | (5)   | BDNF24L20S5A   | RS     | BDNF24L20S7A    | RS     |
| (3.6 W/cm <sup>2</sup> )   | 480   | 2.15 | 3  | 24 <sup>3</sup> /8 | (619.1)  | 10  | (5)   | BDNF24L19S5A   | RS     | BDNF24L19S7A    | RS     |
|                            | 240   | 2.65 | 3  | 29 <sup>5</sup> /8 | (752.5)  | 11  | (5)   | BDNF29R20S5A   | RS     | BDNF29R20S7A    | RS     |
|                            | 480   | 2.65 | 3  | 29 <sup>5</sup> /8 | (752.5)  | 11  | (5)   | BDNF29R19S5A   | RS     | BDNF29R19S7A    | RS     |
|                            | 240   | 3.20 | 3  | 34 <sup>5</sup> /8 | (879.5)  | 12  | (6)   | BDNF34R20S5A   | RS     | BDNF34R20S7A    | RS     |
|                            | 480   | 3.20 | 3  | 34 <sup>5</sup> /8 | (879.5)  | 12  | (6)   | BDNF34R19S5A   | RS     | BDNF34R19S7A    | RS     |
|                            | 240   | 4.25 | 3  | 45 <sup>1</sup> /8 | (1146.2) | 14  | (7)   | BDNF45G20S5A   | RS     | BDNF45G20S7A    | RS     |
|                            | 480   | 4.25 | 3  | 45 <sup>1</sup> /8 | (1146.2) | 14  | (7)   | BDNF45G19S5A   | RS     | BDNF45G19S7A    | RS     |
|                            | 240   | 5.40 | 3  | 55 <sup>5</sup> /8 | (1412.9) | 16  | (8)   | BDNF55R20S5A   | RS     | BDNF55R20S7A    | RS     |
|                            | 480   | 5.40 | 3  | 55 <sup>5</sup> /8 | (1412.9) | 16  | (8)   | BDNF55R19S5A   | RS     | BDNF55R19S7A    | RS     |



• **RS** - Next day shipment up to 5 pieces

- 3 Wired for 3-phase operation only
- 8 Can be wired for 1-phase operation


# WATROD and FIREBAR Screw Plug Immersion Heaters

## Application: Lightweight Oils and Heat Transfer Oils

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

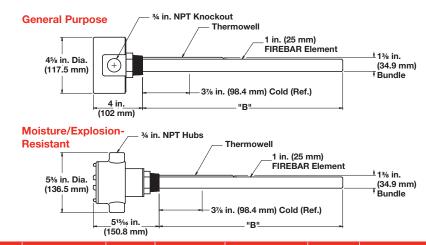
 Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)



|                            |       |      |    |                    |          |     |       | Type 5A (60 to 2 | 250°F)      | Type 7A (100 to       | 550°F) |
|----------------------------|-------|------|----|--------------------|----------|-----|-------|------------------|-------------|-----------------------|--------|
|                            |       |      |    | "B"                | ' Dim.   | Shi | p Wt. | Part             |             | Part                  |        |
| Description                | Volts | kW   | Ph | in.                | (mm)     | lbs | (kg)  | Number           | Del.        | Number                | Del.   |
|                            |       |      |    |                    |          |     |       | Moisture/        | Explosion-l | Resistant Enclosure 5 |        |
| 30 W/in² ③                 | 240   | 1.70 | 3  | 16 <sup>1</sup> /8 | (409.6)  | 11  | (5)   | BDNF16G12C5A     | RS          | BDNF16G12C7A          | RS     |
| 304 SS Plug<br>1-Alloy 800 | 480   | 1.70 | 3  | 16 <sup>1</sup> /8 | (409.6)  | 11  | (5)   | BDNF16G13C5A     | RS          | BDNF16G13C7A          | RS     |
| Element                    | 240   | 2.20 | 3  | 19 <sup>1</sup> /8 | (485.8)  | 12  | (6)   | BDNF19G12C5A     | RS          | BDNF19G12C7A          | RS     |
| (4.7 W/cm²)                | 480   | 2.20 | 3  | 19 <sup>1</sup> /8 | (485.8)  | 12  | (6)   | BDNF19G13C5A     | RS          | BDNF19G13C7A          | RS     |
|                            | 240   | 2.80 | 3  | 24 <sup>3</sup> /8 | (619.1)  | 13  | (6)   | BDNF24L12C5A     | RS          | BDNF24L12C7A          | RS     |
|                            | 480   | 2.80 | 3  | 243/8              | (619.1)  | 13  | (6)   | BDNF24L13C5A     | RS          | BDNF24L13C7A          | RS     |
|                            | 240   | 3.50 | 3  | 29 <sup>5</sup> /8 | (752.5)  | 14  | (7)   | BDNF29R12C5A     | RS          | BDNF29R12C7A          | RS     |
|                            | 480   | 3.50 | 3  | 29 <sup>5</sup> /8 | (752.5)  | 14  | (7)   | BDNF29R13C5A     | RS          | BDNF29R13C7A          | RS     |
|                            | 240   | 4.25 | 3  | 34 <sup>5</sup> /8 | (879.5)  | 15  | (7)   | BDNF34R12C5A     | RS          | BDNF34R12C7A          | RS     |
|                            | 480   | 4.25 | 3  | 34 <sup>5</sup> /8 | (879.5)  | 15  | (7)   | BDNF34R13C5A     | RS          | BDNF34R13C7A          | RS     |
|                            | 240   | 5.70 | 3  | 45 <sup>1</sup> /8 | (1146.2) | 17  | (8)   | BDNF45G12C5A     | RS          | BDNF45G12C7A          | RS     |
|                            | 480   | 5.70 | 3  | 45 <sup>1</sup> /8 | (1146.2) | 17  | (8)   | BDNF45G13C5A     | RS          | BDNF45G13C7A          | RS     |
|                            | 240   | 7.20 | 3  | 55 <sup>5</sup> /8 | (1412.9) | 19  | (9)   | BDNF55R12C5A     | RS          | BDNF55R12C7A          | RS     |
| 23 W/in² ®                 | 240   | 1.25 | 3  | 16 <sup>1</sup> /8 | (409.6)  | 11  | (5)   | BDNF16G20C5A     | RS          | BDNF16G20C7A          | RS     |
| 304 SS Plug<br>1-Alloy 800 | 240   | 1.65 | 3  | 19 <sup>1</sup> /8 | (485.8)  | 12  | (6)   | BDNF19G20C5A     | RS          | BDNF19G20C7A          | RS     |
| Element                    | 240   | 2.15 | 3  | 24 <sup>3</sup> /8 | (619.1)  | 13  | (6)   | BDNF24L20C5A     | RS          | BDNF24L20C7A          | RS     |
| (3.6 W/cm²)                | 480   | 2.15 | 3  | 24 <sup>3</sup> /8 | (619.1)  | 13  | (6)   | BDNF24L19C5A     | RS          | BDNF24L19C7A          | RS     |
|                            | 240   | 2.65 | 3  | 29 <sup>5</sup> /8 | (752.5)  | 14  | (7)   | BDNF29R20C5A     | RS          | BDNF29R20C7A          | RS     |
|                            | 480   | 2.65 | 3  | 29 <sup>5</sup> /8 | (752.5)  | 14  | (7)   | BDNF29R19C5A     | RS          | BDNF29R19C7A          | RS     |
|                            | 240   | 3.20 | 3  | 34 <sup>5</sup> /8 | (879.5)  | 15  | (7)   | BDNF34R20C5A     | RS          | BDNF34R20C7A          | RS     |
|                            | 480   | 3.20 | 3  | 34 <sup>5</sup> /8 | (879.5)  | 15  | (7)   | BDNF34R19C5A     | RS          | BDNF34R19C7A          | RS     |
|                            | 240   | 4.25 | 3  | 45 <sup>1</sup> /8 | (1146.2) | 17  | (8)   | BDNF45G20C5A     | RS          | BDNF45G20C7A          | RS     |
|                            | 480   | 4.25 | 3  | 45 <sup>1</sup> /8 | (1146.2) | 17  | (8)   | BDNF45G19C5A     | RS          | BDNF45G19C7A          | RS     |
|                            | 240   | 5.40 | 3  | 55 <sup>5</sup> /8 | (1412.9) | 19  | (9)   | BDNF55R20C5A     | RS          | BDNF55R20C7A          | RS     |
|                            | 480   | 5.40 | 3  | 55 <sup>5</sup> /8 | (1412.9) | 19  | (9)   | BDNF55R19C5A     | RS          | BDNF55R19C7A          | RS     |



 RS - Next day shipment up to 5 pieces


- 3 Wired for 3-phase operation only
- ⑤ No third party recognition
- 8 Can be wired for 1-phase operation

### WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Lightweight Oils and Heat Transfer Oils

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

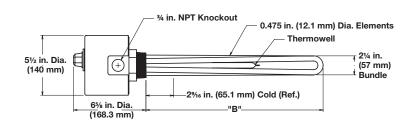


| Description                | Volts | kW   | Ph | "B" Dim.<br>in. (mm)        | Part<br>Number | Del.      | Ship W |     | Part<br>Number ⑤ | Del. | Ship<br>Ibs | Wt.<br>(kg) |
|----------------------------|-------|------|----|-----------------------------|----------------|-----------|--------|-----|------------------|------|-------------|-------------|
|                            |       |      |    | ()                          | General P      | urpose Er | •      | 9/  | Moisture/Explos  |      |             | . 0,        |
| 30 W/in² ③                 | 240   | 1.70 | 3  | 16 <sup>1</sup> /8 (409.6)  | BDNF16G12S     | RS        | 7      | (4) | BDNF16G12C       | RS   | 10          | (5)         |
| 304 SS Plug<br>1-Alloy 800 | 480   | 1.70 | 3  | 16 <sup>1</sup> /8 (409.6)  | BDNF16G13S     | RS        | 7      | (4) | BDNF16G13C       | RS   | 10          | (5)         |
| Element                    | 240   | 2.20 | 3  | 19 <sup>1</sup> /8 (485.8)  | BDNF19G12S     | RS        | 8      | (4) | BDNF19G12C       | RS   | 11          | (5)         |
| (4.7 W/cm²)                | 480   | 2.20 | 3  | 19 <sup>1</sup> /8 (485.8)  | BDNF19G13S     | RS        | 8      | (4) | BDNF19G13C       | RS   | 11          | (5)         |
|                            | 240   | 2.80 | 3  | 24 <sup>3</sup> /8 (619.1)  | BDNF24L12S     | RS        | 9      | (4) | BDNF24L12C       | RS   | 12          | (6)         |
|                            | 480   | 2.80 | 3  | 24 <sup>3</sup> /8 (619.1)  | BDNF24L13S     | RS        | 9      | (4) | BDNF24L13C       | RS   | 12          | (6)         |
|                            | 240   | 3.50 | 3  | 29 <sup>5</sup> /8 (752.5)  | BDNF29R12S     | RS        | 10     | (5) | BDNF29R12C       | RS   | 13          | (6)         |
|                            | 480   | 3.50 | 3  | 29 <sup>5</sup> /8 (752.5)  | BDNF29R13S     | RS        | 10     | (5) | BDNF29R13C       | RS   | 13          | (6)         |
|                            | 240   | 4.25 | 3  | 34 <sup>5</sup> /8 (879.5)  | BDNF34R12S     | RS        | 11     | (5) | BDNF34R12C       | RS   | 14          | (7)         |
|                            | 480   | 4.25 | 3  | 34 <sup>5</sup> /8 (879.5)  | BDNF34R13S     | RS        | 11     | (5) | BDNF34R13C       | RS   | 14          | (7)         |
|                            | 240   | 5.70 | 3  | 45 <sup>1</sup> /8 (1146.2) | BDNF45G12S     | RS        | 13     | (6) | BDNF45G12C       | RS   | 16          | (8)         |
|                            | 480   | 5.70 | 3  | 45 <sup>1</sup> /8 (1146.2) | BDNF45G13S     | RS        | 13     | (6) | BDNF45G13C       | RS   | 16          | (8)         |
|                            | 240   | 7.20 | 3  | 55 <sup>5</sup> /8 (1412.9) | BDNF55R12S     | RS        | 15     | (7) | BDNF55R12C       | RS   | 18          | (9)         |
|                            | 480   | 7.20 | 3  | 55 <sup>5</sup> /8 (1412.9) | BDNF55R13S     | RS        | 15     | (7) | BDNF55R13C       | RS   | 18          | (9)         |
| 23 W/in² ®                 | 240   | 1.25 | 3  | 16 <sup>1</sup> /8 (409.6)  | BDNF16G20S     | RS        | 7      | (4) | BDNF16G20C       | RS   | 10          | (5)         |
| 304 SS Plug<br>1-Alloy 800 | 240   | 1.65 | 3  | 19 <sup>1</sup> /8 (485.8)  | BDNF19G20S     | RS        | 8      | (4) | BDNF19G20C       | RS   | 11          | (5)         |
| Element                    | 240   | 2.15 | 3  | 24 <sup>3</sup> /8 (619.1)  | BDNF24L20S     | RS        | 9      | (4) | BDNF24L20C       | RS   | 12          | (6)         |
| (3.6 W/cm <sup>2</sup> )   | 480   | 2.15 | 3  | 24 <sup>3</sup> /8 (619.1)  | BDNF24L19S     | RS        | 9      | (4) | BDNF24L19C       | RS   | 12          | (6)         |
|                            | 240   | 2.65 | 3  | 29 <sup>5</sup> /8 (752.5)  | BDNF29R20S     | RS        | 10     | (5) | BDNF29R20C       | RS   | 13          | (6)         |
|                            | 480   | 2.65 | 3  | 29 <sup>5</sup> /8 (752.5)  | BDNF29R19S     | RS        | 10     | (5) | BDNF29R19C       | RS   | 13          | (6)         |
|                            | 240   | 3.20 | 3  | 34 <sup>5</sup> /8 (879.5)  | BDNF34R20S     | RS        | 11     | (5) | BDNF34R20C       | RS   | 14          | (7)         |
|                            | 480   | 3.20 | 3  | 34 <sup>5</sup> /8 (879.5)  | BDNF34R19S     | RS        | 11     | (5) | BDNF34R19C       | RS   | 14          | (7)         |
|                            | 240   | 4.25 | 3  | 45 <sup>1</sup> /8 (1146.2) | BDNF45G20S     | RS        | 13     | (6) | BDNF45G20C       | RS   | 16          | (8)         |
|                            | 480   | 4.25 | 3  | 45 <sup>1</sup> /8 (1146.2) | BDNF45G19S     | RS        | 13     | (6) | BDNF45G19C       | RS   | 16          | (8)         |
|                            | 240   | 5.40 | 3  | 55 <sup>5</sup> /8 (1412.9) | BDNF55R20S     | RS        | 15     | (7) | BDNF55R20C       | RS   | 18          | (9)         |
|                            | 480   | 5.40 | 3  | 55 <sup>5</sup> /8 (1412.9) | BDNF55R19S     | RS        | 15     | (7) | BDNF55R19C       | RS   | 18          | (9)         |



- 3 Wired for 3-phase operation only
- ⑤ No third party recognition
- 8 Can be wired for 1-phase operation

### WATROD and FIREBAR Screw Plug Immersion Heaters




## Application: Lightweight Oils and Heat Transfer Oils

- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

• General purpose enclosure



|                          |         |     |    |                                |        |      |      | Type 4 (30 to | 110°F) | Type 5A (60 to  | 250°F) | Type 7A (100 t | o 550°F) |
|--------------------------|---------|-----|----|--------------------------------|--------|------|------|---------------|--------|-----------------|--------|----------------|----------|
|                          |         |     |    | "B"                            | Dim.   | Ship | Wt.  | Part          |        | Part            |        | Part           |          |
| Description              | Volts   | kW  | Ph | in.                            | (mm)   | lbs  | (kg) | Number        | Del.   | Number          | Del.   | Number         | Del.     |
|                          |         |     |    |                                |        |      |      |               | C      | General Purpose | Enclos | ure            |          |
| 23 W/in² ④               | 120/240 | 1.0 | 1  | 9 <sup>1</sup> /2              | (241)  | 5    | (3)  | BGS79J6S4     | RS     | BGS79J6S5A      | RS     | BGS79J6S7A     | RS       |
| Steel Plug<br>2-Steel    | 240/480 | 1.0 | 1  | 91/2                           | (241)  | 5    | (3)  | BGS79J7S4     | RS     | BGS79J7S5A      | RS     | BGS79J7S7A     | RS       |
| Elements                 | 120/240 | 1.5 | 1  | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 6    | (3)  | BGS713J6S4    | RS     | BGS713J6S5A     | RS     | BGS713J6S7A    | RS       |
| (3.6 W/cm <sup>2</sup> ) | 240/480 | 1.5 | 1  | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 6    | (3)  | BGS713J7S4    | RS     | BGS713J7S5A     | RS     | BGS713J7S7A    | RS       |
|                          | 120/240 | 2.0 | 1  | 17 <sup>1</sup> /2             | (445)  | 7    | (4)  | BGS717J6S4    | RS     | BGS717J6S5A     | RS     | BGS717J6S7A    | RS       |
|                          | 240/480 | 2.0 | 1  | 17 <sup>1</sup> /2             | (445)  | 7    | (4)  | BGS717J7S4    | RS     | BGS717J7S5A     | RS     | BGS717J7S7A    | RS       |
|                          | 120/240 | 2.5 | 1  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 8    | (4)  | BGS720J6S4    | RS     | BGS720J6S5A     | RS     | BGS720J6S7A    | RS       |
|                          | 240/480 | 2.5 | 1  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 8    | (4)  | BGS720J7S4    | RS     | BGS720J7S5A     | RS     | BGS720J7S7A    | RS       |
|                          | 120/240 | 3.0 | 1  | 25                             | (635)  | 8    | (4)  | BGS725A6S4    | RS     | BGS725A6S5A     | RS     | BGS725A6S7A    | RS       |
|                          | 240/480 | 3.0 | 1  | 25                             | (635)  | 8    | (4)  | BGS725A7S4    | RS     | BGS725A7S5A     | RS     | BGS725A7S7A    | RS       |
|                          | 120/240 | 4.0 | 1  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 9    | (4)  | BGS732J6S4    | RS     | BGS732J6S5A     | RS     | BGS732J6S7A    | RS       |
|                          | 120/240 | 5.0 | 1  | 40                             | (1016) | 10   | (5)  | BGS740A6S4    | RS     | BGS740A6S5A     | RS     | BGS740A6S7A    | RS       |
| 23 W/in²                 | 120     | 1.5 | 1  | 91/2                           | (241)  | 6    | (3)  | BHS79J1S4     | RS     | BHS79J1S5A      | RS     | BHS79J1S7A     | RS       |
| Steel Plug<br>3-Steel    | 240     | 1.5 | 3  | 9 <sup>1</sup> /2              | (241)  | 6    | (3)  | BHS79J3S4     | RS     | BHS79J3S5A      | RS     | BHS79J3S7A     | RS       |
| S-Sieei<br>Elements      | 480     | 1.5 | 3  | 9 <sup>1</sup> /2              | (241)  | 6    | (3)  | BHS79J13S4    | RS     | BHS79J13S5A     | RS     | BHS79J13S7A    | RS       |
| (3.6 W/cm <sup>2</sup> ) | 240     | 3.0 | 3  | 17 <sup>1</sup> /2             | (445)  | 8    | (4)  | BHS717J3S4    | RS     | BHS717J3S5A     | RS     | BHS717J3S7A    | RS       |
|                          | 480     | 3.0 | 3  | 17 <sup>1</sup> /2             | (445)  | 8    | (4)  | BHS717J5S4    | RS     | BHS717J5S5A     | RS     | BHS717J5S7A    | RS       |
|                          | 240     | 4.5 | 3  | 25                             | (635)  | 10   | (5)  | BHS725A3S4    | RS     | BHS725A3S5A     | RS     | BHS725A3S7A    | RS       |
|                          | 480     | 4.5 | 3  | 25                             | (635)  | 10   | (5)  | BHS725A5S4    | RS     | BHS725A5S5A     | RS     | BHS725A5S7A    | RS       |
|                          | 240     | 6.0 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 13   | (6)  | BHS732J3S4    | RS     | BHS732J3S5A     | RS     | BHS732J3S7A    | RS       |
|                          | 480     | 6.0 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 13   | (6)  | BHS732J5S4    | RS     | BHS732J5S5A     | RS     | BHS732J5S7A    | RS       |
|                          | 240     | 7.5 | 3  | 40                             | (1016) | 14   | (7)  | BHS740A3S4    | RS     | BHS740A3S5A     | RS     | BHS740A3S7A    | RS       |
|                          | 480     | 7.5 | 3  | 40                             | (1016) | 14   | (7)  | BHS740A5S4    | RS     | BHS740A5S5A     | RS     | BHS740A5S7A    | RS       |
|                          | 240     | 9.0 | 3  | 47 <sup>1</sup> / <sub>2</sub> | (1207) | 14   | (7)  | BHS747J3S4    | RS     | BHS747J3S5A     | RS     | BHS747J3S7A    | RS       |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

Wired for higher voltage

WATLOW® \_\_\_\_\_\_ 211


### WATROD and FIREBAR Screw Plug Immersion Heaters

## Application: Lightweight Oils and Heat Transfer Oils

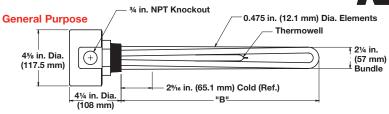
- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

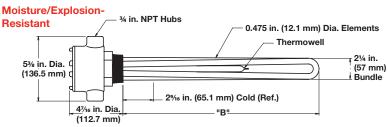
**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)



|                       |         |     |    |                                |         |     |      | Type 4 (30 to | 110°F) | Type 5A (60 to | 250°F)   | Type 7A (100 to | o 550°F) |
|-----------------------|---------|-----|----|--------------------------------|---------|-----|------|---------------|--------|----------------|----------|-----------------|----------|
| Description           | Volts   | kW  | Ph |                                | Dim.    |     | Wt.  | Part          | Del.   | Part           | <u>.</u> | Part            | <u>.</u> |
|                       |         |     |    | in.                            | (mm)    | lbs | (kg) | Number        |        | Number         | Del.     | Number          | Del.     |
| 23 W/in² 4            | 100/010 |     | Ι. | 01/                            | (0.4.1) |     | (4)  |               |        | e/Explosion-Re |          |                 |          |
| Steel Plug            | 120/240 | 1.0 | 1  | 91/2                           | (241)   | 8   | (4)  | BGS79J6C4     | RS     | BGS79J6C5A     | RS       | BGS79J6C7A      | RS       |
| 2-Steel               | 240/480 | 1.0 | 1  | 91/2                           | (241)   | 8   | (4)  | BGS79J7C4     | RS     | BGS79J7C5A     | RS       | BGS79J7C7A      | RS       |
| Elements              | 120/240 | 1.5 | 1  | 13 <sup>1</sup> / <sub>2</sub> | (343)   | 9   | (4)  | BGS713J6C4    | RS     | BGS713J6C5A    | RS       | BGS713J6C7A     | RS       |
| (3.6 W/cm²)           | 240/480 | 1.5 | 1  | 13 <sup>1</sup> / <sub>2</sub> | (343)   | 9   | (4)  | BGS713J7C4    | RS     | BGS713J7C5A    | RS       | BGS713J7C7A     | RS       |
|                       | 120/240 | 2.0 | 1  | 17 <sup>1</sup> /2             | (445)   | 10  | (5)  | BGS717J6C4    | RS     | BGS717J6C5A    | RS       | BGS717J6C7A     | RS       |
|                       | 240/480 | 2.0 | 1  | 17 <sup>1</sup> /2             | (445)   | 10  | (5)  | BGS717J7C4    | RS     | BGS717J7C5A    | RS       | BGS717J7C7A     | RS       |
|                       | 120/240 | 2.5 | 1  | 201/2                          | (521)   | 11  | (5)  | BGS720J6C4    | RS     | BGS720J6C5A    | RS       | BGS720J6C7A     | RS       |
|                       | 240/480 | 2.5 | 1  | 20 <sup>1</sup> / <sub>2</sub> | (521)   | 11  | (5)  | BGS720J7C4    | RS     | BGS720J7C5A    | RS       | BGS720J7C7A     | RS       |
|                       | 120/240 | 3.0 | 1  | 25                             | (635)   | 11  | (5)  | BGS725A6C4    | RS     | BGS725A6C5A    | RS       | BGS725A6C7A     | RS       |
|                       | 240/480 | 3.0 | 1  | 25                             | (635)   | 11  | (5)  | BGS725A7C4    | RS     | BGS725A7C5A    | RS       | BGS725A7C7A     | RS       |
|                       | 120/240 | 4.0 | 1  | 32 <sup>1</sup> / <sub>2</sub> | (826)   | 12  | (6)  | BGS732J6C4    | RS     | BGS732J6C5A    | RS       | BGS732J6C7A     | RS       |
|                       | 120/240 | 5.0 | 1  | 40                             | (1016)  | 13  | (6)  | BGS740A6C4    | RS     | BGS740A6C5A    | RS       | BGS740A6C7A     | RS       |
| 23 W/in <sup>2</sup>  | 120     | 1.5 | 1  | 91/2                           | (241)   | 9   | (4)  | BHS79J1C4     | RS     | BHS79J1C5A     | RS       | BHS79J1C7A      | RS       |
| Steel Plug<br>3-Steel | 240     | 1.5 | 3  | 91/2                           | (241)   | 9   | (4)  | BHS79J3C4     | RS     | BHS79J3C5A     | RS       | BHS79J3C7A      | RS       |
| Elements              | 480     | 1.5 | 3  | 91/2                           | (241)   | 9   | (4)  | BHS79J13C4    | RS     | BHS79J13C5A    | RS       | BHS79J13C7A     | RS       |
| (3.6 W/cm²)           | 240     | 3.0 | 3  | 17 <sup>1</sup> /2             | (445)   | 11  | (5)  | BHS717J3C4    | RS     | BHS717J3C5A    | RS       | BHS717J3C7A     | RS       |
|                       | 480     | 3.0 | 3  | 17 <sup>1</sup> /2             | (445)   | 11  | (5)  | BHS717J5C4    | RS     | BHS717J5C5A    | RS       | BHS717J5C7A     | RS       |
|                       | 240     | 4.5 | 3  | 25                             | (635)   | 13  | (6)  | BHS725A3C4    | RS     | BHS725A3C5A    | RS       | BHS725A3C7A     | RS       |
|                       | 480     | 4.5 | 3  | 25                             | (635)   | 13  | (6)  | BHS725A5C4    | RS     | BHS725A5C5A    | RS       | BHS725A5C7A     | RS       |
|                       | 240     | 6.0 | 3  | 321/2                          | (826)   | 16  | (8)  | BHS732J3C4    | RS     | BHS732J3C5A    | RS       | BHS732J3C7A     | RS       |
|                       | 480     | 6.0 | 3  | 321/2                          | (826)   | 16  | (8)  | BHS732J5C4    | RS     | BHS732J5C5A    | RS       | BHS732J5C7A     | RS       |
|                       | 240     | 7.5 | 3  | 40                             | (1016)  | 17  | (8)  | BHS740A3C4    | RS     | BHS740A3C5A    | RS       | BHS740A3C7A     | RS       |
|                       | 480     | 7.5 | 3  | 40                             | (1016)  | 17  | (8   | BHS740A5C4    | RS     | BHS740A5C5A    | RS       | BHS740A5C7A     | RS       |
|                       | 240     | 9.0 | 3  | 47 <sup>1</sup> /2             | (1207)  | 17  | (8)  | BHS747J3C4    | RS     | BHS747J3C5A    | RS       | BHS747J3C7A     | RS       |





- Wired for higher voltage
- ⑤ No third party recognition

WATROD and FIREBAR Screw Plug Immersion Heaters

## **Application: Lightweight Oils and Heat Transfer Oils**

- 2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





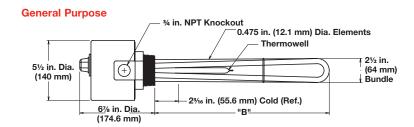
| 23 W/in² ® 12 Steel Plug 2-Steel Elements (3.6 W/cm²)  24  12  24  12  24  12  24  12  24  12  24  12 | 20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480 | 1.0<br>1.0<br>1.5<br>1.5<br>2.0<br>2.0<br>2.5<br>2.5 | Ph 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | "B" I in.  91/2 91/2 131/2 131/2 171/2 171/2                                                                                                                         | (241)<br>(241)<br>(241)<br>(343)<br>(343)<br>(445) | BGS79J6S<br>BGS79J7S<br>BGS713J6S         | Del. eral Purpo RS RS RS | ,        | (kg)<br>(2) | Part Number   Moisture/Explosi BGS79J6C | Del.<br>ion-Resista<br>RS |          | (kg)  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------|----------|-------------|-----------------------------------------|---------------------------|----------|-------|
| 23 W/in² ® 12 Steel Plug 2-Steel Elements (3.6 W/cm²)  24  12  24  12  24  12  24  12  24  12  24  12 | 20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240                               | 1.0<br>1.0<br>1.5<br>1.5<br>2.0<br>2.0<br>2.5        | 1<br>1<br>1<br>1<br>1                    | 9 <sup>1</sup> / <sub>2</sub><br>9 <sup>1</sup> / <sub>2</sub><br>13 <sup>1</sup> / <sub>2</sub><br>13 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub> | (241)<br>(241)<br>(343)<br>(343)                   | Gene<br>BGS79J6S<br>BGS79J7S<br>BGS713J6S | RS<br>RS                 | ose<br>4 | (2)         | Moisture/Explosi<br>BGS79J6C            | i <b>on-Resista</b><br>RS | nt Enclo | sures |
| Steel Plug 2-Steel Elements (3.6 W/cm²)  24  12  24  12  24  12  24  12  24  12  24  12               | 40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240                                         | 1.0<br>1.5<br>1.5<br>2.0<br>2.0<br>2.5               | 1 1 1 1 1                                | 9 <sup>1</sup> / <sub>2</sub><br>13 <sup>1</sup> / <sub>2</sub><br>13 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub>                                  | (241)<br>(343)<br>(343)                            | BGS79J6S<br>BGS79J7S<br>BGS713J6S         | RS<br>RS                 | 4        | . ,         | BGS79J6C                                | RS                        | 7        |       |
| Steel Plug 2-Steel Elements (3.6 W/cm²)  24  12  24  12  24  12  24  12  24  12  24  12               | 40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240                                         | 1.0<br>1.5<br>1.5<br>2.0<br>2.0<br>2.5               | 1 1 1 1 1                                | 9 <sup>1</sup> / <sub>2</sub><br>13 <sup>1</sup> / <sub>2</sub><br>13 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub>                                  | (241)<br>(343)<br>(343)                            | BGS79J7S<br>BGS713J6S                     | RS                       |          | . ,         |                                         |                           |          | (4)   |
| 2-Steel 12 Elements (3.6 W/cm²) 24 12 24 12 24 12 24 12 24 12 24 12                                   | 20/240<br>40/480<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240                                                   | 1.5<br>1.5<br>2.0<br>2.0<br>2.5                      | 1 1 1 1                                  | 13 <sup>1</sup> / <sub>2</sub><br>13 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub>                                                                   | (343)                                              | BGS713J6S                                 |                          | 4        | (2)         | DCC70 17C                               |                           |          | (4)   |
| Elements (3.6 W/cm²)  24  12  24  12  24  12  24  12  24  12  24  12  12                              | 20/240<br>20/240<br>40/480<br>20/240<br>40/480<br>20/240                                                             | 1.5<br>2.0<br>2.0<br>2.5                             | 1 1 1                                    | 13 <sup>1</sup> / <sub>2</sub><br>17 <sup>1</sup> / <sub>2</sub>                                                                                                     | (343)                                              |                                           |                          | _        |             | BGS79J7C                                | RS                        | -        | (4)   |
| 12<br>24<br>12<br>24<br>12<br>24<br>12<br>24<br>12<br>24                                              | 20/240<br>40/480<br>20/240<br>40/480<br>20/240                                                                       | 2.0<br>2.0<br>2.5                                    | 1                                        | 17 <sup>1</sup> /2                                                                                                                                                   | , ,                                                |                                           |                          | 5        | (3)         | BGS713J6C                               |                           | 8        | (4)   |
| 24<br>12<br>24<br>12<br>24<br>12<br>24<br>12                                                          | 20/240<br>20/240<br>40/480<br>20/240                                                                                 | 2.0                                                  | 1                                        |                                                                                                                                                                      | (445)                                              | BGS713J7S                                 | RS                       | 5        | (3)         | BGS713J7C                               | RS                        | 8        | (4)   |
| 12<br>24<br>12<br>24<br>12<br>24<br>12                                                                | 20/240<br>40/480<br>20/240                                                                                           | 2.5                                                  |                                          | 17 1/2                                                                                                                                                               | ( - /                                              | BGS717J6S                                 | RS                       | 6        | (3)         | BGS717J6C                               | RS                        | 9        | (4)   |
| 24<br>12<br>24<br>12<br>24<br>12                                                                      | 40/480<br>20/240                                                                                                     |                                                      | 1                                        | 001/                                                                                                                                                                 | (445)                                              | BGS717J7S                                 | RS                       | 6        | (3)         | BGS717J7C                               | RS                        | 9        | (4)   |
| 12<br>24<br>12<br>24<br>12                                                                            | 20/240                                                                                                               | 2.5                                                  |                                          | 20 <sup>1</sup> / <sub>2</sub>                                                                                                                                       | (521)                                              | BGS720J6S                                 | RS                       | 7        | (4)         | BGS720J6C                               | RS                        | 10       | (5)   |
| 24<br>12<br>24<br>12                                                                                  |                                                                                                                      |                                                      | 1                                        | 20 <sup>1</sup> / <sub>2</sub>                                                                                                                                       | (521)                                              | BGS720J7S                                 | RS                       | 7        | (4)         | BGS720J7C                               | RS                        | 10       | (5)   |
| 12<br>24<br>12                                                                                        | 40/480                                                                                                               | 3.0                                                  | 1                                        | 25                                                                                                                                                                   | (635)                                              | BGS725A6S                                 | RS                       | 7        | (4)         | BGS725A6C                               | RS                        | 10       | (5)   |
| 24<br>12                                                                                              |                                                                                                                      | 3.0                                                  | 1                                        | 25                                                                                                                                                                   | (635)                                              | BGS725A7S                                 | RS                       | 7        | (4)         | BGS725A7C                               | RS                        | 10       | (5)   |
| 12                                                                                                    | 20/240                                                                                                               | 4.0                                                  | 1                                        | 321/2                                                                                                                                                                | (826)                                              | BGS732J6S                                 | RS                       | 8        | (4)         | BGS732J6C                               | RS                        | 11       | (5)   |
|                                                                                                       | 40/480                                                                                                               | 4.0                                                  | 1                                        | 32 <sup>1</sup> / <sub>2</sub>                                                                                                                                       | (826)                                              | BGS732J7S                                 | RS                       | 8        | (4)         | BGS732J7C                               | RS                        | 11       | (5)   |
| 24                                                                                                    | 20/240                                                                                                               | 5.0                                                  | 1                                        | 40                                                                                                                                                                   | (1016)                                             | BGS740A6S                                 | RS                       | 9        | (4)         | BGS740A6C                               | RS                        | 12       | (6)   |
|                                                                                                       | 40/480                                                                                                               | 5.0                                                  | 1                                        | 40                                                                                                                                                                   | (1016)                                             | BGS740A7S                                 | RS                       | 9        | (4)         | BGS740A7C                               | RS                        | 12       | (6)   |
|                                                                                                       | 40/480                                                                                                               | 6.0                                                  | 1                                        | 47 <sup>1</sup> /2                                                                                                                                                   | (1207)                                             | BGS747J7S                                 | RS                       | 10       | (5)         | BGS747J7C                               | RS                        | 13       | (6)   |
|                                                                                                       | 120                                                                                                                  | 1.5                                                  | 1                                        | 9 <sup>1</sup> / <sub>2</sub>                                                                                                                                        | (241)                                              | BHS79J1S                                  | RS                       | 5        | (3)         | BHS79J1C                                | RS                        | 8        | (4)   |
| Steel Plug                                                                                            | 240                                                                                                                  | 1.5                                                  | 3                                        | 91/2                                                                                                                                                                 | (241)                                              | BHS79J3S                                  | RS                       | 5        | (3)         | BHS79J3C                                | RS                        | 8        | (4)   |
| 3-Steel<br>Elements                                                                                   | 480                                                                                                                  | 1.5                                                  | 3                                        | 91/2                                                                                                                                                                 | (241)                                              | BHS79J13S                                 | RS                       | 5        | (3)         | BHS79J13C                               | RS                        | 8        | (4)   |
| (3.6 W/cm²)                                                                                           | 120                                                                                                                  | 3.0                                                  | 1                                        | 17 <sup>1</sup> /2                                                                                                                                                   | (445)                                              | BHS717J1S                                 | RS                       | 7        | (4)         | BHS717J1C                               | RS                        | 10       | (5)   |
|                                                                                                       | 240                                                                                                                  | 3.0                                                  | 3                                        | 17 <sup>1</sup> /2                                                                                                                                                   | (445)                                              | BHS717J3S                                 | RS                       | 7        | (4)         | BHS717J3C                               | RS                        | 10       | (5)   |
|                                                                                                       | 480                                                                                                                  | 3.0                                                  | 3                                        | 17 <sup>1</sup> /2                                                                                                                                                   | (445)                                              | BHS717J5S                                 | RS                       | 7        | (4)         | BHS717J5C                               | RS                        | 10       | (5)   |
|                                                                                                       | 120                                                                                                                  | 4.5                                                  | 1                                        | 25                                                                                                                                                                   | (635)                                              | BHS725A1S                                 | RS                       | 9        | (4)         | BHS725A1C                               | RS                        | 12       | (6)   |
|                                                                                                       | 240                                                                                                                  | 4.5                                                  | 3                                        | 25                                                                                                                                                                   | (635)                                              | BHS725A3S                                 | RS                       | 9        | (4)         | BHS725A3C                               | RS                        | 12       | (6)   |
|                                                                                                       | 480                                                                                                                  | 4.5                                                  | 3                                        | 25                                                                                                                                                                   | (635)                                              | BHS725A5S                                 | RS                       | 9        | (4)         | BHS725A5C                               | RS                        | 12       | (6)   |
|                                                                                                       | 240                                                                                                                  | 6.0                                                  | 3                                        | 32 <sup>1</sup> / <sub>2</sub>                                                                                                                                       | (826)                                              | BHS732J3S                                 | RS                       | 12       | (6)         | BHS732J3C                               | RS                        | 15       | (7)   |
|                                                                                                       | 480                                                                                                                  | 6.0                                                  | 3                                        | 32 <sup>1</sup> / <sub>2</sub>                                                                                                                                       | (826)                                              | BHS732J5S                                 | RS                       | 12       | (6)         | BHS732J5C                               | RS                        | 15       | (7)   |
|                                                                                                       | 240                                                                                                                  | 7.5                                                  | 3                                        | 40                                                                                                                                                                   | (1016)                                             | BHS740A3S                                 | RS                       | 13       | (6)         | BHS740A3C                               | RS                        | 16       | (8)   |
|                                                                                                       | 480                                                                                                                  | 7.5                                                  | 3                                        | 40                                                                                                                                                                   | (1016)                                             | BHS740A5S                                 | RS                       | 13       | (6)         | BHS740A5C                               | RS                        | 16       | (8)   |
|                                                                                                       | 240                                                                                                                  | 9.0                                                  | 3                                        | 47 <sup>1</sup> /2                                                                                                                                                   | (1207)                                             | BHS747J3S                                 | RS                       | 13       | (6)         | BHS747J3C                               | RS                        | 16       | (8)   |
|                                                                                                       | 480                                                                                                                  | 9.0                                                  | 3                                        | 47 <sup>1</sup> /2                                                                                                                                                   | (1207)                                             | BHS747J5S                                 | RS                       | 13       | (6)         | BHS747J5C                               | RS                        | 16       | (8)   |
|                                                                                                       | 240                                                                                                                  | 12.5                                                 | 3                                        | 64                                                                                                                                                                   | (1000)                                             |                                           | 50                       |          |             | 1                                       |                           |          | _ ` ' |
|                                                                                                       | 270                                                                                                                  |                                                      |                                          | 04                                                                                                                                                                   | (1626)                                             | BHS764A3S                                 | RS                       | 17       | (8)         | BHS764A3C                               | RS                        | 20       | (9)   |

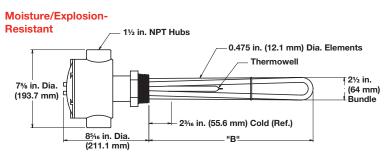


• RS - Next day shipment up to 5 pieces

- Wired for higher voltage
- S No third party recognition

### WATROD and FIREBAR Screw Plug Immersion Heaters





## Application: Lightweight Oils and Heat Transfer Oils

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

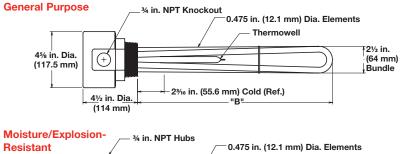


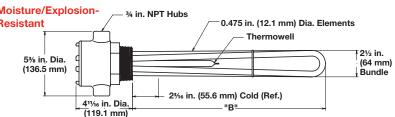


|                       |       |     |    |                                |              |             |             | Type 4 (30 to  | 110°F) | Type 5A (60 t   | o 250°F)   | Type 7A (100 to | 550°F) |
|-----------------------|-------|-----|----|--------------------------------|--------------|-------------|-------------|----------------|--------|-----------------|------------|-----------------|--------|
| Description           | Volts | kW  | Ph | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>lbs | Wt.<br>(kg) | Part<br>Number | Del.   | Part<br>Number  | Del.       | Part<br>Number  | Del.   |
|                       |       |     |    |                                |              |             |             |                |        | General Purpos  | e Enclosi  | ure             |        |
| 23 W/in² ⑥            | 240   | 3.0 | 3  | 17 <sup>1</sup> /4             | (438)        | 10          | (5)         | BLS717E3S4     | RS     | BLS717E3S5A     | RS         | BLS717E3S7A     | RS     |
| Steel Plug            | 480   | 3.0 | 3  | 17 <sup>1</sup> /4             | (438)        | 10          | (5)         | BLS717E5S4     | RS     | BLS717E5S5A     | RS         | BLS717E5S7A     | RS     |
| 3-Steel<br>Elements   | 240   | 4.5 | 3  | 24 <sup>3</sup> / <sub>4</sub> | (629)        | 13          | (6)         | BLS724N3S4     | RS     | BLS724N3S5A     | RS         | BLS724N3S7A     | RS     |
| (3.6 Wcm²)            | 480   | 4.5 | 3  | 24 <sup>3</sup> /4             | (629)        | 13          | (6)         | BLS724N5S4     | RS     | BLS724N5S5A     | RS         | BLS724N5S7A     | RS     |
|                       | 240   | 6.0 | 3  | 32 <sup>1</sup> / <sub>4</sub> | (819)        | 15          | (7)         | BLS732E3S4     | RS     | BLS732E3S5A     | RS         | BLS732E3S7A     | RS     |
|                       | 480   | 6.0 | 3  | 32 <sup>1</sup> / <sub>4</sub> | (819)        | 15          | (7)         | BLS732E5S4     | RS     | BLS732E5S5A     | RS         | BLS732E5S7A     | RS     |
|                       | 240   | 7.5 | 3  | 39 <sup>3</sup> /4             | (1010)       | 16          | (8)         | BLS739N3S4     | RS     | BLS739N3S5A     | RS         | BLS739N3S7A     | RS     |
|                       | 480   | 7.5 | 3  | 39 <sup>3</sup> /4             | (1010)       | 16          | (8)         | BLS739N5S4     | RS     | BLS739N5S5A     | RS         | BLS739N5S7A     | RS     |
|                       | 240   | 9.0 | 3  | 47 <sup>1</sup> /4             | (1200)       | 18          | (9)         | BLS747E3S4     | RS     | BLS747E3S5A     | RS         | BLS747E3S7A     | RS     |
|                       |       |     |    |                                |              |             |             |                |        |                 |            |                 |        |
|                       |       |     |    |                                |              |             |             |                | Moistu | re/Explosion-Re | sistant Eı | nclosure ⑤      |        |
| 23 W/in² 6            | 240   | 3.0 | 3  | 17 <sup>1</sup> /4             | (438)        | 13          | (6)         | BLS717E3C4     | RS     | BLS717E3C5A     | RS         | BLS717E3C7A     | RS     |
| Steel Plug<br>3-Steel | 480   | 3.0 | 3  | 17 <sup>1</sup> /4             | (438)        | 13          | (6)         | BLS717E5C4     | RS     | BLS717E5C5A     | RS         | BLS717E5C7A     | RS     |
| ડ-ડાeei<br>Elements   | 240   | 4.5 | 3  | 24 <sup>3</sup> /4             | (629)        | 16          | (8)         | BLS724N3C4     | RS     | BLS724N3C5A     | RS         | BLS724N3C7A     | RS     |
| (3.6 Wcm²)            | 480   | 4.5 | 3  | 24 <sup>3</sup> /4             | (629)        | 16          | (8)         | BLS724N5C4     | RS     | BLS724N5C5A     | RS         | BLS724N5C7A     | RS     |
|                       | 240   | 6.0 | 3  | 32 <sup>1</sup> /4             | (819)        | 18          | (9)         | BLS732E3C4     | RS     | BLS732E3C5A     | RS         | BLS732E3C7A     | RS     |
|                       | 480   | 6.0 | 3  | 32 <sup>1</sup> / <sub>4</sub> | (819)        | 18          | (9)         | BLS732E5C4     | RS     | BLS732E5C5A     | RS         | BLS732E5C7A     | RS     |
|                       | 240   | 7.5 | 3  | 39 <sup>3</sup> /4             | (1010)       | 19          | (9)         | BLS739N3C4     | RS     | BLS739N3C5A     | RS         | BLS739N3C7A     | RS     |
|                       | 480   | 7.5 | 3  | 39 <sup>3</sup> /4             | (1010)       | 19          | (9)         | BLS739N5C4     | RS     | BLS739N5C5A     | RS         | BLS739N5C7A     | RS     |
|                       | 240   | 9.0 | 3  | 47 <sup>1</sup> /4             | (1200)       | 21          | (10)        | BLS747E3C4     | RS     | BLS747E3C5A     | RS         | BLS747E3C7A     | RS     |



• **RS** - Next day shipment up to 5 pieces


- S No third party recognition
- Can be rewired to produce ½ of original kW and watt density (3-phase only)


### WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Lightweight Oils and Heat Transfer Oils

- 21/2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





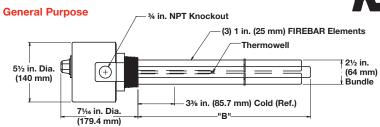
| Description            | Velte | Levar | Ph |                                | Dim.   | Part<br>Number | Del.      |                 | Wt.  | Part<br>Number ⑤ | Del.  | Ship |      |
|------------------------|-------|-------|----|--------------------------------|--------|----------------|-----------|-----------------|------|------------------|-------|------|------|
| Description            | voits | kW    | PN | in.                            | (mm)   |                | Purpose E | lbs<br>Enclosur | (kg) | Moisture /Explo  |       | •    | (kg) |
| 23 W/in² 6             | 120   | 3.0   | 1  | 17 <sup>1</sup> /4             | (438)  | BLS717E1S      | RS        | 9               | (4)  | BLS717E1C        | RS RS | 12   | (6)  |
| Steel Plug             | 240   | 3.0   | 3  | 17 <sup>1</sup> /4             | (438)  | BLS717E3S      | RS        | 9               | (4)  | BLS717E3C        | RS    | 12   | (6)  |
| 3-Steel                | 480   | 3.0   | 3  | 17 <sup>1</sup> /4             | (438)  | BLS717E5S      | RS        | 9               | (4)  | BLS717E5C        | RS    | 12   | (6)  |
| Elements<br>(3.6 Wcm²) | 120   | 4.5   | 1  | 24 <sup>3</sup> / <sub>4</sub> | (629)  | BLS724N1S      | RS        | 12              | (6)  | BLS724N1C        | RS    | 15   | (7)  |
| (515 115111)           | 240   | 4.5   | 3  | 24 <sup>3</sup> / <sub>4</sub> | (629)  | BLS724N3S      | RS        | 12              | (6)  | BLS724N3C        | RS    | 15   | (7)  |
|                        | 480   | 4.5   | 3  | 24 <sup>3</sup> / <sub>4</sub> | (629)  | BLS724N5S      | RS        | 12              | (6)  | BLS724N5C        | RS    | 15   | (7)  |
|                        | 240   | 6.0   | 3  | 321/4                          | (819)  | BLS732E3S      | RS        | 14              | (7)  | BLS732E3C        | RS    | 17   | (8)  |
|                        | 480   | 6.0   | 3  | 321/4                          | (819)  | BLS732E5S      | RS        | 14              | (7)  | BLS732E5C        | RS    | 17   | (8)  |
|                        | 240   | 7.5   | 3  | 393/4                          | (1010) | BLS739N3S      | RS        | 15              | (7)  | BLS739N3C        | RS    | 18   | (9)  |
|                        | 480   | 7.5   | 3  | 393/4                          | (1010) | BLS739N5S      | RS        | 15              | (7)  | BLS739N5C        | RS    | 18   | (9)  |
|                        | 240   | 9.0   | 3  | 471/4                          | (1200) | BLS747E3S      | RS        | 17              | (8)  | BLS747E3C        | RS    | 20   | (9)  |
|                        | 480   | 9.0   | 3  | 471/4                          | (1200) | BLS747E5S      | RS        | 17              | (8)  | BLS747E5C        | RS    | 20   | (9)  |
|                        | 240   | 12.5  | 3  | 63 <sup>3</sup> / <sub>4</sub> | (1619) | BLS763N3S      | RS        | 20              | (9)  | BLS763N3C        | RS    | 23   | (11) |
|                        | 480   | 12.5  | 3  | 63 <sup>3</sup> / <sub>4</sub> | (1619) | BLS763N5S      | RS        | 20              | (9)  | BLS763N5C        | RS    | 23   | (11) |
|                        | 240   | 15.0  | 3  | 76 <sup>1</sup> / <sub>4</sub> | (1937) | BLS776E3S      | RS        | 23              | (11) | BLS776E3C        | RS    | 26   | (12) |
|                        | 480   | 15.0  | 3  | 76 <sup>1</sup> /4             | (1937) | BLS776E5S      | RS        | 23              | (11) | BLS776E5C        | RS    | 26   | (12) |

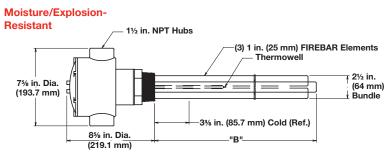


**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- S No third party recognition
- $\mbox{\ensuremath{\mathfrak{G}}}$  Can be rewired to produce  $\mbox{\ensuremath{\%}}$  of original kW and watt density (3-phase only)

WATLOW<sup>®</sup> 215


### WATROD and FIREBAR Screw Plug Immersion Heaters


## Application: Lightweight Oils and Heat Transfer Oils

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

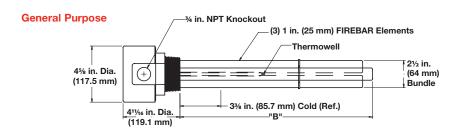


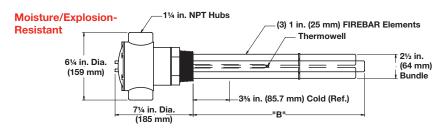


|                            |       |     |    |                    |              |             |             | Type 5A (60 to 2 | 250°F)    | Type 7A (100 to      | 550°F) |
|----------------------------|-------|-----|----|--------------------|--------------|-------------|-------------|------------------|-----------|----------------------|--------|
| Description                | Volts | kW  | Ph | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number   | Del.      | Part<br>Number       | Del.   |
|                            |       |     |    |                    |              |             |             | Ger              | neral Pur | pose Enclosure       | •      |
| 30 W/in <sup>2</sup> ③     | 240   | 5.0 | 3  | 15 <sup>1</sup> /8 | (384.2)      | 12          | (6)         | BLNF15C12S5A     | RS        | BLNF15C12S7A         | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 5.0 | 3  | 15 <sup>1</sup> /8 | (384.2)      | 12          | (6)         | BLNF15C13S5A     | RS        | BLNF15C13S7A         | RS     |
| Elements                   | 240   | 6.5 | 3  | 18 <sup>1</sup> /8 | (460.4)      | 13          | (6)         | BLNF18C12S5A     | RS        | BLNF18C12S7A         | RS     |
| (4.7 W/cm²)                | 480   | 6.5 | 3  | 18 <sup>1</sup> /8 | (460.4)      | 13          | (6)         | BLNF18C13S5A     | RS        | BLNF18C13S7A         | RS     |
|                            | 240   | 8.5 | 3  | 23 <sup>1</sup> /8 | (587.4)      | 15          | (7)         | BLNF23C12S5A     | RS        | BLNF23C12S7A         | RS     |
| 23 W/in² ®                 | 240   | 3.8 | 3  | 15 <sup>1</sup> /8 | (384.2)      | 12          | (6)         | BLNF15C20S5A     | RS        | BLNF15C20S7A         | RS     |
| 304 SS Plug<br>3-Alloy 800 | 240   | 4.9 | 3  | 18 <sup>1</sup> /8 | (460.4)      | 13          | (6)         | BLNF18C20S5A     | RS        | BLNF18C20S7A         | RS     |
| Elements                   | 240   | 6.4 | 3  | 23 <sup>1</sup> /8 | (587.4)      | 15          | (7)         | BLNF23C20S5A     | RS        | BLNF23C20S7A         | RS     |
| (3.6 W/cm²)                | 480   | 6.4 | 3  | 23 <sup>1</sup> /8 | (587.4)      | 15          | (7)         | BLNF23C19S5A     | RS        | BLNF23C19S7A         | RS     |
|                            | 240   | 7.9 | 3  | 28 <sup>5</sup> /8 | (727.1)      | 18          | (9)         | BLNF28L20S5A     | RS        | BLNF28L20S7A         | RS     |
|                            | 240   | 9.6 | 3  | 33 <sup>5</sup> /8 | (854.1)      | 19          | (9)         | BLNF33L20S5A     | RS        | BLNF33L20S7A         | RS     |
|                            |       |     |    |                    |              |             |             |                  |           |                      |        |
|                            |       |     |    |                    |              |             |             | Moisture/Exp     | losion-Re | esistant Enclosure ⑤ |        |
| 30 W/in² ③                 | 240   | 5.0 | 3  | 15 <sup>1</sup> /8 | (384.2)      | 14          | (7)         | BLNF15C12C5A     | RS        | BLNF15C12C7A         | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 5.0 | 3  | 15 <sup>1</sup> /8 | (384.2)      | 14          | (7)         | BLNF15C13C5A     | RS        | BLNF15C13C7A         | RS     |
| Elements                   | 240   | 6.5 | 3  | 18 <sup>1</sup> /8 | (460.4)      | 16          | (8)         | BLNF18C12C5A     | RS        | BLNF18C12C7A         | RS     |
| (4.7 W/cm²)                | 480   | 6.5 | 3  | 18 <sup>1</sup> /8 | (460.4)      | 16          | (8)         | BLNF18C13C5A     | RS        | BLNF18C13C7A         | RS     |
|                            | 240   | 8.5 | 3  | 23 <sup>1</sup> /8 | (587.4)      | 18          | (9)         | BLNF23C12C5A     | RS        | BLNF23C12C7A         | RS     |
| 23 W/in² ®                 | 240   | 3.8 | 3  | 15 <sup>1</sup> /8 | (384.2)      | 14          | (7)         | BLNF15C20C5A     | RS        | BLNF15C20C7A         | RS     |
| 304 SS Plug<br>3-Allov 800 | 240   | 4.9 | 3  | 18 <sup>1</sup> /8 | (460.4)      | 16          | (8)         | BLNF18C20C5A     | RS        | BLNF18C20C7A         | RS     |
| Elements                   | 240   | 6.4 | 3  | 23 <sup>1</sup> /8 | (587.4)      | 18          | (9)         | BLNF23C20C5A     | RS        | BLNF23C20C7A         | RS     |
| (3.6 W/cm²)                | 480   | 6.4 | 3  | 23 <sup>1</sup> /8 | (587.4)      | 18          | (9)         | BLNF23C19C5A     | RS        | BLNF23C19C7A         | RS     |
|                            | 240   | 7.9 | 3  | 28 <sup>5</sup> /8 | (727.1)      | 21          | (10)        | BLNF28L20C5A     | RS        | BLNF28L20C7A         | RS     |
|                            | 240   | 9.6 | 3  | 335/8              | (854.1)      | 22          | (10)        | BLNF33L20C5A     | RS        | BLNF33L20C7A         | RS     |



• RS - Next day shipment up to 5 pieces


- 3 Wired for 3-phase operation only
- ⑤ No third party recognition
- 8 Can be wired for 1-phase operation


## WATROD and FIREBAR Screw Plug Immersion Heaters



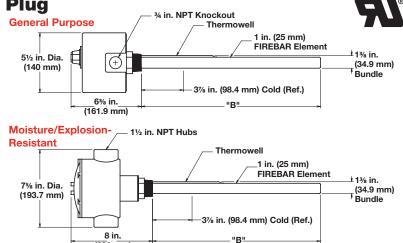
## **Application: Lightweight Oils and Heat Transfer Oils**

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





|                         |       |      |    | "B" Dim.                 | Part                 |           | Shir     | o Wt. | Part            |            | Shir    | Wt.    |
|-------------------------|-------|------|----|--------------------------|----------------------|-----------|----------|-------|-----------------|------------|---------|--------|
| Description             | Volts | kW   | Ph | in. (mn                  | Number               | Del.      | lbs      | (kg)  | Number ⑤        | Del.       | lbs     |        |
|                         |       | •    |    | •                        | General P            | urpose Er | nclosure | е     | Moisture/Explos | ion-Resist | ant End | losure |
| 30 W/in <sup>2</sup> ③  | 240   | 5.0  | 3  | 15 <sup>1</sup> /8 (384  | 2) BLNF15C12S        | RS        | 11       | (5)   | BLNF15C12C      | RS         | 14      | (7)    |
| 304 SS Plug             | 480   | 5.0  | 3  | 15 <sup>1</sup> /8 (384  | 2) BLNF15C13S        | RS        | 11       | (5)   | BLNF15C13C      | RS         | 14      | (7)    |
| 3-Alloy 800<br>Elements | 240   | 6.5  | 3  | 18 <sup>1</sup> /8 (460  | 4) BLNF18C12S        | RS        | 12       | (6)   | BLNF18C12C      | RS         | 15      | (7)    |
| (4.7 W/cm²)             | 480   | 6.5  | 3  | 18 <sup>1</sup> /8 (460  | 4) BLNF18C13S        | RS        | 12       | (6)   | BLNF18C13C      | RS         | 15      | (7)    |
| Ì                       | 240   | 8.5  | 3  | 23 <sup>1</sup> /8 (587  | 4) BLNF23C12S        | RS        | 14       | (7)   | BLNF23C12C      | RS         | 17      | (8)    |
|                         | 480   | 8.5  | 3  | 23 <sup>1</sup> /8 (587  | 4) BLNF23C13S        | RS        | 14       | (7)   | BLNF23C13C      | RS         | 17      | (8)    |
|                         | 240   | 10.5 | 3  | 28 <sup>5</sup> /8 (727  | 1) BLNF28L12S        | RS        | 17       | (8)   | BLNF28L12C      | RS         | 20      | (9)    |
|                         | 480   | 10.5 | 3  | 28 <sup>5</sup> /8 (727  | 1) BLNF28L13S        | RS        | 17       | (8)   | BLNF28L13C      | RS         | 20      | (9)    |
|                         | 240   | 12.8 | 3  | 33 <sup>5</sup> /8 (854  | 1) BLNF33L12S        | RS        | 18       | (9)   | BLNF33L12C      | RS         | 21      | (10)   |
|                         | 480   | 12.8 | 3  | 33 <sup>5</sup> /8 (854  | 1) BLNF33L13S        | RS        | 18       | (9)   | BLNF33L13C      | RS         | 21      | (10)   |
|                         | 240   | 17.0 | 3  | 44 <sup>1</sup> /8 (1120 | BLNF44C12S           | RS        | 20       | (9)   | BLNF44C12C      | RS         | 23      | (11)   |
|                         | 480   | 17.0 | 3  | 44 <sup>1</sup> /8 (1120 | BLNF44C13S           | RS        | 20       | (9)   | BLNF44C13C      | RS         | 23      | (11)   |
|                         | 480   | 21.5 | 3  | 54 <sup>5</sup> /8 (1387 | 5) <b>BLNF54L13S</b> | RS        | 22       | (10)  | BLNF54L13C      | RS         | 25      | (12)   |
| 23 W/in <sup>2</sup> ®  | 240   | 3.8  | 3  | 15 <sup>1</sup> /8 (384  | 2) BLNF15C20S        | RS        | 11       | (5)   | BLNF15C20C      | RS         | 14      | (7)    |
| 304 SS Plug             | 240   | 4.9  | 3  | 18 <sup>1</sup> /8 (460  | 4) BLNF18C20S        | RS        | 12       | (6)   | BLNF18C20C      | RS         | 15      | (7)    |
| 3-Alloy 800<br>Elements | 240   | 6.4  | 3  | 23 <sup>1</sup> /8 (587  | 4) BLNF23C20S        | RS        | 14       | (7)   | BLNF23C20C      | RS         | 17      | (8)    |
| (3.6 W/cm²)             | 480   | 6.4  | 3  | 23 <sup>1</sup> /8 (587  | 4) BLNF23C19S        | RS        | 14       | (7)   | BLNF23C19C      | RS         | 17      | (8)    |
|                         | 240   | 7.9  | 3  | 28 <sup>5</sup> /8 (727  | 1) <b>BLNF28L20S</b> | RS        | 17       | (8)   | BLNF28L20C      | RS         | 20      | (9)    |
|                         | 480   | 7.9  | 3  | 28 <sup>5</sup> /8 (727  | 1) <b>BLNF28L19S</b> | RS        | 17       | (8)   | BLNF28L19C      | RS         | 20      | (9)    |
|                         | 240   | 9.6  | 3  | 33 <sup>5</sup> /8 (854  | 1) <b>BLNF33L20S</b> | RS        | 18       | (9)   | BLNF33L20C      | RS         | 21      | (10)   |
|                         | 480   | 9.6  | 3  | 33 <sup>5</sup> /8 (854  | 1) <b>BLNF33L19S</b> | RS        | 18       | (9)   | BLNF33L19C      | RS         | 21      | (10)   |
|                         | 240   | 12.8 | 3  | 44 <sup>1</sup> /8 (1120 | B) BLNF44C20S        | RS        | 20       | (9)   | BLNF44C20C      | RS         | 23      | (11)   |
|                         | 480   | 12.8 | 3  | 44 <sup>1</sup> /8 (1120 | B) BLNF44C19S        | RS        | 20       | (9)   | BLNF44C19C      | RS         | 23      | (11)   |
|                         | 240   | 16.1 | 3  | 54 <sup>5</sup> /8 (1387 | 5) <b>BLNF54L20S</b> | RS        | 22       | (10)  | BLNF54L20C      | RS         | 25      | (12)   |
|                         | 480   | 16.1 | 3  | 54 <sup>5</sup> /8 (1387 | 5) <b>BLNF54L19S</b> | RS        | 22       | (10)  | BLNF54L19C      | RS         | 25      | (12)   |




- 3 Wired for 3-phase operation only
- S No third party recognition
- 8 Can be wired for 1-phase operation

## WATROD and FIREBAR Screw Plug Immersion Heaters General

## Application: Medium Weight Oils and Heat Transfer Oils

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

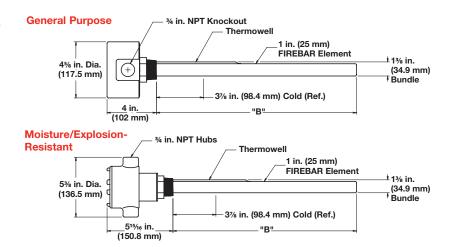


|                            |       |      |    |                                |              |         |               | 8 in.<br>(203 mm) |            | "B"                   |        |
|----------------------------|-------|------|----|--------------------------------|--------------|---------|---------------|-------------------|------------|-----------------------|--------|
|                            |       |      |    |                                |              |         |               | , ,               | <u> </u>   |                       |        |
|                            |       |      |    | <b>"</b> "                     |              | <b></b> | 1000          | Type 5A (60 to    | 250°F)     | Type 7A (100 to       | 550F°) |
| Description                | Volts | kW   | Ph | in.                            | Dim.<br>(mm) | Shi     | p Wt.<br>(kg) | Part<br>Number    | Del.       | Part<br>Number        | Del.   |
| Description                | Voits | KVV  |    |                                | (11111)      | 103     | (Kg)          |                   |            | ose Enclosure         | Dei.   |
| 15 W/in² ③                 | 240   | 0.67 | 3  | 13                             | (330)        | 7       | (4)           | BDNF13A29S5A      | RS         | BDNF13A29S7A          | RS     |
| 304 SS Plug                | 240   | 0.83 | 3  | 15 <sup>1</sup> /2             | (394)        | 8       | (4)           | BDNF15J29S5A      | RS         | BDNF15J29S7A          | RS     |
| I-Alloy 800<br>Element     | 240   | 1.00 | 3  | 18                             | (457)        | 9       | (4)           | BDNF18A29S5A      | RS         | BDNF18A29S7A          | RS     |
| 2.3 W/cm²)                 | 240   | 1.33 | 3  | 22 <sup>1</sup> / <sub>2</sub> | (572)        | 10      | (5)           | BDNF22J29S5A      | RS         | BDNF22J29S7A          | RS     |
| ·                          | 480   | 1.33 | 3  | 22 <sup>1</sup> / <sub>2</sub> | (572)        | 10      | (5)           | BDNF22J30S5A      | RS         | BDNF22J30S7A          | RS     |
|                            | 240   | 1.67 | 3  | 27 <sup>1</sup> / <sub>2</sub> | (699)        | 11      | (5)           | BDNF27J29S5A      | RS         | BDNF27J29S7A          | RS     |
|                            | 480   | 1.67 | 3  | 27 <sup>1</sup> / <sub>2</sub> | (699)        | 11      | (5)           | BDNF27J30S5A      | RS         | BDNF27J30S7A          | RS     |
|                            | 240   | 2.00 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)        | 12      | (6)           | BDNF32J29S5A      | RS         | BDNF32J29S7A          | RS     |
|                            | 480   | 2.00 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)        | 12      | (6)           | BDNF32J30S5A      | RS         | BDNF32J30S7A          | RS     |
|                            | 240   | 2.67 | 3  | 42                             | (1067)       | 14      | (7)           | BDNF42A29S5A      | RS         | BDNF42A29S7A          | RS     |
|                            | 480   | 2.67 | 3  | 42                             | (1067)       | 14      | (7)           | BDNF42A30S5A      | RS         | BDNF42A30S7A          | RS     |
|                            | 240   | 3.33 | 3  | 51 <sup>1</sup> /2             | (1308)       | 16      | (8)           | BDNF51J29S5A      | RS         | BDNF51J29S7A          | RS     |
|                            | 480   | 3.33 | 3  | 51 <sup>1</sup> /2             | (1308)       | 16      | (8)           | BDNF51J30S5A      | RS         | BDNF51J30S7A          | RS     |
|                            | '     |      |    |                                |              |         |               |                   | l          |                       |        |
|                            |       |      |    |                                |              |         |               | Moisture          | Explosion- | Resistant Enclosure ® |        |
| 15 W/in² ③                 | 240   | 0.67 | 3  | 13                             | (330)        | 10      | (5)           | BDNF13A29C5A      | RS         | BDNF13A29C7A          | RS     |
| 304 SS Plug<br>I-Alloy 800 | 240   | 0.83 | 3  | 15 <sup>1</sup> /2             | (394)        | 11      | (5)           | BDNF15J29C5A      | RS         | BDNF15J29C7A          | RS     |
| l-Alloy 600<br>Element     | 240   | 1.00 | 3  | 18                             | (457)        | 12      | (6)           | BDNF18A29C5A      | RS         | BDNF18A29C7A          | RS     |
| 2.3 W/cm <sup>2</sup> )    | 240   | 1.33 | 3  | 22 <sup>1</sup> /2             | (572)        | 13      | (6)           | BDNF22J29C5A      | RS         | BDNF22J29C7A          | RS     |
|                            | 480   | 1.33 | 3  | 22 <sup>1</sup> /2             | (572)        | 13      | (6)           | BDNF22J30C5A      | RS         | BDNF22J30C7A          | RS     |
|                            | 240   | 1.67 | 3  | 27 <sup>1</sup> /2             | (699)        | 14      | (7)           | BDNF27J29C5A      | RS         | BDNF27J29C7A          | RS     |
|                            | 480   | 1.67 | 3  | 27 <sup>1</sup> /2             | (699)        | 14      | (7)           | BDNF27J30C5A      | RS         | BDNF27J30C7A          | RS     |
|                            | 240   | 2.00 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)        | 15      | (7)           | BDNF32J29C5A      | RS         | BDNF32J29C7A          | RS     |
|                            | 480   | 2.00 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)        | 15      | (7)           | BDNF32J30C5A      | RS         | BDNF32J30C7A          | RS     |
|                            | 240   | 2.67 | 3  | 42                             | (1067)       | 17      | (8)           | BDNF42A29C5A      | RS         | BDNF42A29C7A          | RS     |
|                            | 480   | 2.67 | 3  | 42                             | (1067)       | 17      | (8)           | BDNF42A30C5A      | RS         | BDNF42A30C7A          | RS     |
|                            | 240   | 3.33 | 3  | 51 <sup>1</sup> /2             | (1308)       | 19      | (9)           | BDNF51J29C5A      | RS         | BDNF51J29C7A          | RS     |
|                            | 480   | 3.33 | 3  | 51 <sup>1</sup> /2             | (1308)       | 19      | (9)           | BDNF51J30C5A      | RS         | BDNF51J30C7A          | RS     |



up to 5 pieces

<sup>3</sup> Wired for 3-phase operation only


S No third party recognition

# WATROD and FIREBAR Screw Plug Immersion Heaters



## **Application: Medium Weight Oils and Heat Transfer Oils**

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



| Description                | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Part<br>Number | Del.      | Ship<br>lbs | Wt.<br>(kg) | Part<br>Number ⑤ | Del.       | Ship<br>lbs |         |
|----------------------------|-------|------|----|--------------------------------|--------------|----------------|-----------|-------------|-------------|------------------|------------|-------------|---------|
|                            | ,     |      |    |                                |              | General Pu     | rpose End | losure      |             | Moisture/Explo   | sion-Resis | tant End    | closure |
| 15 W/in² ③                 | 240   | 0.67 | 3  | 13                             | (330)        | BDNF13A29S     | RS        | 6           | (3)         | BDNF13A29C       | RS         | 9           | (4)     |
| 304 SS Plug<br>1-Alloy 800 | 240   | 0.83 | 3  | 15 <sup>1</sup> /2             | (394)        | BDNF15J29S     | RS        | 7           | (4)         | BDNF15J29C       | RS         | 10          | (5)     |
| Element                    | 240   | 1.00 | 3  | 18                             | (457)        | BDNF18A29S     | RS        | 8           | (4)         | BDNF18A29C       | RS         | 11          | (5)     |
| (2.3 W/cm <sup>2</sup> )   | 240   | 1.33 | 3  | 22 <sup>1</sup> / <sub>2</sub> | (572)        | BDNF22J29S     | RS        | 9           | (4)         | BDNF22J29C       | RS         | 12          | (6)     |
|                            | 480   | 1.33 | 3  | 22 <sup>1</sup> / <sub>2</sub> | (572)        | BDNF22J30S     | RS        | 9           | (4)         | BDNF22J30C       | RS         | 12          | (6)     |
|                            | 240   | 1.67 | 3  | 27 <sup>1</sup> / <sub>2</sub> | (699)        | BDNF27J29S     | RS        | 10          | (5)         | BDNF27J29C       | RS         | 13          | (6)     |
|                            | 480   | 1.67 | 3  | 27 <sup>1</sup> / <sub>2</sub> | (699)        | BDNF27J30S     | RS        | 10          | (5)         | BDNF27J30C       | RS         | 13          | (6)     |
|                            | 240   | 2.00 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)        | BDNF32J29S     | RS        | 11          | (5)         | BDNF32J29C       | RS         | 14          | (7)     |
|                            | 480   | 2.00 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)        | BDNF32J30S     | RS        | 11          | (5)         | BDNF32J30C       | RS         | 14          | (7)     |
|                            | 240   | 2.67 | 3  | 42                             | (1067)       | BDNF42A29S     | RS        | 13          | (6)         | BDNF42A29C       | RS         | 16          | (8)     |
|                            | 480   | 2.67 | 3  | 42                             | (1067)       | BDNF42A30S     | RS        | 13          | (6)         | BDNF42A30C       | RS         | 16          | (8)     |
|                            | 240   | 3.33 | 3  | 51 <sup>1</sup> /2             | (1308)       | BDNF51J29S     | RS        | 15          | (7)         | BDNF51J29C       | RS         | 18          | 9)      |
|                            | 480   | 3.33 | 3  | 51 <sup>1</sup> /2             | (1308)       | BDNF51J30S     | RS        | 15          | (7)         | BDNF51J30C       | RS         | 18          | (9)     |

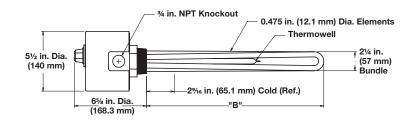


**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- 3 Wired for 3-phase operation only
- S No third party recognition

**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 219

## WATROD and FIREBAR Screw Plug Immersion Heaters




## **Application: Medium Weight Oils and Heat Transfer Oils**

- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

• General purpose enclosure

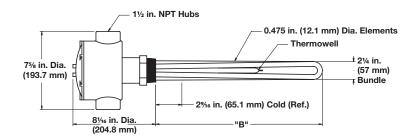


|                            |       |     |    |                                |        |     |       | Type 4 (30-1 | 10°F) | Type 5A (60 to  | 250°F) | Type 7A (100 to     | 550°F) |
|----------------------------|-------|-----|----|--------------------------------|--------|-----|-------|--------------|-------|-----------------|--------|---------------------|--------|
|                            |       |     |    |                                | Dim.   |     | o Wt. | Part         |       | Part            |        | Part                |        |
| Description                | Volts | kW  | Ph | in.                            | (mm)   | lbs | (kg)  | Number       | Del.  | Number          | Del.   | Number              | Del.   |
|                            |       |     |    | _                              |        |     |       |              |       | General Purpose |        |                     |        |
| 16 W/in² ③                 | 240   | 1.0 | 3  | 93/4                           | (248)  | 6   | (3)   | BHN79N12S4   | RS    | BHN79N12S5A     | RS     | BHN79N12S7A         | RS     |
| 304 SS Plug<br>3-Alloy 800 | 480   | 1.0 | 3  | 93/4                           | (248)  | 6   | (3)   | BHN79N13S4   | RS    | BHN79N13S5A     | RS     | BHN79N13S7A         | RS     |
| Elements                   | 240   | 1.5 | 3  | 13 <sup>1</sup> / <sub>4</sub> | (337)  | 7   | (4)   | BHN713E12S4  | RS    | BHN713E12S5A    | RS     | BHN713E12S7A        | RS     |
| (2.5 W/cm²)                | 480   | 1.5 | 3  | 13 <sup>1</sup> /4             | (337)  | 7   | (4)   | BHN713E13S4  | RS    | BHN713E13S5A    | RS     | BHN713E13S7A        | RS     |
| ,                          | 240   | 2.0 | 3  | 17 <sup>3</sup> /4             | (451)  | 8   | (4)   | BHN717N12S4  | RS    | BHN717N12S5A    | RS     | BHN717N12S7A        | RS     |
|                            | 480   | 2.0 | 3  | 17 <sup>3</sup> /4             | (451)  | 8   | (4)   | BHN717N13S4  | RS    | BHN717N13S5A    | RS     | BHN717N13S7A        | RS     |
|                            | 240   | 2.5 | 3  | 201/4                          | (514)  | 9   | (4)   | BHN720E12S4  | RS    | BHN720E12S5A    | RS     | BHN720E12S7A        | RS     |
|                            | 480   | 2.5 | 3  | 201/4                          | (514)  | 9   | (4)   | BHN720E13S4  | RS    | BHN720E13S5A    | RS     | BHN720E13S7A        | RS     |
|                            | 240   | 3.0 | 3  | 25 <sup>1</sup> /4             | (641)  | 10  | (5)   | BHN725E12S4  | RS    | BHN725E12S5A    | RS     | BHN725E12S7A        | RS     |
|                            | 480   | 3.0 | 3  | 25 <sup>1</sup> / <sub>4</sub> | (641)  | 10  | (5)   | BHN725E13S4  | RS    | BHN725E13S5A    | RS     | BHN725E13S7A        | RS     |
|                            | 240   | 4.0 | 3  | 32 <sup>3</sup> /4             | (832)  | 10  | (5)   | BHN732N12S4  | RS    | BHN732N12S5A    | RS     | BHN732N12S7A        | RS     |
|                            | 480   | 4.0 | 3  | 32 <sup>3</sup> /4             | (832)  | 10  | (5)   | BHN732N13S4  | RS    | BHN732N13S5A    | RS     | BHN732N13S7A        | RS     |
|                            | 240   | 5.0 | 3  | 40 <sup>1</sup> /4             | (1022) | 11  | (5)   | BHN740E12S4  | RS    | BHN740E12S5A    | RS     | BHN740E12S7A        | RS     |
|                            | 480   | 5.0 | 3  | 401/4                          | (1022) | 11  | (5)   | BHN740E13S4  | RS    | BHN740E13S5A    | RS     | BHN740E13S7A        | RS     |
|                            | 240   | 6.0 | 3  | 473/4                          | (1213) | 12  | (6)   | BHN747N12S4  | RS    | BHN747N12S5A    | RS     | BHN747N12S7A        | RS     |
|                            | 480   | 6.0 | 3  | 473/4                          | (1213) | 12  | (6)   | BHN747N13S4  | RS    | BHN747N13S5A    | RS     | BHN747N13S7A        | RS     |
| 15 W/in <sup>2</sup>       | 240   | 1.5 | 3  | 13 <sup>1</sup> /4             | (337)  | 7   | (4)   | BHSS13E3S4   | RS    | BHSS13E3S5A     | RS     | BHSS13E3S7A         | RS     |
| Steel Plug                 | 480   | 1.5 | 3  | 13 <sup>1</sup> /4             | (337)  | 7   | (4)   | BHSS13E13S4  | RS    | BHSS13E13S5A    | RS     | BHSS13E13S7A        | RS     |
| 3-Steel                    | 240   | 2.0 | 3  | 17 <sup>1</sup> /2             | (445)  | 8   | (4)   | BHSS17J3S4   | RS    | BHSS17J3S5A     | RS     | BHSS17J3S7A         | RS     |
| Elements<br>(2.3 W/cm²)    | 480   | 2.0 | 3  | 17 <sup>1</sup> /2             | (445)  | 8   | (4)   | BHSS17J5S4   | RS    | BHSS17J5S5A     | RS     | BHSS17J5S7A         | RS     |
| (2.5 W/CIII)               | 240   | 2.5 | 3  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 9   | (4)   | BHSS20J3S4   | RS    | BHSS20J3S5A     | RS     | BHSS20J3S7A         | RS     |
|                            | 480   | 2.5 | 3  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 9   | (4)   | BHSS20J5S4   | RS    | BHSS20J5S5A     | RS     | BHSS20J5S7A         | RS     |
|                            | 240   | 3.0 | 3  | 25                             | (635)  | 10  | (5)   | BHSS25A3S4   | RS    | BHSS25A3S5A     | RS     | BHSS25A3S7A         | RS     |
|                            | 480   | 3.0 | 3  | 25                             | (635)  | 10  | (5)   | BHSS25A5S4   | RS    | BHSS25A5S5A     | RS     | BHSS25A5S7A         | RS     |
|                            | 240   | 4.0 | 3  | 321/2                          | (826)  | 13  | (6)   | BHSS32J3S4   | RS    | BHSS32J3S5A     | RS     | BHSS32J3S7A         | RS     |
|                            | 480   | 4.0 | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 13  | (6)   | BHSS32J5S4   | RS    | BHSS32J5S5A     | RS     | BHSS32J5S7A         | RS     |
|                            | 240   | 5.0 | 3  | 40                             | (1016) | 14  | (7)   | BHSS40A3S4   | RS    | BHSS40A3S5A     | RS     | BHSS40A3S7A         | RS     |
|                            | 480   | 5.0 | 3  | 40                             | (1016) | 14  | (7)   | BHSS40A5S4   | RS    | BHSS40A5S5A     | RS     | BHSS40A5S7A         | RS     |
|                            | 240   | 6.0 | 3  | 47 <sup>1</sup> / <sub>2</sub> | (1207) | 14  | (7)   | BHSS47J3S4   | RS    | BHSS47J3S5A     | RS     | BHSS47J3S7A         | RS     |
|                            | 480   | 6.0 | 3  | 47 <sup>1</sup> / <sub>2</sub> | (1207) | 14  | (7)   | BHSS47J5S4   | RS    | BHSS47J5S5A     | RS     | BHSS47J5S7A         | RS     |
|                            | 240   | 7.5 | 3  | 58 <sup>1</sup> / <sub>2</sub> | (1486) | 17  | (8)   | BHSS58J3S4   | RS    | BHSS58J3S5A     | RS     | BHSS58J3S7A         | RS     |
|                            | 240   | 9.0 | 3  | 693/4                          | (1772) | 21  | (10)  | BHSS69N3S4   | RS    | BHSS69N3S5A     | RS     | BHSS69N3S7A         | RS     |
|                            | -     |     |    | -                              | ` /    |     | , -/  |              |       |                 |        | fit the incide diam |        |



• **RS** - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


③ Wired for 3-phase operation only

# WATROD and FIREBAR Screw Plug Immersion Heaters

## Application: Medium Weight Oils and Heat Transfer Oils

- 2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)

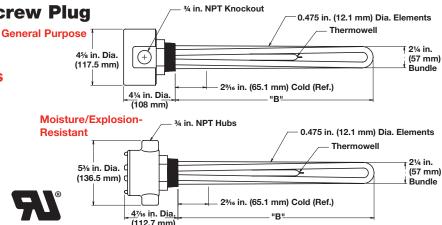
**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

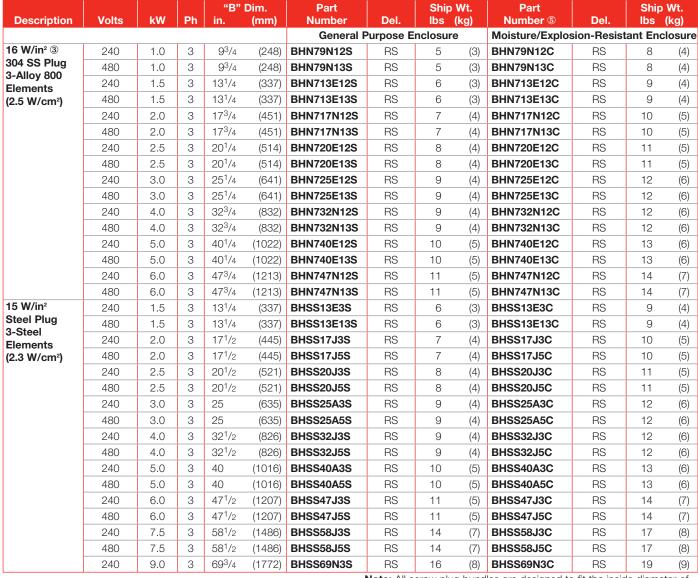


 Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)

|                          |       |     |    |                                |              |    | us          | e in non-ciass | illed are | as Offiy)       |            |                 |        |
|--------------------------|-------|-----|----|--------------------------------|--------------|----|-------------|----------------|-----------|-----------------|------------|-----------------|--------|
|                          |       |     |    |                                |              |    |             | Type 4 (30 to  | 110°F)    | Type 5A (60 to  | 250°F)     | Type 7A (100 to | 550°F) |
| Description              | Volts | kW  | Ph | "B"<br>in.                     | Dim.<br>(mm) |    | Wt.<br>(kg) | Part<br>Number | Del.      | Part<br>Number  | Del.       | Part<br>Number  | Del.   |
| •                        |       |     |    |                                |              |    | ,           |                | Moistur   | e/Explosion-Res | sistant Er | nclosure ⑤      |        |
| 16 W/in² ③               | 240   | 1.0 | 3  | 93/4                           | (248)        | 9  | (4)         | BHN79N12C4     | RS        | BHN79N12C5A     | RS         | BHN79N12C7A     | RS     |
| 304 SS Plug              | 480   | 1.0 | 3  | 93/4                           | (248)        | 9  | (4)         | BHN79N13C4     | RS        | BHN79N13C5A     | RS         | BHN79N13C7A     | RS     |
| 3-Alloy 800<br>Elements  | 240   | 1.5 | 3  | 13 <sup>1</sup> /4             | (337)        | 10 | (5)         | BHN713E12C4    | RS        | BHN713E12C5A    | RS         | BHN713E12C7A    | RS     |
| (2.5 W/cm²)              | 480   | 1.5 | 3  | 13 <sup>1</sup> /4             | (337)        | 10 | (5)         | BHN713E13C4    | RS        | BHN713E13C5A    | RS         | BHN713E13C7A    | RS     |
| ,                        | 240   | 2.0 | 3  | 17 <sup>3</sup> /4             | (451)        | 11 | (5)         | BHN717N12C4    | RS        | BHN717N12C5A    | RS         | BHN717N12C7A    | RS     |
|                          | 480   | 2.0 | 3  | 17 <sup>3</sup> /4             | (451)        | 11 | (5)         | BHN717N13C4    | RS        | BHN717N13C5A    | RS         | BHN717N13C7A    | RS     |
|                          | 240   | 2.5 | 3  | 20 <sup>1</sup> / <sub>4</sub> | (514)        | 12 | (6)         | BHN720E12C4    | RS        | BHN720E12C5A    | RS         | BHN720E12C7A    | RS     |
|                          | 480   | 2.5 | 3  | 20 <sup>1</sup> / <sub>4</sub> | (514)        | 12 | (6)         | BHN720E13C4    | RS        | BHN720E13C5A    | RS         | BHN720E13C7A    | RS     |
|                          | 240   | 3.0 | 3  | 25 <sup>1</sup> /4             | (641)        | 13 | (6)         | BHN725E12C4    | RS        | BHN725E12C5A    | RS         | BHN725E12C7A    | RS     |
|                          | 480   | 3.0 | 3  | 25 <sup>1</sup> /4             | (641)        | 13 | (6)         | BHN725E13C4    | RS        | BHN725E13C5A    | RS         | BHN725E13C7A    | RS     |
|                          | 240   | 4.0 | 3  | 32 <sup>3</sup> /4             | (832)        | 13 | (6)         | BHN732N12C4    | RS        | BHN732N12C5A    | RS         | BHN732N12C7A    | RS     |
|                          | 480   | 4.0 | 3  | 32 <sup>3</sup> /4             | (832)        | 13 | (6)         | BHN732N13C4    | RS        | BHN732N13C5A    | RS         | BHN732N13C7A    | RS     |
|                          | 240   | 5.0 | 3  | 40 <sup>1</sup> /4             | (1022)       | 14 | (7)         | BHN740E12C4    | RS        | BHN740E12C5A    | RS         | BHN740E12C7A    | RS     |
|                          | 480   | 5.0 | 3  | 40 <sup>1</sup> / <sub>4</sub> | (1022)       | 14 | (7)         | BHN740E13C4    | RS        | BHN740E13C5A    | RS         | BHN740E13C7A    | RS     |
|                          | 240   | 6.0 | 3  | 47 <sup>3</sup> /4             | (1213)       | 15 | (7)         | BHN747N12C4    | RS        | BHN747N12C5A    | RS         | BHN747N12C7A    | RS     |
|                          | 480   | 6.0 | 3  | 47 <sup>3</sup> /4             | (1213)       | 15 | (7)         | BHN747N13C4    | RS        | BHN747N13C5A    | RS         | BHN747N13C7A    | RS     |
| 15 W/in²                 | 240   | 1.5 | 3  | 13 <sup>1</sup> /4             | (337)        | 10 | (5)         | BHSS13E3C4     | RS        | BHSS13E3C5A     | RS         | BHSS13E3C7A     | RS     |
| Steel Plug<br>3-Steel    | 480   | 1.5 | 3  | 13 <sup>1</sup> /4             | (337)        | 10 | (5)         | BHSS13E13C4    | RS        | BHSS13E13C5A    | RS         | BHSS13E13C7A    | RS     |
| Elements                 | 240   | 2.0 | 3  | 17 <sup>1</sup> /2             | (445)        | 11 | (5)         | BHSS17J3C4     | RS        | BHSS17J3C5A     | RS         | BHSS17J3C7A     | RS     |
| (2.3 W/cm <sup>2</sup> ) | 480   | 2.0 | 3  | 17 <sup>1</sup> /2             | (445)        | 11 | (5)         | BHSS17J5C4     | RS        | BHSS17J5C5A     | RS         | BHSS17J5C7A     | RS     |
|                          | 240   | 2.5 | 3  | 201/2                          | (521)        | 12 | (6)         | BHSS20J3C4     | RS        | BHSS20J3C5A     | RS         | BHSS20J3C7A     | RS     |
|                          | 480   | 2.5 | 3  | 201/2                          | (521)        | 12 | (6)         | BHSS20J5C4     | RS        | BHSS20J5C5A     | RS         | BHSS20J5C7A     | RS     |
|                          | 240   | 3.0 | 3  | 25                             | (635)        | 13 | (6)         | BHSS25A3C4     | RS        | BHSS25A3C5A     | RS         | BHSS25A3C7A     | RS     |
|                          | 480   | 3.0 | 3  | 25                             | (635)        | 13 | (6)         | BHSS25A5C4     | RS        | BHSS25A5C5A     | RS         | BHSS25A5C7A     | RS     |
|                          | 240   | 4.0 | 3  | 32 <sup>1</sup> /2             | (826)        | 16 | (8)         | BHSS32J3C4     | RS        | BHSS32J3C5A     | RS         | BHSS32J3C7A     | RS     |
|                          | 480   | 4.0 | 3  | 32 <sup>1</sup> /2             | (826)        | 16 | (8)         | BHSS32J5C4     | RS        | BHSS32J5C5A     | RS         | BHSS32J5C7A     | RS     |
|                          | 240   | 5.0 | 3  | 40                             | (1016)       | 17 | (8)         | BHSS40A3C4     | RS        | BHSS40A3C5A     | RS         | BHSS40A3C7A     | RS     |
|                          | 480   | 5.0 | 3  | 40                             | (1016)       | 17 | (8)         | BHSS40A5C4     | RS        | BHSS40A5C5A     | RS         | BHSS40A5C7A     | RS     |
|                          | 240   | 6.0 | 3  | 47 <sup>1</sup> /2             | (1207)       | 17 | (8)         | BHSS47J3C4     | RS        | BHSS47J3C5A     | RS         | BHSS47J3C7A     | RS     |
|                          | 480   | 6.0 | 3  | 47 <sup>1</sup> /2             | (1207)       | 17 | (8)         | BHSS47J5C4     | RS        | BHSS47J5C5A     | RS         | BHSS47J5C7A     | RS     |
|                          | 240   | 7.5 | 3  | 58 <sup>1</sup> / <sub>2</sub> | (1486)       | 20 | (9)         | BHSS58J3C4     | RS        | BHSS58J3C5A     | RS         | BHSS58J3C7A     | RS     |
|                          | 240   | 9.0 | 3  | 69 <sup>3</sup> /4             | (1772)       | 24 | (11)        | BHSS69N3C4     | RS        | BHSS69N3C5A     | RS         | BHSS69N3C7A     | RS     |




• RS - Next day shipment up to 5 pieces


- 3 Wired for 3-phase operation only
- S No third party recognition

# WATROD and FIREBAR Screw Plug Immersion Heaters General Purpose

## Application: Medium Weight Oils and Heat Transfer Oils

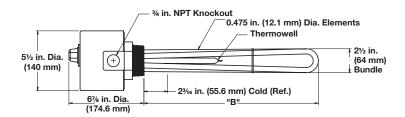
- 2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)







 RS - Next day shipment up to 5 pieces


- Wired for 3-phase operation only
- S No third party recognition

# WATROD and FIREBAR Screw Plug Immersion Heaters



# **Application: Medium Weight Oils and Heat Transfer Oils**

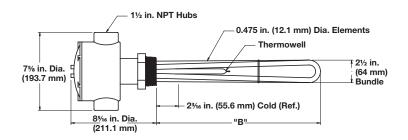
- 21/2 inch NPT screw plug
- WATROD elements
- With thermostat (DPST)
- General purpose enclosure



|                            |       |     |    |                             |          | Type 4 (30-1 | 10°F) | Type 5A (60-250°F      | Type 7A (100 | -550°F) |
|----------------------------|-------|-----|----|-----------------------------|----------|--------------|-------|------------------------|--------------|---------|
|                            |       |     |    | "B" Dim.                    | Ship Wt. | Part         |       | Part                   | Part         |         |
| Description                | Volts | kW  | Ph | in. (mm)                    | lbs (kg) | Number       | Del.  | Number De              |              | Del.    |
|                            |       |     |    |                             |          |              |       | General Purpose Encl   | osure        |         |
| 16 W/in² ③                 | 240   | 1.0 | 3  | 9 <sup>3</sup> /8 (238.1)   | 7 (4)    | BLN79G12S4   | RS    | BLN79G12S5A RS         | BLN79G12S7A  | RS      |
| 304 SS Plug<br>3-Alloy 800 | 480   | 1.0 | 3  | 9 <sup>3</sup> /8 (238.1)   | 7 (4)    | BLN79G13S4   | RS    | BLN79G13S5A            | BLN79G13S7A  | RS      |
| Elements                   | 240   | 1.5 | 3  | 12 <sup>7</sup> /8 (327.0)  | 8 (4)    | BLN712R12S4  | RS    | BLN712R12S5A           | BLN712R12S7A | RS      |
| (2.5 W/cm <sup>2</sup> )   | 480   | 1.5 | 3  | 12 <sup>7</sup> /8 (327.0)  | 8 (4)    | BLN712R13S4  | RS    | BLN712R13S5A           | BLN712R13S7A | RS      |
|                            | 240   | 2.0 | 3  | 17 <sup>3</sup> /8 (441.3)  | 10 (5)   | BLN717G12S4  | RS    | <b>BLN717G12S5A</b> RS | BLN717G12S7A | RS      |
|                            | 480   | 2.0 | 3  | 17 <sup>3</sup> /8 (441.3)  | 10 (5)   | BLN717G13S4  | RS    | <b>BLN717G13S5A</b> RS | BLN717G13S7A | RS      |
|                            | 240   | 2.5 | 3  | 19 <sup>7</sup> /8 (504.8)  | 12 (6)   | BLN719R12S4  | RS    | BLN719R12S5A           | BLN719R12S7A | RS      |
|                            | 480   | 2.5 | 3  | 19 <sup>7</sup> /8 (504.8)  | 12 (6)   | BLN719R13S4  | RS    | BLN719R13S5A           | BLN719R13S7A | RS      |
|                            | 240   | 3.0 | 3  | 24 <sup>7</sup> /8 (631.8)  | 13 (6)   | BLN724R12S4  | RS    | BLN724R12S5A           | BLN724R12S7A | RS      |
|                            | 480   | 3.0 | 3  | 24 <sup>7</sup> /8 (631.8)  | 13 (6)   | BLN724R13S4  | RS    | BLN724R13S5A           | BLN724R13S7A | RS      |
|                            | 240   | 4.0 | 3  | 32 <sup>3</sup> /8 (822.3)  | 15 (7)   | BLN732G12S4  | RS    | BLN732G12S5A           | BLN732G12S7A | RS      |
|                            | 480   | 4.0 | 3  | 32 <sup>3</sup> /8 (822.3)  | 15 (7)   | BLN732G13S4  | RS    | BLN732G13S5A           | BLN732G13S7A | RS      |
|                            | 240   | 5.0 | 3  | 39 <sup>7</sup> /8 (1012.8) | 16 (8)   | BLN739R12S4  | RS    | BLN739R12S5A           | BLN739R12S7A | RS      |
|                            | 480   | 5.0 | 3  | 39 <sup>7</sup> /8 (1012.8) | 16 (8)   | BLN739R13S4  | RS    | BLN739R13S5A           | BLN739R13S7A | RS      |
|                            | 240   | 6.0 | 3  | 47 <sup>3</sup> /8 (1203.3) | 18 (9)   | BLN747G12S4  | RS    | BLN747G12S5A RS        | BLN747G12S7A | RS      |
|                            | 480   | 6.0 | 3  | 47 <sup>3</sup> /8 (1203.3) | 18 (9)   | BLN747G13S4  | RS    | BLN747G13S5A           | BLN747G13S7A | RS      |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


3 Wired for 3-phase operation only

WATLOW<sup>®</sup> 223

# WATROD and FIREBAR Screw Plug Immersion Heaters

# **Application: Medium Weight Oils and Heat Transfer Oils**

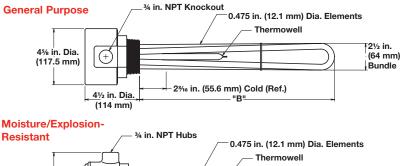
- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- WATROD elements
- With thermostat (DPST)
- Moisture/explosion-resistant enclosure (suitable for use in non-classified areas only)

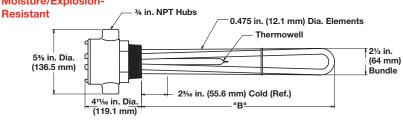


|                            |       |     |    |                      |         |     |      | Type 4 (30-1 | 10°F)   | Type 5A (60-2    | 250°F)   | Type 7A (100- | -550°F) |
|----------------------------|-------|-----|----|----------------------|---------|-----|------|--------------|---------|------------------|----------|---------------|---------|
|                            |       |     |    |                      | Dim.    |     | Wt.  | Part         |         | Part             |          | Part          |         |
| Description                | Volts | kW  | Ph | in.                  | (mm)    | lbs | (kg) | Number       | Del.    | Number           | Del.     | Number        | Del.    |
|                            |       |     |    |                      |         |     |      |              | Moistur | e/Explosion-Resi | stant En | closure ®     |         |
| 16 W/in² ③                 | 240   | 1.0 | 3  | 9 <sup>3</sup> /8    | (238.1) | 10  | (5)  | BLN79G12C4   | RS      | BLN79G12C5A      | RS       | BLN79G12C7A   | RS      |
| 304 SS Plug<br>3-Alloy 800 | 480   | 1.0 | 3  | 9 <sup>3</sup> /8    | (238.1) | 10  | (5)  | BLN79G13C4   | RS      | BLN79G13C5A      | RS       | BLN79G13C7A   | RS      |
| Elements                   | 240   | 1.5 | 3  | 12 <sup>7</sup> /8   | (327.0) | 11  | (5)  | BLN712R12C4  | RS      | BLN712R12C5A     | RS       | BLN712R12C7A  | RS      |
| (2.5 W/cm <sup>2</sup> )   | 480   | 1.5 | 3  | 12 <sup>7</sup> /8   | (327.0) | 11  | (5)  | BLN712R13C4  | RS      | BLN712R13C5A     | RS       | BLN712R13C7A  | RS      |
|                            | 240   | 2.0 | 3  | 17 <sup>3</sup> /8   | (441.3) | 13  | (6)  | BLN717G12C4  | RS      | BLN717G12C5A     | RS       | BLN717G12C7A  | RS      |
|                            | 480   | 2.0 | 3  | 17 <sup>3</sup> /8   | (441.3) | 13  | (6)  | BLN717G13C4  | RS      | BLN717G13C5A     | RS       | BLN717G13C7A  | RS      |
|                            | 240   | 2.5 | 3  | 19 <sup>7</sup> /8   | (504.8) | 15  | (7)  | BLN719R12C4  | RS      | BLN719R12C5A     | RS       | BLN719R12C7A  | RS      |
|                            | 480   | 2.5 | 3  | 19 <sup>7</sup> /8   | (504.8) | 15  | (7)  | BLN719R13C4  | RS      | BLN719R13C5A     | RS       | BLN719R13C7A  | RS      |
|                            | 240   | 3.0 | 3  | 24 <sup>7</sup> /8   | (631.8) | 16  | (8)  | BLN724R12C4  | RS      | BLN724R12C5A     | RS       | BLN724R12C7A  | RS      |
|                            | 480   | 3.0 | 3  | 24 <sup>7</sup> /8   | (631.8) | 16  | (8)  | BLN724R13C4  | RS      | BLN724R13C5A     | RS       | BLN724R13C7A  | RS      |
|                            | 240   | 4.0 | 3  | 32 <sup>3</sup> /8   | (822.3) | 18  | (9)  | BLN732G12C4  | RS      | BLN732G12C5A     | RS       | BLN732G12C7A  | RS      |
|                            | 480   | 4.0 | 3  | 32 <sup>3</sup> /8   | (822.3) | 18  | (9)  | BLN732G13C4  | RS      | BLN732G13C5A     | RS       | BLN732G13C7A  | RS      |
|                            | 240   | 5.0 | 3  | 39 <sup>7</sup> /8 ( | 1012.8) | 19  | (9)  | BLN739R12C4  | RS      | BLN739R12C5A     | RS       | BLN739R12C7A  | RS      |
|                            | 480   | 5.0 | 3  | 39 <sup>7</sup> /8 ( | 1012.8) | 19  | (9)  | BLN739R13C4  | RS      | BLN739R13C5A     | RS       | BLN739R13C7A  | RS      |
|                            | 240   | 6.0 | 3  | 47 <sup>3</sup> /8 ( | 1203.3) | 21  | (10) | BLN747G12C4  | RS      | BLN747G12C5A     | RS       | BLN747G12C7A  | RS      |
|                            | 480   | 6.0 | 3  | 47 <sup>3</sup> /8 ( | 1203.3) | 21  | (10) | BLN747G13C4  | RS      | BLN747G13C5A     | RS       | BLN747G13C7A  | RS      |



• RS - Next day shipment up to 5 pieces


- 3 Wired for 3-phase operation only
- S No third party recognition


## WATROD and FIREBAR Screw Plug Immersion Heaters



## **Application: Medium Weight Oils and Heat Transfer Oils**

- 21/2 inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





|                         |       |     |    |                    | Dim.     | Part       |           |         | Wt.  | Part            |            |         | o Wt.   |
|-------------------------|-------|-----|----|--------------------|----------|------------|-----------|---------|------|-----------------|------------|---------|---------|
| Description             | Volts | kW  | Ph | in.                | (mm)     | Number     | Del.      | lbs     | (kg) | Number ⑤        | Del.       | lbs     | (kg)    |
|                         |       |     |    |                    |          | General P  | urpose En | closure | )    | Moisture/Explos | ion-Resist | ant End | closure |
| 16 W/in <sup>2</sup> ③  | 240   | 1.0 | 1  | 9 <sup>3</sup> /8  | (238.1)  | BLN79G12S  | RS        | 6       | (3)  | BLN79G12C       | RS         | 9       | (4)     |
| 304 SS Plug             | 480   | 1.0 | 3  | 9 <sup>3</sup> /8  | (238.1)  | BLN79G13S  | RS        | 6       | (3)  | BLN79G13C       | RS         | 9       | (4)     |
| 3-Alloy 800<br>Elements | 240   | 1.5 | 3  | 12 <sup>7</sup> /8 | (327.0)  | BLN712R12S | RS        | 7       | (4)  | BLN712R12C      | RS         | 10      | (5)     |
| (2.5 W/cm²)             | 480   | 1.5 | 1  | 12 <sup>7</sup> /8 | (327.0)  | BLN712R13S | RS        | 7       | (4)  | BLN712R13C      | RS         | 10      | (5)     |
| ,                       | 240   | 2.0 | 3  | 17 <sup>3</sup> /8 | (441.3)  | BLN717G12S | RS        | 9       | (4)  | BLN717G12C      | RS         | 12      | (6)     |
|                         | 480   | 2.0 | 3  | 17 <sup>3</sup> /8 | (441.3)  | BLN717G13S | RS        | 9       | (4)  | BLN717G13C      | RS         | 12      | (6)     |
|                         | 240   | 2.5 | 3  | 19 <sup>7</sup> /8 | (504.8)  | BLN719R12S | RS        | 11      | (5)  | BLN719R12C      | RS         | 14      | (7)     |
|                         | 480   | 2.5 | 3  | 19 <sup>7</sup> /8 | (504.8)  | BLN719R13S | RS        | 11      | (5)  | BLN719R13C      | RS         | 14      | (7)     |
|                         | 240   | 3.0 | 3  | 24 <sup>7</sup> /8 | (631.8)  | BLN724R12S | RS        | 12      | (6)  | BLN724R12C      | RS         | 15      | (7)     |
|                         | 480   | 3.0 | 3  | 24 <sup>7</sup> /8 | (631.8)  | BLN724R13S | RS        | 12      | (6)  | BLN724R13C      | RS         | 15      | (7)     |
|                         | 240   | 4.0 | 3  | 32 <sup>3</sup> /8 | (822.3)  | BLN732G12S | RS        | 14      | (7)  | BLN732G12C      | RS         | 17      | (8)     |
|                         | 480   | 4.0 | 3  | 32 <sup>3</sup> /8 | (822.3)  | BLN732G13S | RS        | 14      | (7)  | BLN732G13C      | RS         | 17      | (8)     |
|                         | 240   | 5.0 | 3  | 39 <sup>7</sup> /8 | (1012.8) | BLN739R12S | RS        | 15      | (7)  | BLN739R12C      | RS         | 18      | (9)     |
|                         | 480   | 5.0 | 3  | 39 <sup>7</sup> /8 | (1012.8) | BLN739R13S | RS        | 15      | (7)  | BLN739R13C      | RS         | 18      | (9)     |
|                         | 240   | 6.0 | 3  | 47 <sup>3</sup> /8 | (1203.3) | BLN747G12S | RS        | 17      | (8)  | BLN747G12C      | RS         | 20      | (9)     |
|                         | 480   | 6.0 | 3  | 47 <sup>3</sup> /8 | (1203.3) | BLN747G13S | RS        | 17      | (8)  | BLN747G13C      | RS         | 20      | (9)     |

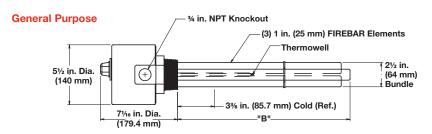


• RS - Next day shipment up to 5 pieces

**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- 3 Wired for 3-phase operation only
- S No third party recognition

## WATROD and FIREBAR Screw Plug Immersion Heaters




## Application: Medium Weight Oils and Heat Transfer Oils

- 21/2 inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)

**Note:** Higher amperage products require a pilot duty thermostat with separate power controller. Please see following pages for available heaters without thermostats.

 General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



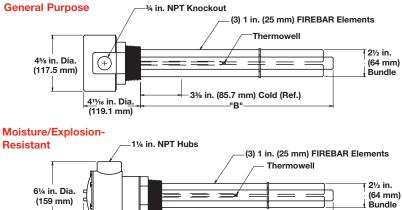


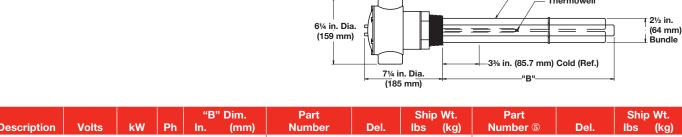
|                            |       |      |    |                                |        |      |      | Type 5A (60-25) | )°F)       | Type 7A (100-5          | 50°F) |
|----------------------------|-------|------|----|--------------------------------|--------|------|------|-----------------|------------|-------------------------|-------|
|                            |       |      |    | "B"                            | Dim.   | Shir | Wt.  | Part            | Τ΄         | Part                    |       |
| Description                | Volts | kW   | Ph | in.                            | (mm)   | lbs  | (kg) | Number          | Del.       | Number                  | Del.  |
|                            |       |      |    |                                |        |      |      | G               | ieneral Pu | irpose Enclosure        |       |
| 15 W/in² ③                 | 240   | 2.0  | 3  | 12                             | (305)  | 11   | (5)  | BLNF12A29S5A    | RS         | BLNF12A29S7A            | RS    |
| 304 SS Plug                | 240   | 2.5  | 3  | 14 <sup>1</sup> /2             | (368)  | 12   | (6)  | BLNF14J29S5A    | RS         | BLNF14J29S7A            | RS    |
| 3-Alloy 800<br>Elements    | 240   | 3.0  | 3  | 17                             | (432)  | 13   | (6)  | BLNF17A29S5A    | RS         | BLNF17A29S7A            | RS    |
| (2.3 W/cm²)                | 240   | 4.0  | 3  | 21 <sup>1</sup> /2             | (546)  | 15   | (7)  | BLNF21J29S5A    | RS         | BLNF21J29S7A            | RS    |
|                            | 480   | 4.0  | 3  | 21 <sup>1</sup> /2             | (546)  | 15   | (7)  | BLNF21J30S5A    | RS         | BLNF21J30S7A            | RS    |
|                            | 240   | 5.0  | 3  | 26 <sup>1</sup> /2             | (673)  | 18   | (9)  | BLNF26J29S5A    | RS         | BLNF26J29S7A            | RS    |
|                            | 480   | 5.0  | 3  | 26 <sup>1</sup> / <sub>2</sub> | (673)  | 18   | (9)  | BLNF26J30S5A    | RS         | BLNF26J30S7A            | RS    |
|                            | 240   | 6.0  | 3  | 31 <sup>1</sup> /2             | (800)  | 19   | (9)  | BLNF31J29S5A    | RS         | BLNF31J29S7A            | RS    |
|                            | 480   | 6.0  | 3  | 31 <sup>1</sup> /2             | (800)  | 19   | (9)  | BLNF31J30S5A    | RS         | BLNF31J30S7A            | RS    |
|                            | 240   | 8.0  | 3  | 41                             | (1041) | 21   | (10) | BLNF41A29S5A    | RS         | BLNF41A29S7A            | RS    |
|                            | 240   | 10.0 | 3  | 50 <sup>1</sup> / <sub>2</sub> | (1283) | 23   | (11) | BLNF50J29S5A    | RS         | BLNF50J29S7A            | RS    |
|                            |       |      |    |                                |        |      |      |                 |            |                         |       |
|                            |       |      |    |                                |        |      |      | Moisture        | /Explosio  | n-Resistant Enclosure 5 |       |
| 15 W/in² ③                 | 240   | 2.0  | 3  | 12                             | (305)  | 14   | (7)  | BLNF12A29C5A    | RS         | BLNF12A29C7A            | RS    |
| 304 SS Plug<br>3-Alloy 800 | 240   | 2.5  | 3  | 14 <sup>1</sup> /2             | (368)  | 15   | (7)  | BLNF14J29C5A    | RS         | BLNF14J29C7A            | RS    |
| Elements                   | 240   | 3.0  | 3  | 17                             | (432)  | 16   | (8)  | BLNF17A29C5A    | RS         | BLNF17A29C7A            | RS    |
| (2.3 W/cm²)                | 240   | 4.0  | 3  | 21 <sup>1</sup> / <sub>2</sub> | (546)  | 18   | (9)  | BLNF21J29C5A    | RS         | BLNF21J29C7A            | RS    |
|                            | 480   | 4.0  | 3  | 21 <sup>1</sup> / <sub>2</sub> | (546)  | 18   | (9)  | BLNF21J30C5A    | RS         | BLNF21J30C7A            | RS    |
|                            | 240   | 5.0  | 3  | 26 <sup>1</sup> / <sub>2</sub> | (673)  | 21   | (10) | BLNF26J29C5A    | RS         | BLNF26J29C7A            | RS    |
|                            | 480   | 5.0  | 3  | 26 <sup>1</sup> / <sub>2</sub> | (673)  | 21   | (10) | BLNF26J30C5A    | RS         | BLNF26J30C7A            | RS    |
|                            | 240   | 6.0  | 3  | 31 <sup>1</sup> /2             | (800)  | 22   | (10) | BLNF31J29C5A    | RS         | BLNF31J29C7A            | RS    |
|                            | 480   | 6.0  | 3  | 31 <sup>1</sup> /2             | (800)  | 22   | (10) | BLNF31J30C5A    | RS         | BLNF31J30C7A            | RS    |
|                            | 240   | 8.0  | 3  | 41                             | (1041) | 24   | (11) | BLNF41A29C5A    | RS         | BLNF41A29C7A            | RS    |
|                            | 240   | 10.0 | 3  | 50 <sup>1</sup> / <sub>2</sub> | (1283) | 26   | (11) | BLNF50J29C5A    | RS         | BLNF50J29C7A            | RS    |



• RS - Next day shipment up to 5 pieces

<sup>3</sup> Wired for 3-phase operation only


S No third party recognition


# WATROD and FIREBAR Screw Plug Immersion Heaters



## **Application: Medium Weight Oils and Heat Transfer Oils**

- 21/2 inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

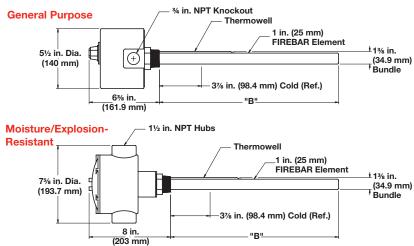




|                            |       |      |    | "B"                | Dim.   | Part       |           | Ship    | Wt.  | Part            |             |        | Wt.    |
|----------------------------|-------|------|----|--------------------|--------|------------|-----------|---------|------|-----------------|-------------|--------|--------|
| Description                | Volts | kW   | Ph | ln.                | (mm)   | Number     | Del.      | lbs     | (kg) | Number ⑤        | Del.        | lbs    | (kg)   |
|                            |       |      |    |                    |        | General P  | urpose Er | nclosur | е    | Moisture/Explos | ion-Resista | nt Enc | losure |
| 15 W/in² ③                 | 240   | 2.0  | 3  | 12                 | (305)  | BLNF12A29S | RS        | 10      | (5)  | BLNF12A29C      | RS          | 13     | (6)    |
| 304 SS Plug<br>3-Alloy 800 | 240   | 2.5  | 3  | 14 <sup>1</sup> /2 | (368)  | BLNF14J29S | RS        | 11      | (5)  | BLNF14J29C      | RS          | 14     | (7)    |
| Elements                   | 240   | 3.0  | 3  | 17                 | (432)  | BLNF17A29S | RS        | 12      | (6)  | BLNF17A29C      | RS          | 15     | (7)    |
| (2.3 W/cm²)                | 240   | 4.0  | 3  | 21 <sup>1</sup> /2 | (546)  | BLNF21J29S | RS        | 14      | (7)  | BLNF21J29C      | RS          | 17     | (8)    |
|                            | 480   | 4.0  | 3  | 21 <sup>1</sup> /2 | (546)  | BLNF21J30S | RS        | 14      | (7)  | BLNF21J30C      | RS          | 17     | (8)    |
|                            | 240   | 5.0  | 3  | 26 <sup>1</sup> /2 | (673)  | BLNF26J29S | RS        | 17      | (8)  | BLNF26J29C      | RS          | 20     | (9)    |
|                            | 480   | 5.0  | 3  | 26 <sup>1</sup> /2 | (673)  | BLNF26J30S | RS        | 17      | (8)  | BLNF26J30C      | RS          | 20     | (9)    |
|                            | 240   | 6.0  | 3  | 31 <sup>1</sup> /2 | (800)  | BLNF31J29S | RS        | 18      | (9)  | BLNF31J29C      | RS          | 21     | (10)   |
|                            | 480   | 6.0  | 3  | 31 <sup>1</sup> /2 | (800)  | BLNF31J30S | RS        | 18      | (9)  | BLNF31J30C      | RS          | 21     | (10)   |
|                            | 240   | 8.0  | 3  | 41                 | (1041) | BLNF41A29S | RS        | 20      | (9)  | BLNF41A29C      | RS          | 23     | (11)   |
|                            | 480   | 8.0  | 3  | 41                 | (1041) | BLNF41A30S | RS        | 20      | (9)  | BLNF41A30C      | RS          | 23     | (11)   |
|                            | 240   | 10.0 | 3  | 50 <sup>1</sup> /2 | (1283) | BLNF50J29S | RS        | 22      | (10) | BLNF50J29C      | RS          | 25     | (12)   |
|                            | 480   | 10.0 | 3  | 50 <sup>1</sup> /2 | (1283) | BLNF50J30S | RS        | 22      | (10) | BLNF50J30C      | RS          | 25     | (12)   |



 RS - Next day shipment up to 5 pieces **Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.


- 3 Wired for 3-phase operation only
- ⑤ No third party recognition

# WATROD and FIREBAR Screw Plug Immersion Heaters

## Al

# **Application: Bunker C, Asphalt and #6 Fuel Oil**

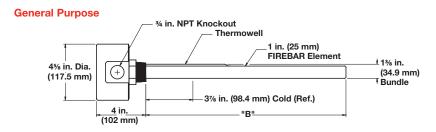
- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

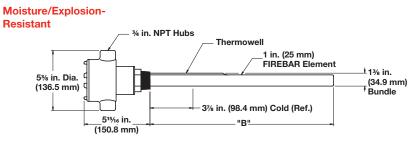


|       |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type 5A (60-250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type 7A (100-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volts | kW                                                                                                                                              | Ph                                                                                                                                                                | "B"<br>in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dim.<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ship<br>Ibs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wt.<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Part<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Del.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Part<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Del.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 240   | 0.43                                                                                                                                            | 3                                                                                                                                                                 | 16 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (409.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF16G22S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF16G22S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 0.55                                                                                                                                            | 3                                                                                                                                                                 | 19 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (485.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF19G22S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF19G22S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 0.70                                                                                                                                            | 3                                                                                                                                                                 | 24 <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (619.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF24L22S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF24L22S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 0.70                                                                                                                                            | 3                                                                                                                                                                 | 24 <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (619.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF24L21S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF24L21S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 0.88                                                                                                                                            | 3                                                                                                                                                                 | 29 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (752.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF29R22S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF29R22S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 0.88                                                                                                                                            | 3                                                                                                                                                                 | 29 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (752.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF29R21S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF29R21S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 1.08                                                                                                                                            | 3                                                                                                                                                                 | 34 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (879.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF34R22S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF34R22S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 1.08                                                                                                                                            | 3                                                                                                                                                                 | 34 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (879.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF34R21S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF34R21S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 1.40                                                                                                                                            | 3                                                                                                                                                                 | 45 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1146.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF45G22S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF45G22S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 1.40                                                                                                                                            | 3                                                                                                                                                                 | 45 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1146.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF45G21S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF45G21S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 1.80                                                                                                                                            | 3                                                                                                                                                                 | 55 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1412.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF55R22S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF55R22S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 1.80                                                                                                                                            | 3                                                                                                                                                                 | 55 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1412.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF55R21S5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF55R21S7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e/Explosi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on-Resistant Enclosure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 240   | 0.43                                                                                                                                            | 3                                                                                                                                                                 | 16 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (409.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF16G22C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF16G22C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 0.55                                                                                                                                            | 3                                                                                                                                                                 | 19 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (485.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF19G22C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF19G22C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 0.70                                                                                                                                            | 3                                                                                                                                                                 | 24 <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (619.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF24L22C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF24L22C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 0.70                                                                                                                                            | 3                                                                                                                                                                 | 24 <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (619.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF24L21C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF24L21C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 0.88                                                                                                                                            | 3                                                                                                                                                                 | 29 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (752.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF29R22C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF29R22C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 0.88                                                                                                                                            | 3                                                                                                                                                                 | 29 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (752.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF29R21C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF29R21C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 1.08                                                                                                                                            | 3                                                                                                                                                                 | 34 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (879.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF34R22C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF34R22C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 1.08                                                                                                                                            | 3                                                                                                                                                                 | 34 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (879.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF34R21C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF34R21C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 1.40                                                                                                                                            | 3                                                                                                                                                                 | 45 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1146.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF45G22C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF45G22C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 1.40                                                                                                                                            | 3                                                                                                                                                                 | 45 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1146.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF45G21C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF45G21C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 240   | 1.80                                                                                                                                            | 3                                                                                                                                                                 | 55 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1412.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF55R22C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF55R22C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 480   | 1.80                                                                                                                                            | 3                                                                                                                                                                 | 55 <sup>5</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1412.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDNF55R21C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDNF55R21C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 240<br>240<br>240<br>480<br>240<br>480<br>240<br>480<br>240<br>480<br>240<br>480<br>240<br>480<br>240<br>480<br>240<br>480<br>240<br>480<br>240 | 240 0.43 240 0.55 240 0.70 480 0.70 240 0.88 480 0.88 240 1.08 480 1.40 480 1.40 240 1.80 480 0.55 240 0.70 480 0.70 480 0.70 240 0.88 480 0.88 240 1.08 480 1.80 | 240     0.43     3       240     0.55     3       240     0.70     3       480     0.70     3       240     0.88     3       480     0.88     3       240     1.08     3       240     1.40     3       240     1.40     3       240     1.80     3       240     0.43     3       240     0.55     3       240     0.70     3       240     0.88     3       240     0.88     3       240     1.08     3       240     1.08     3       240     1.40     3       480     1.08     3       240     1.40     3       480     1.40     3       240     1.40     3       240     1.40     3       240     1.40     3       240     1.40     3       240     1.40     3       240     1.40     3       240     1.80     3 | Volts         kW         Ph         in.           240         0.43         3         16¹/8           240         0.55         3         19¹/8           240         0.70         3         24³/8           480         0.70         3         24³/8           240         0.88         3         29⁵/8           480         0.88         3         29⁵/8           240         1.08         3         34⁵/8           240         1.40         3         45¹/8           240         1.40         3         45¹/8           240         1.80         3         55⁵/8           480         1.80         3         55⁵/8           240         0.43         3         16¹/8           240         0.55         3         19¹/8           240         0.70         3         24³/8           480         0.70         3         24³/8           480         0.88         3         29⁵/8           240         1.08         3         34⁵/8           480         1.08         3         34⁵/8           240         1.40         3 <td>240         0.43         3         16¹/8         (409.6)           240         0.55         3         19¹/8         (485.8)           240         0.70         3         24³/8         (619.1)           480         0.70         3         24³/8         (619.1)           240         0.88         3         29⁵/8         (752.5)           480         0.88         3         29⁵/8         (752.5)           240         1.08         3         34⁵/8         (879.5)           480         1.08         3         34⁵/8         (879.5)           240         1.40         3         45¹/8         (1146.2)           240         1.80         3         55⁵/8         (1412.9)           480         1.80         3         55⁵/8         (1412.9)           240         0.43         3         16¹/8         (409.6)           240         0.55         3         19¹/8         (485.8)           240         0.70         3         24³/8         (619.1)           480         0.88         3         29⁵/8         (752.5)           480         0.88         3         29⁵/8</td> <td>Volts         kW         Ph         in.         (mm)         lbs           240         0.43         3         16¹/8         (409.6)         8           240         0.55         3         19¹/8         (485.8)         9           240         0.70         3         24³/8         (619.1)         10           480         0.70         3         24³/8         (619.1)         10           240         0.88         3         29⁵/8         (752.5)         11           480         0.88         3         29⁵/8         (752.5)         11           240         1.08         3         34⁵/8         (879.5)         12           480         1.08         3         34⁵/8         (879.5)         12           240         1.40         3         45¹/8         (1146.2)         14           480         1.40         3         45¹/8         (1146.2)         14           480         1.80         3         55⁵/8         (1412.9)         16           240         0.43         3         16¹/8         (409.6)         11           240         0.70         3         24³/8         (61</td> <td>Volts         kW         Ph         in.         (mm)         lbs         (kg)           240         0.43         3         16¹/8         (409.6)         8         (4)           240         0.55         3         19¹/8         (485.8)         9         (4)           240         0.70         3         24³/8         (619.1)         10         (5)           480         0.70         3         24³/8         (619.1)         10         (5)           240         0.88         3         29⁵/8         (752.5)         11         (5)           480         0.88         3         29⁵/8         (752.5)         11         (5)           240         1.08         3         34⁵/8         (879.5)         12         (6)           480         1.40         3         45¹/8         (1146.2)         14         (7)           480         1.40         3         45¹/8         (1146.2)         14         (7)           240         1.80         3         55⁵/8         (1412.9)         16         (8)           240         0.70         3         24³/8         (619.1)         13         (6)      &lt;</td> <td>Volts         kW         Ph         "B" Dim. (mm)         Ship Wt. Ibs (kg)         Part Number           240         0.43         3         16¹/8 (409.6)         8         (4)         BDNF16G22S5A           240         0.55         3         19¹/8 (485.8)         9         (4)         BDNF19G22S5A           240         0.70         3         24³/8 (619.1)         10         (5)         BDNF24L22S5A           480         0.70         3         24³/8 (619.1)         10         (5)         BDNF24L21S5A           240         0.88         3         29⁵/8 (752.5)         11         (5)         BDNF29R22S5A           480         0.88         3         29⁵/8 (752.5)         11         (5)         BDNF29R21S5A           240         1.08         3         34⁵/8 (879.5)         12         (6)         BDNF34R22S5A           480         1.08         3         34⁵/8 (879.5)         12         (6)         BDNF45G22S5A           480         1.40         3         45¹/8 (1146.2)         14         (7)         BDNF45G22S5A           480         1.80         3         55⁵/8 (1412.9)         16         (8)         BDNF55R22S5A           480</td> <td>Volts         kW         Ph         "B" Dim. in.         Ship Wt. lbs         Part Number         Del.           240         0.43         3         16¹/s         (409.6)         8         (4)         BDNF16G22S5A         RS           240         0.55         3         19¹/s         (485.8)         9         (4)         BDNF19G22S5A         RS           240         0.70         3         24³/s         (619.1)         10         (5)         BDNF24L22S5A         RS           480         0.70         3         24³/s         (619.1)         10         (5)         BDNF24L21S5A         RS           480         0.88         3         29⁵/s         (752.5)         11         (5)         BDNF29R22S5A         RS           480         0.88         3         29⁵/s         (752.5)         11         (5)         BDNF29R22S5A         RS           480         1.08         3         34⁵/s         (879.5)         12         (6)         BDNF34R22S5A         RS           480         1.40         3         45¹/s         (1146.2)         14         (7)         BDNF45G22S5A         RS           480         1.40         3         45¹/s<td>Volts         kW         Ph         "B" Dim. in. (mm)         Ship Wt. lbs (kg)         Part Number         Part Number           240         0.43         3         16½ (409.6)         8         (4) BDNF16G22S5A         RS         BDNF16G22S7A           240         0.55         3         19½ (485.8)         9         (4) BDNF19G22S5A         RS         BDNF19G22S7A           240         0.70         3         24½ (619.1)         10         (5) BDNF24L22S5A         RS         BDNF24L22S7A           480         0.70         3         24½ (619.1)         10         (5) BDNF24L21S5A         RS         BDNF24L21S7A           240         0.88         3         29½ (619.1)         10         (5) BDNF29R22S5A         RS         BDNF24L21S7A           480         0.88         3         29½ (752.5)         11         (5) BDNF29R22S5A         RS         BDNF24L21S7A           480         0.88         3         29½ (752.5)         11         (5) BDNF29R22S5A         RS         BDNF29R22S7A           480         1.08         3         34½ (752.5)         12         (6) BDNF34R22S5A         RS         BDNF34R22S7A           480         1.40         3         45½ (81412.9)         16</td></td> | 240         0.43         3         16¹/8         (409.6)           240         0.55         3         19¹/8         (485.8)           240         0.70         3         24³/8         (619.1)           480         0.70         3         24³/8         (619.1)           240         0.88         3         29⁵/8         (752.5)           480         0.88         3         29⁵/8         (752.5)           240         1.08         3         34⁵/8         (879.5)           480         1.08         3         34⁵/8         (879.5)           240         1.40         3         45¹/8         (1146.2)           240         1.80         3         55⁵/8         (1412.9)           480         1.80         3         55⁵/8         (1412.9)           240         0.43         3         16¹/8         (409.6)           240         0.55         3         19¹/8         (485.8)           240         0.70         3         24³/8         (619.1)           480         0.88         3         29⁵/8         (752.5)           480         0.88         3         29⁵/8 | Volts         kW         Ph         in.         (mm)         lbs           240         0.43         3         16¹/8         (409.6)         8           240         0.55         3         19¹/8         (485.8)         9           240         0.70         3         24³/8         (619.1)         10           480         0.70         3         24³/8         (619.1)         10           240         0.88         3         29⁵/8         (752.5)         11           480         0.88         3         29⁵/8         (752.5)         11           240         1.08         3         34⁵/8         (879.5)         12           480         1.08         3         34⁵/8         (879.5)         12           240         1.40         3         45¹/8         (1146.2)         14           480         1.40         3         45¹/8         (1146.2)         14           480         1.80         3         55⁵/8         (1412.9)         16           240         0.43         3         16¹/8         (409.6)         11           240         0.70         3         24³/8         (61 | Volts         kW         Ph         in.         (mm)         lbs         (kg)           240         0.43         3         16¹/8         (409.6)         8         (4)           240         0.55         3         19¹/8         (485.8)         9         (4)           240         0.70         3         24³/8         (619.1)         10         (5)           480         0.70         3         24³/8         (619.1)         10         (5)           240         0.88         3         29⁵/8         (752.5)         11         (5)           480         0.88         3         29⁵/8         (752.5)         11         (5)           240         1.08         3         34⁵/8         (879.5)         12         (6)           480         1.40         3         45¹/8         (1146.2)         14         (7)           480         1.40         3         45¹/8         (1146.2)         14         (7)           240         1.80         3         55⁵/8         (1412.9)         16         (8)           240         0.70         3         24³/8         (619.1)         13         (6)      < | Volts         kW         Ph         "B" Dim. (mm)         Ship Wt. Ibs (kg)         Part Number           240         0.43         3         16¹/8 (409.6)         8         (4)         BDNF16G22S5A           240         0.55         3         19¹/8 (485.8)         9         (4)         BDNF19G22S5A           240         0.70         3         24³/8 (619.1)         10         (5)         BDNF24L22S5A           480         0.70         3         24³/8 (619.1)         10         (5)         BDNF24L21S5A           240         0.88         3         29⁵/8 (752.5)         11         (5)         BDNF29R22S5A           480         0.88         3         29⁵/8 (752.5)         11         (5)         BDNF29R21S5A           240         1.08         3         34⁵/8 (879.5)         12         (6)         BDNF34R22S5A           480         1.08         3         34⁵/8 (879.5)         12         (6)         BDNF45G22S5A           480         1.40         3         45¹/8 (1146.2)         14         (7)         BDNF45G22S5A           480         1.80         3         55⁵/8 (1412.9)         16         (8)         BDNF55R22S5A           480 | Volts         kW         Ph         "B" Dim. in.         Ship Wt. lbs         Part Number         Del.           240         0.43         3         16¹/s         (409.6)         8         (4)         BDNF16G22S5A         RS           240         0.55         3         19¹/s         (485.8)         9         (4)         BDNF19G22S5A         RS           240         0.70         3         24³/s         (619.1)         10         (5)         BDNF24L22S5A         RS           480         0.70         3         24³/s         (619.1)         10         (5)         BDNF24L21S5A         RS           480         0.88         3         29⁵/s         (752.5)         11         (5)         BDNF29R22S5A         RS           480         0.88         3         29⁵/s         (752.5)         11         (5)         BDNF29R22S5A         RS           480         1.08         3         34⁵/s         (879.5)         12         (6)         BDNF34R22S5A         RS           480         1.40         3         45¹/s         (1146.2)         14         (7)         BDNF45G22S5A         RS           480         1.40         3         45¹/s <td>Volts         kW         Ph         "B" Dim. in. (mm)         Ship Wt. lbs (kg)         Part Number         Part Number           240         0.43         3         16½ (409.6)         8         (4) BDNF16G22S5A         RS         BDNF16G22S7A           240         0.55         3         19½ (485.8)         9         (4) BDNF19G22S5A         RS         BDNF19G22S7A           240         0.70         3         24½ (619.1)         10         (5) BDNF24L22S5A         RS         BDNF24L22S7A           480         0.70         3         24½ (619.1)         10         (5) BDNF24L21S5A         RS         BDNF24L21S7A           240         0.88         3         29½ (619.1)         10         (5) BDNF29R22S5A         RS         BDNF24L21S7A           480         0.88         3         29½ (752.5)         11         (5) BDNF29R22S5A         RS         BDNF24L21S7A           480         0.88         3         29½ (752.5)         11         (5) BDNF29R22S5A         RS         BDNF29R22S7A           480         1.08         3         34½ (752.5)         12         (6) BDNF34R22S5A         RS         BDNF34R22S7A           480         1.40         3         45½ (81412.9)         16</td> | Volts         kW         Ph         "B" Dim. in. (mm)         Ship Wt. lbs (kg)         Part Number         Part Number           240         0.43         3         16½ (409.6)         8         (4) BDNF16G22S5A         RS         BDNF16G22S7A           240         0.55         3         19½ (485.8)         9         (4) BDNF19G22S5A         RS         BDNF19G22S7A           240         0.70         3         24½ (619.1)         10         (5) BDNF24L22S5A         RS         BDNF24L22S7A           480         0.70         3         24½ (619.1)         10         (5) BDNF24L21S5A         RS         BDNF24L21S7A           240         0.88         3         29½ (619.1)         10         (5) BDNF29R22S5A         RS         BDNF24L21S7A           480         0.88         3         29½ (752.5)         11         (5) BDNF29R22S5A         RS         BDNF24L21S7A           480         0.88         3         29½ (752.5)         11         (5) BDNF29R22S5A         RS         BDNF29R22S7A           480         1.08         3         34½ (752.5)         12         (6) BDNF34R22S5A         RS         BDNF34R22S7A           480         1.40         3         45½ (81412.9)         16 |



<sup>3</sup> Wired for 3-phase operation only


S No third party recognition


## WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Bunker C, Asphalt and #6 Fuel Oil

- 1<sup>1</sup>/<sub>4</sub> inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)



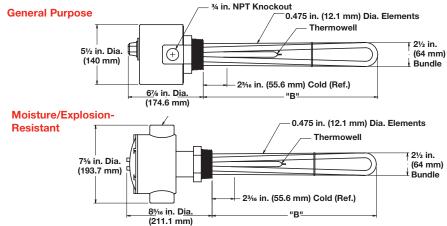


| Description                | Volts | kW   | Ph | "B" l<br>in.         | Dim.<br>(mm) | Part<br>Number | Del.     |        | Wt.<br>(kg) | Part<br>Number ⑤ | Del.     |            | Wt.<br>(kg) |
|----------------------------|-------|------|----|----------------------|--------------|----------------|----------|--------|-------------|------------------|----------|------------|-------------|
|                            |       |      |    |                      |              | General P      | urpose E | nclosu | ıre         | Moisture/Explo   | sion-Res | sistant Eı | nclosure    |
| 8 W/in² ③                  | 240   | 0.43 | 3  | 16 <sup>1</sup> /8   | (409.6)      | BDNF16G22S     | RS       | 7      | (4)         | BDNF16G22C       | RS       | 10         | (5)         |
| 304 SS Plug<br>1-Alloy 800 | 240   | 0.55 | 3  | 19 <sup>1</sup> /8   | (485.8)      | BDNF19G22S     | RS       | 8      | (4)         | BDNF19G22C       | RS       | 11         | (5)         |
| Element                    | 240   | 0.70 | 3  | 24 <sup>3</sup> /8   | (619.1)      | BDNF24L22S     | RS       | 9      | (4)         | BDNF24L22C       | RS       | 12         | (6)         |
| (1.3 W/cm²)                | 480   | 0.70 | 3  | 24 <sup>3</sup> /8   | (619.1)      | BDNF24L21S     | RS       | 9      | (4)         | BDNF24L21C       | RS       | 12         | (6)         |
|                            | 240   | 0.88 | 3  | 29 <sup>5</sup> /8   | (752.5)      | BDNF29R22S     | RS       | 10     | (5)         | BDNF29R22C       | RS       | 13         | (6)         |
|                            | 480   | 0.88 | 3  | 29 <sup>5</sup> /8   | (752.5)      | BDNF29R21S     | RS       | 10     | (5)         | BDNF29R21C       | RS       | 13         | (6)         |
|                            | 240   | 1.08 | 3  | 34 <sup>5</sup> /8   | (879.5)      | BDNF34R22S     | RS       | 11     | (5)         | BDNF34R22C       | RS       | 14         | (7)         |
|                            | 480   | 1.08 | 3  | 34 <sup>5</sup> /8   | (879.5)      | BDNF34R21S     | RS       | 11     | (5)         | BDNF34R21C       | RS       | 14         | (7)         |
|                            | 240   | 1.40 | 3  | 45 <sup>1</sup> /8 ( | (1146.2)     | BDNF45G22S     | RS       | 13     | (6)         | BDNF45G22C       | RS       | 16         | (8)         |
|                            | 480   | 1.40 | 3  | 45 <sup>1</sup> /8 ( | (1146.2)     | BDNF45G21S     | RS       | 13     | (6)         | BDNF45G21C       | RS       | 16         | (8)         |
|                            | 240   | 1.80 | 3  | 55 <sup>5</sup> /8 ( | (1412.9)     | BDNF55R22S     | RS       | 15     | (7)         | BDNF55R22C       | RS       | 18         | (9)         |
|                            | 480   | 1.80 | 3  | 55 <sup>5</sup> /8 ( | (1412.9)     | BDNF55R21S     | RS       | 15     | (7)         | BDNF55R21C       | RS       | 18         | (9)         |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- 3 Wired for 3-phase operation only
- S No third party recognition


WATLOW<sup>®</sup> \_\_\_\_\_\_ 229

## WATROD and FIREBAR Screw Plug Immersion Heaters

# **Application: Bunker C, Asphalt and #6 Fuel Oil**

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- WATROD elements
- With thermostat (DPST)
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

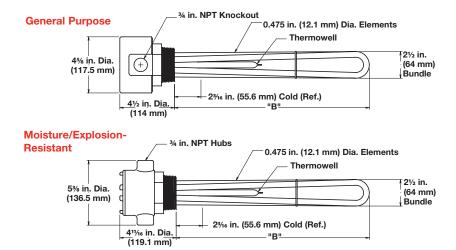




|                         |       |     |    |                                |        |      |      | Type 4 (30- | 110°F)   | Type 5A (60-2       | 250°F)    | Type 7A (100-550°F)   |          |  |
|-------------------------|-------|-----|----|--------------------------------|--------|------|------|-------------|----------|---------------------|-----------|-----------------------|----------|--|
|                         |       |     |    |                                | Dim.   | Ship |      | Part        |          | Part                |           | Part                  |          |  |
| Description             | Volts | kW  | Ph | in.                            | (mm)   | lbs  | (kg) | Number      | Del.     | Number              | Del.      | Number                | Del.     |  |
| 0.14/1: 0.0             |       |     |    |                                |        |      |      |             |          | General Purpos      |           | 1                     |          |  |
| 8 W/in² 3<br>Steel Plug | 240   | 1.0 | 3  | 171/4                          | (438)  | 10   | . ,  | BLS717E12S4 | RS       | BLS717E12S5A        | RS        | BLS717E12S7           | RS       |  |
| 3-Steel                 | 480   | 1.0 | 3  | 171/4                          | (438)  | 10   | . ,  | BLS717E13S4 | RS       | BLS717E13S5A        | RS        | BLS717E13S7           | RS       |  |
| Elements                | 240   | 1.5 | 3  | 243/4                          | (629)  | 13   | . ,  | BLS724N12S4 | RS       | BLS724N12S5A        | RS        | BLS724N12S7           | RS       |  |
| (1.3 W/cm²)             | 480   | 1.5 | 3  | 24 <sup>3</sup> / <sub>4</sub> | (629)  | 13   | (-)  | BLS724N13S4 | RS       | BLS724N13S5A        | RS        | BLS724N13S7           | RS       |  |
|                         | 240   | 2.0 | 3  | 321/4                          | (819)  | 15   | ( )  | BLS732E12S4 | RS       | BLS732E12S5A        | RS        | BLS732E12S7           | RS       |  |
|                         | 480   | 2.0 | 3  | 321/4                          | (819)  | 15   | (7)  | BLS732E13S4 | RS       | BLS732E13S5A        | RS        | BLS732E13S7           | RS       |  |
|                         | 240   | 2.5 | 3  | 393/4                          | (1010) | 16   | (8)  | BLS739N12S4 | RS       | BLS739N12S5A        | RS        | BLS739N12S7           | RS       |  |
|                         | 480   | 2.5 | 3  | 393/4                          | (1010) | 16   | (8)  | BLS739N13S4 | RS       | BLS739N13S5A        | RS        | BLS739N13S7           | RS       |  |
|                         | 240   | 3.0 | 3  | 471/4                          | (1200) | 18   | (9)  | BLS747E12S4 | RS       | BLS747E12S5A        | RS        | BLS747E12S7           | RS       |  |
|                         | 480   | 3.0 | 3  | 471/4                          | (1200) | 18   | (9)  | BLS747E13S4 | RS       | BLS747E13S5A        | RS        | BLS747E13S7           | RS       |  |
|                         | 240   | 4.0 | 3  | 63 <sup>3</sup> /4             | (1619) | 21   | (10) | BLS763N12S4 | RS       | BLS763N12S5A        | RS        | BLS763N12S7           | RS       |  |
|                         | 480   | 4.0 | 3  | 63 <sup>3</sup> /4             | (1619) | 21   | (10) | BLS763N13S4 | RS       | BLS763N13S5A        | RS        | BLS763N13S7           | RS       |  |
|                         | 240   | 5.0 | 3  | 76 <sup>1</sup> / <sub>4</sub> | (1937) | 24   | (11) | BLS776E12S4 | RS       | BLS776E12S5A        | RS        | BLS776E12S7           | RS       |  |
|                         | 480   | 5.0 | 3  | 76 <sup>1</sup> / <sub>4</sub> | (1937) | 24   | (11) | BLS776E13S4 | RS       | BLS776E13S5A        | RS        | BLS776E13S7           | RS       |  |
|                         |       |     |    |                                |        |      |      |             |          |                     |           |                       |          |  |
|                         |       |     |    |                                |        |      |      |             | Moistu   | re/Explosion-Res    | istant E  | nclosure ⑤            |          |  |
| 8 W/in² ③               | 240   | 1.0 | 3  | 17 <sup>1</sup> /4             | (438)  | 13   | (6)  | BLS717E12C4 | RS       | BLS717E12C5A        | RS        | BLS717E12C7A          | RS       |  |
| Steel Plug<br>3-Steel   | 480   | 1.0 | 3  | 17 <sup>1</sup> /4             | (438)  | 13   | (6)  | BLS717E13C4 | RS       | BLS717E13C5A        | RS        | BLS717E13C7A          | RS       |  |
| S-Steel<br>Elements     | 240   | 1.5 | 3  | 24 <sup>3</sup> /4             | (629)  | 16   | (8)  | BLS724N12C4 | RS       | BLS724N12C5A        | RS        | BLS724N12C7A          | RS       |  |
| (1.3 W/cm²)             | 480   | 1.5 | 3  | 24 <sup>3</sup> / <sub>4</sub> | (629)  | 16   | (8)  | BLS724N13C4 | RS       | BLS724N13C5A        | RS        | BLS724N13C7A          | RS       |  |
|                         | 240   | 2.0 | 3  | 321/4                          | (819)  | 18   | (9)  | BLS732E12C4 | RS       | BLS732E12C5A        | RS        | BLS732E12C7A          | RS       |  |
|                         | 480   | 2.0 | 3  | 321/4                          | (819)  | 18   | (9)  | BLS732E13C4 | RS       | BLS732E13C5A        | RS        | BLS732E13C7A          | RS       |  |
|                         | 240   | 2.5 | 3  | 393/4                          | (1010) | 19   | (9)  | BLS739N12C4 | RS       | BLS739N12C5A        | RS        | BLS739N12C7A          | RS       |  |
|                         | 480   | 2.5 | 3  | 393/4                          | (1010) | 19   | (9)  | BLS739N13C4 | RS       | BLS739N13C5A        | RS        | BLS739N13C7A          | RS       |  |
|                         | 240   | 3.0 | 3  | 471/4                          | (1200) | 21   | (10) | BLS747E12C4 | RS       | BLS747E12C5A        | RS        | BLS747E12C7A          | RS       |  |
|                         | 480   | 3.0 | 3  | 471/4                          | (1200) | 21   | (10) | BLS747E13C4 | RS       | BLS747E13C5A        | RS        | BLS747E13C7A          | RS       |  |
|                         | 240   | 4.0 | 3  | 633/4                          | (1619) | 24   | (11) | BLS763N12C4 | RS       | BLS763N12C5A        | RS        | BLS763N12C7A          | RS       |  |
|                         | 480   | 4.0 | 3  | 63 <sup>3</sup> / <sub>4</sub> | (1619) | 24   | (11) | BLS763N13C4 | RS       | BLS763N13C5A        | RS        | BLS763N13C7A          | RS       |  |
|                         | 240   | 5.0 | 3  | 76 <sup>1</sup> / <sub>4</sub> | (1937) | 27   | (13) | BLS776E12C4 | RS       | BLS776E12C5A        | RS        | BLS776E12C7A          | RS       |  |
|                         | 480   | 5.0 | 3  | 76 <sup>1</sup> / <sub>4</sub> | (1937) | 27   | (13) | BLS776E13C4 | RS       | BLS776E13C5A        | RS        | BLS776E13C7A          | RS       |  |
|                         |       |     |    |                                |        |      | . ,  | Note: /     | II corow | plua bundles are de | scianed t | o fit the incide diam | notor of |  |



 RS - Next day shipment up to 5 pieces


- 3 Wired for 3-phase operation only
- ⑤ No third party recognition

# WATROD and FIREBAR Screw Plug Immersion Heaters



# **Application: Bunker C, Asphalt and #6 Fuel Oil**

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- WATROD elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

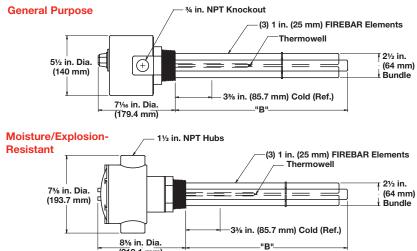


| Description           | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Part<br>Number | Del. | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number ⑤ | Del. | Ship<br>Ibs | Wt.<br>(kg) |
|-----------------------|-------|------|----|--------------------------------|--------------|----------------|------|-------------|-------------|------------------|------|-------------|-------------|
| Docompaion            | Volto | 1000 |    |                                | ()           | General P      |      | 1           |             | Moisture/Explo   |      | 1           |             |
| 8 W/in² ③             | 240   | 1.0  | 1  | 17 <sup>1</sup> /4             | (438)        | BLS717E12S     | RS   | 9           | (4)         | BLS717E12C       | RS   | 12          | (6)         |
| Steel Plug<br>3-Steel | 480   | 1.0  | 3  | 17 <sup>1</sup> /4             | (438)        | BLS717E13S     | RS   | 9           | (4)         | BLS717E13C       | RS   | 12          | (6)         |
| Elements              | 240   | 1.5  | 3  | 24 <sup>3</sup> /4             | (629)        | BLS724N12S     | RS   | 12          | (6)         | BLS724N12C       | RS   | 15          | (7)         |
| (1.3 W/cm²)           | 480   | 1.5  | 1  | 24 <sup>3</sup> /4             | (629)        | BLS724N13S     | RS   | 12          | (6)         | BLS724N13C       | RS   | 15          | (7)         |
|                       | 240   | 2.0  | 3  | 32 <sup>1</sup> /4             | (819)        | BLS732E12S     | RS   | 14          | (7)         | BLS732E12C       | RS   | 17          | (8)         |
|                       | 480   | 2.0  | 3  | 32 <sup>1</sup> / <sub>4</sub> | (819)        | BLS732E13S     | RS   | 14          | (7)         | BLS732E13C       | RS   | 17          | (8)         |
|                       | 240   | 2.5  | 3  | 39 <sup>3</sup> /4             | (1010)       | BLS739N12S     | RS   | 15          | (7)         | BLS739N12C       | RS   | 18          | (9)         |
|                       | 480   | 2.5  | 3  | 39 <sup>3</sup> /4             | (1010)       | BLS739N13S     | RS   | 15          | (7)         | BLS739N13C       | RS   | 18          | (9)         |
|                       | 240   | 3.0  | 3  | 47 <sup>1</sup> /4             | (1200)       | BLS747E12S     | RS   | 17          | (8)         | BLS747E12C       | RS   | 20          | (9)         |
|                       | 480   | 3.0  | 3  | 47 <sup>1</sup> /4             | (1200)       | BLS747E13S     | RS   | 17          | (8)         | BLS747E13C       | RS   | 20          | (9)         |
|                       | 240   | 4.0  | 3  | 63 <sup>3</sup> /4             | (1619)       | BLS763N12S     | RS   | 20          | (9)         | BLS763N12C       | RS   | 23          | (11)        |
|                       | 480   | 4.0  | 3  | 63 <sup>3</sup> /4             | (1619)       | BLS763N13S     | RS   | 20          | (9)         | BLS763N13C       | RS   | 23          | (11)        |
|                       | 240   | 5.0  | 3  | 76 <sup>1</sup> /4             | (1937)       | BLS776E12S     | RS   | 23          | (11)        | BLS776E12C       | RS   | 26          | (12)        |
|                       | 480   | 5.0  | 3  | 76 <sup>1</sup> / <sub>4</sub> | (1937)       | BLS776E13S     | RS   | 23          | (11)        | BLS776E13C       | RS   | 26          | (12)        |



**Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- 3 Wired for 3-phase operation only
- ⑤ No third party recognition


WATLOW® \_\_\_\_\_\_ 231

# WATROD and FIREBAR Screw Plug Immersion Heaters

## AI

## Application: Bunker C, Asphalt and #6 Fuel Oil

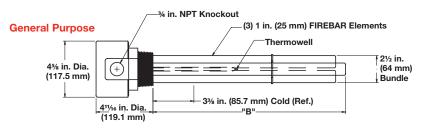
- 21/2 inch NPT screw plug
- FIREBAR elements
- With thermostat (DPST)
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)

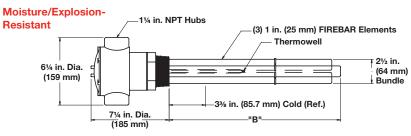


(219.1 mm)

|                            |       |      |    |                                        |      |      | Type 5A (60-25 | Type 7A (100- | 550°F)                    |      |
|----------------------------|-------|------|----|----------------------------------------|------|------|----------------|---------------|---------------------------|------|
|                            |       |      |    | "B" Dim.                               | Ship |      | Part           |               | Part                      |      |
| Description                | Volts | kW   | Ph | in. (mm)                               | lbs  | (kg) | Number         | Del.          | Number                    | Del. |
|                            |       |      |    |                                        |      |      | Ger            | neral Purp    | ose Enclosure             |      |
| 8 W/in² ③                  | 240   | 1.25 | 3  | 15 <sup>1</sup> /8 (384.2)             | 11   | (5)  | BLNF15C22S5A   | RS            | BLNF15C22S7A              | RS   |
| 304 SS Plug<br>3-Alloy 800 | 240   | 1.63 | 3  | 18 <sup>1</sup> /8 (460.4)             | 13   | (6)  | BLNF18C22S5A   | RS            | BLNF18C22S7A              | RS   |
| Elements                   | 240   | 2.13 | 3  | 23 <sup>1</sup> /8 (587.4)             | 15   | (7)  | BLNF23C22S5A   | RS            | BLNF23C22S7A              | RS   |
| (1.3 W/cm²)                | 480   | 2.13 | 3  | 23 <sup>1</sup> /8 (587.4)             | 15   | (7)  | BLNF23C21S5A   | RS            | BLNF23C21S7A              | RS   |
|                            | 240   | 2.63 | 3  | 28 <sup>5</sup> /8 (727.1)             | 18   | (9)  | BLNF28L22S5A   | RS            | BLNF28L22S7A              | RS   |
|                            | 480   | 2.63 | 3  | 28 <sup>5</sup> /8 (727.1)             | 18   | (9)  | BLNF28L21S5A   | RS            | BLNF28L21S7A              | RS   |
|                            | 240   | 3.19 | 3  | 33 <sup>5</sup> /8 (854.1)             | 19   | (9)  | BLNF33L22S5A   | RS            | BLNF33L22S7A              | RS   |
|                            | 480   | 3.19 | 3  | 33 <sup>5</sup> /8 (854.1)             | 19   | (9)  | BLNF33L21S5A   | RS            | BLNF33L21S7A              | RS   |
|                            | 240   | 4.25 | 3  | 44 <sup>1</sup> /8 (1120.8)            | 21   | (10) | BLNF44C22S5A   | RS            | BLNF44C22S7A              | RS   |
|                            | 480   | 4.25 | 3  | 44 <sup>1</sup> /8 (1120.8)            | 21   | (10) | BLNF44C21S5A   | RS            | BLNF44C21S7A              | RS   |
|                            | 240   | 5.38 | 3  | 54 <sup>5</sup> /8 (1387.5)            | 23   | (11) | BLNF54L22S5A   | RS            | BLNF54L22S7A              | RS   |
|                            | 480   | 5.38 | 3  | 54 <sup>5</sup> /8 (1387.5)            | 23   | (11) | BLNF54L21S5A   | RS            | BLNF54L21S7A              | RS   |
|                            |       |      |    |                                        |      |      |                |               |                           |      |
|                            |       |      |    |                                        |      |      | Moisture       | /Explosio     | n-Resistant Enclosur      | e ⑤  |
| 8 W/in² ③                  | 240   | 1.25 | 3  | 15 <sup>1</sup> / <sub>8</sub> (384.2) | 14   | (7)  | BLNF15C22C5A   | RS            | BLNF15C22C7A              | RS   |
| 304 SS Plug                | 240   | 1.63 | 3  | 18 <sup>1</sup> / <sub>8</sub> (460.4) | 16   | (8)  | BLNF18C22C5A   | RS            | BLNF18C22C7A              | RS   |
| 3-Alloy 800<br>Elements    | 240   | 2.13 | 3  | 231/8 (587.4)                          | 18   | (9)  | BLNF23C22C5A   | RS            | BLNF23C22C7A              | RS   |
| (1.3 W/cm²)                | 480   | 2.13 | 3  | 231/8 (587.4)                          | 18   | (9)  | BLNF23C21C5A   | RS            | BLNF23C21C7A              | RS   |
|                            | 240   | 2.63 | 3  | 28 <sup>5</sup> /8 (727.1)             | 21   | (10) | BLNF28L22C5A   | RS            | BLNF28L22C7A              | RS   |
|                            | 480   | 2.63 | 3  | 28 <sup>5</sup> /8 (727.1)             | 21   | (10) | BLNF28L21C5A   | RS            | BLNF28L21C7A              | RS   |
|                            | 240   | 3.19 | 3  | 33 <sup>5</sup> /8 (854.1)             | 22   | (10) | BLNF33L22C5A   | RS            | BLNF33L22C7A              | RS   |
|                            | 480   | 3.19 | 3  | 33 <sup>5</sup> /8 (854.1)             | 22   | (10) | BLNF33L21C5A   | RS            | BLNF33L21C7A              | RS   |
|                            | 240   | 4.25 | 3  | 44 <sup>1</sup> /8 (1120.8)            | 24   | (11) | BLNF44C22C5A   | RS            | BLNF44C22C7A              | RS   |
|                            | 480   | 4.25 | 3  | 44 <sup>1</sup> /8 (1120.8)            | 24   | (11) | BLNF44C21C5A   | RS            | BLNF44C21C7A              | RS   |
|                            | 240   | 5.38 | 3  | 54 <sup>5</sup> /8 (1387.5)            | 26   | (11) | BLNF54L22C5A   | RS            | BLNF54L22C7A              | RS   |
|                            | 480   | 5.38 | 3  | 54 <sup>5</sup> /8 (1387.5)            | 26   | (11) | BLNF54L21C5A   | RS            | BLNF54L21C7A              | RS   |
|                            |       | 1    |    | (                                      | -    | , ,  | . All          |               | Consider Challes Contains |      |




- ③ Wired for 3-phase operation only
- ⑤ No third party recognition


# WATROD and FIREBAR Screw Plug Immersion Heaters



## Application: Bunker C, Asphalt and #6 Fuel Oil

- 2<sup>1</sup>/<sub>2</sub> inch NPT screw plug
- FIREBAR elements
- Without thermostat
- General purpose or moisture/explosionresistant enclosure (suitable for use in non-classified areas only)





| Description                | Volts | kW   | Ph | "B"<br>in.         | Dim.<br>(mm) | Part<br>Number | Del.      | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number ⑤ | Del.      |         | o Wt.<br>(kg) |
|----------------------------|-------|------|----|--------------------|--------------|----------------|-----------|-------------|-------------|------------------|-----------|---------|---------------|
|                            |       |      |    |                    |              | General F      | Purpose E | nclosu      | re          | Moisture/Explos  | ion-Resis | tant En | closure       |
| 8 W/in² ③                  | 240   | 1.25 | 3  | 15 <sup>1</sup> /8 | (384.2)      | BLNF15C22S     | RS        | 11          | (5)         | BLNF15C22C       | RS        | 14      | (7)           |
| 304 SS Plug<br>3-Alloy 800 | 240   | 1.63 | 3  | 18 <sup>1</sup> /8 | (460.4)      | BLNF18C22S     | RS        | 12          | (6)         | BLNF18C22C       | RS        | 15      | (7)           |
| Elements                   | 240   | 2.13 | 3  | 23 <sup>1</sup> /8 | (587.4)      | BLNF23C22S     | RS        | 14          | (7)         | BLNF23C22C       | RS        | 17      | (8)           |
| (1.3 W/cm²)                | 480   | 2.13 | 3  | 23 <sup>1</sup> /8 | (587.4)      | BLNF23C21S     | RS        | 14          | (7)         | BLNF23C21C       | RS        | 17      | (8)           |
|                            | 240   | 2.63 | 3  | 28 <sup>5</sup> /8 | (727.1)      | BLNF28L22S     | RS        | 17          | (8)         | BLNF28L22C       | RS        | 20      | (9)           |
|                            | 480   | 2.63 | 3  | 28 <sup>5</sup> /8 | (727.1)      | BLNF28L21S     | RS        | 17          | (8)         | BLNF28L21C       | RS        | 20      | (9)           |
|                            | 240   | 3.19 | 3  | 33 <sup>5</sup> /8 | (854.1)      | BLNF33L22S     | RS        | 18          | (9)         | BLNF33L22C       | RS        | 21      | (10)          |
|                            | 480   | 3.19 | 3  | 33 <sup>5</sup> /8 | (854.1)      | BLNF33L21S     | RS        | 18          | (9)         | BLNF33L21C       | RS        | 21      | (10)          |
|                            | 240   | 4.25 | 3  | 44 <sup>1</sup> /8 | (1120.8)     | BLNF44C22S     | RS        | 20          | (9)         | BLNF44C22C       | RS        | 23      | (11)          |
|                            | 480   | 4.25 | 3  | 44 <sup>1</sup> /8 | (1120.8)     | BLNF44C21S     | RS        | 20          | (9)         | BLNF44C21C       | RS        | 23      | (11)          |
|                            | 240   | 5.38 | 3  | 54 <sup>5</sup> /8 | (1387.5)     | BLNF54L22S     | RS        | 22          | (10)        | BLNF54L22C       | RS        | 25      | (12)          |
|                            | 480   | 5.38 | 3  | 54 <sup>5</sup> /8 | (1387.5)     | BLNF54L21S     | RS        | 22          | (10)        | BLNF54L21C       | RS        | 25      | (12)          |



 RS - Next day shipment up to 5 pieces **Note:** All screw plug bundles are designed to fit the inside diameter of the equivalent mating coupling. They will not fit into the equivalent pipe inside diameter.

- 3 Wired for 3-phase operation only
- S No third party recognition

WATLOW® \_\_\_\_\_\_ 233

## WATROD and FIREBAR Screw Plug Immersion Heaters

### **Ordering Information**

#### **Part Number**

Stock Screw Plug Part Number Optional Terminal Enclosures

Optional Process Sensors Sheath Limit Sensors

#### **Stock Screw Plug Part Number**

**Note:** Catalog part numbers include standard option enclosures and process sensors. To order optional enclosures or sensors, substitute the appropriate suffix.

|     | Optional Terminal Enclosures           |  |  |  |  |  |  |
|-----|----------------------------------------|--|--|--|--|--|--|
| S = | General purpose enclosure              |  |  |  |  |  |  |
| W=  | Moisture-resistant enclosure           |  |  |  |  |  |  |
| E = | Explosion-resistant enclosure          |  |  |  |  |  |  |
| C = | Moisture/explosion-resistant enclosure |  |  |  |  |  |  |

**Note:** Catalog listings include either a general purpose enclosure or moisture/explosion-resistant enclosure. Substitute enclosure options are noted.

|                                               | Optional Process Sensors                                           |  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| 2 =                                           | 30 to 250°F, (-1 to 121°C) SPST                                    |  |  |  |  |  |  |
| 3 =                                           | = 175 to 550°F, (79 to 288°C) SPST                                 |  |  |  |  |  |  |
| 4 =                                           | 4 = 30 to 110°F, (-1 to 43°C) DPST                                 |  |  |  |  |  |  |
| 5A=                                           | 60 to 250°F, (16 to 121°C) DPST (FIREBAR)                          |  |  |  |  |  |  |
| 7A=                                           | 100 to 550°F, (38 to 288°C) DPST (FIREBAR)                         |  |  |  |  |  |  |
| PJ=                                           | PJ= Type J process thermocouple in thermowell                      |  |  |  |  |  |  |
| PK= Type K process thermocouple in thermowell |                                                                    |  |  |  |  |  |  |
| Motor                                         | Nata: Thermostat part numbers are aboun in the Thermostat Chart on |  |  |  |  |  |  |

**Note:** Thermostat part numbers are shown in the *Thermostat Chart* on page 537.

Example Part Number: BHC78C6 S 1 HJ

|     | Sheath Limit Sensors                                       |
|-----|------------------------------------------------------------|
| HJ= | Type J high-limit thermocouple, horizontal mount           |
| TJ= | Type J high-limit thermocouple, vertical/housing at top    |
| BJ= | Type J high-limit thermocouple, vertical/housing at bottom |
| HK= | Type K high-limit thermocouple, horizontal mount           |
| TK= | Type K high-limit thermocouple, vertical/housing at top    |
| BK= | Type K high-limit thermocouple, vertical/housing at bottom |

**Note:** Heater orientation is critical to accurate sensing of limit conditions. Use the appropriate code to indicate heater mounting orientation.

### WATROD and FIREBAR Screw Plug Immersion Heaters

### Screw Plug with Control Assembly

Constructed from a WATROD screw plug heater, a moisture resistant terminal enclosure and built-in temperature sensor and power controller, this assembly comes pre-wired and ready for hook-up to any 120VAC control circuit.

Optional sheath materials, NPT screw plug sizes and materials, wattages, voltages and terminal enclosures extend application versatility.

### **Performance Capabilities**

- Watt densities up to 60 W/in<sup>2</sup> (9.3 W/cm<sup>2</sup>)
- Wattages up to 20 kilowatts
- Voltages up to 600VAC
- Alloy 800/840 sheath temperatures up to 1600°F (870°C)

#### **Features and Benefits**

## Three 0.475 in. (12 mm) diameter WATROD elements brazed to a 2 in. (51 mm) NPT brass screw plug

• Produces a pressure-tight seal

## WATROD hairpins are repressed (recompacted) after bending

Maintains MgO density, dielectric strength, heat transfer and life

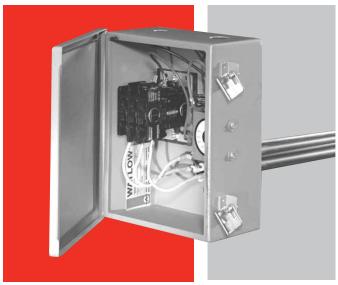
## Two built-in thermostats, one on-off with manual reset

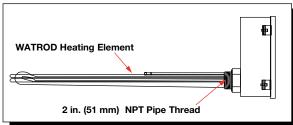
 Helps ensure safe operation by automatically cycling on and off when process or sheath temperatures reach a predetermined set point selectable from 30° to 250°F (0° to 120°C)

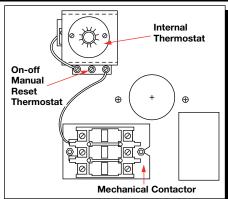
#### Internal mechanical contactor

 Works on a 120VAC control circuit to switch higher volts/amps to the heating elements

## Hinged, moisture resistant terminal enclosure has two conduit openings


• Accommodates <sup>3</sup>/<sub>4</sub> in. (19 mm) NPT conduit fittings


## Terminal enclosures can be rotated to mate with existing conduits


Minimal fastener adjustment required

## Thermowells allow replacing the thermostat sensing element without draining the fluid being heated

· Labor required to maintain and repair is minimized





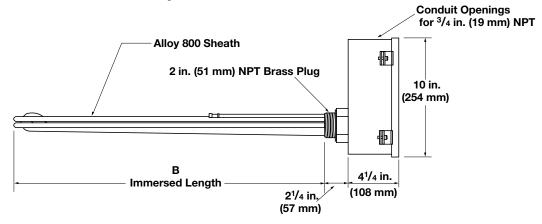


#### **Typical Applications**

- Water heating
- · Commercial dishwashers and glass washers
- Sterilizing equipment

### **Application Hints**

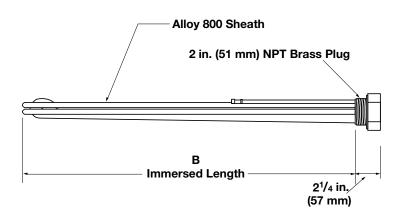
Same as *Screw Plug Immersion Heaters*. See page 169 for details.


#### **Accessories**

Clamping Nut, Gasket and Washers-for mounting to thin-wall tanks, use optional clamping nut, gasket and washers. To order, specify **NGW**.

WATLOW® \_\_\_\_\_\_ 235

# WATROD and FIREBAR Screw Plug Immersion Heaters


Screw Plug with Control Assembly



#### 2 in. (51 mm) NPT Brass Screw Plug With Control Box (Assembly Stock)

|                      |    | Immersed     |               | Part Number   |               |               |                |         |      |  |
|----------------------|----|--------------|---------------|---------------|---------------|---------------|----------------|---------|------|--|
| WATROD               |    | Length       | 208VAC        | 240VAC        | 380VAC        | 480VAC        | 575VAC         | Wt.     |      |  |
| Desc.                | kW | in. (mm)     | 3-Phase       | 3-Phase       | 3-Phase       | 3-Phase       | 3-Phase        | lbs(kg) | Del. |  |
| 50 W/in <sup>2</sup> | 9  | 24¾ (629.0)  |               | BHNB24N3W2C11 |               | BHNB24N5W2C11 | BHNB24N16W2C11 | 23 (10) | М    |  |
| Brass Plug           | 12 | 30 (762.0)   | BHNB30A2W2C11 | BHNB30A3W2C11 | BHNB30A8W2C11 | BHNB30A5W2C11 | BHNB30A16W2C11 | 24 (11) | М    |  |
| 3-Alloy 800          | 16 | 35% (904.8)  | BHNB35L2W2C11 | BHNB35L3W2C11 | BHNB35L8W2C11 | BHNB35L5W2C11 | BHNB35L16W2C11 | 25 (11) | М    |  |
| (7.8 W/cm²)          | 20 | 45% (1158.8) |               | BHNB45L3W2C11 | BHNB45L8W2C11 | BHNB45L5W2C11 | BHNB45L16W2C11 | 27 (12) | М    |  |

<sup>•</sup> M - Manufacturing lead times



#### 2 in. (51 mm) NPT Brass Screw Plug With Control Box (Replacement Heater Only)

|                      |    | lmm | nersed   |          |          | Part Nui | nber     |           | Est. | Net  |      |
|----------------------|----|-----|----------|----------|----------|----------|----------|-----------|------|------|------|
| WATROD               |    | Ler | ngth     | 208VAC   | 240VAC   | 380VAC   | 480VAC   | 575VAC    | W    | /t.  |      |
| Desc.                | kW | in. | (mm)     | 3-Phase  | 3-Phase  | 3-Phase  | 3-Phase  | 3-Phase   | lbs  | (kg) | Del. |
| 50 W/in <sup>2</sup> | 9  | 24¾ | (628.7)  |          | BHNB24N3 |          | BHNB24N5 | BHNB24N16 | 21   | (9)  | М    |
| Brass Plug           | 12 | 30  | (762.0)  | BHNB30A2 | BHNB30A3 | BHNB30A8 | BHNB30A5 | BHNB30A16 | 22   | (10) | М    |
| Alloy 800            | 16 | 35% | (904.8)  | BHNB35L2 | BHNB35L3 | BHNB35L8 | BHNB35L5 | BHNB35L16 | 23   | (10) | М    |
| (7.8 W/cm²)          | 20 | 45% | (1158.8) |          | BHNB45L3 | BHNB45L8 | BHNB45L5 | BHNB45L16 | 25   | (11) | М    |

<sup>•</sup> M - Manufacturing lead times

# WATROD and FIREBAR ANSI Flange Immersion Heaters

Watlow flange heaters are easy to install and maintain. Designed for heating liquids and gases in tanks and pressure vessels, flange immersion heaters are ideal for applications requiring higher kilowatts.

Watlow flange heaters are made with WATROD or FIREBAR tubular elements brazed or welded to a flange. Stock flange heaters are equipped with a general purpose terminal enclosure.

Flange heaters, with FIREBAR elements, also answer the need for liquid immersion applications requiring high kilowatts in small tanks. The FIREBAR element's unique flat surface geometry packs more power in a smaller bundle, with lower watt density, making it especially well-suited for petroleum-based liquid heating applications.

### **Performance Capabilities**

- Watt densities up to 100 W/in<sup>2</sup> (15.5 W/cm<sup>2</sup>)
- Wattages up to three megawatts
- UL® and CSA component recognition up to 600VAC
- Alloy 800/840 sheath temperatures up to 1600°F (870°C)
- Passivated 316 stainless steel sheath temperatures up to 1200°F (650°C)
- 304 stainless steel sheath temperatures up to 1200°F (650°C)
- Steel sheath temperatures up to 750°F (400°C)
- FIREBAR flange heaters deliver more kilowatts in smaller bundles
- A conventional round tubular 10-inch ANSI flange can be replaced by a 6-inch ANSI FIREBAR flange with same immersed length

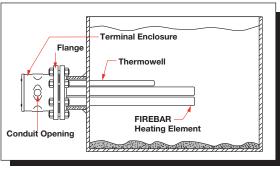
#### **Features and Benefits**

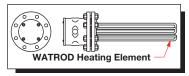
## ANSI and ANSI compatible 2, 2<sup>1</sup>/<sub>2</sub>, 3 thru 48 inch flanges

• Provides appropriate heater size-to-application and fit

#### Element sheath and flange materials

• Meets your application needs


#### Integral thermowells


 Provides convenient temperature sensor insertion and replacement without draining the fluid being heated

#### Standard, general purpose terminal enclosure

· Offers easy access to wiring







#### Element support(s)

Provides proper element spacing to maximize heater performance and life

#### All units are inspected and/or tested

• Ensures element-to-flange pressure seals do not leak

## Drilled and tapped eyebolt holes or lift lugs for eye bolts on three inch and larger flange heaters

Facilitates lifting during installation

#### WATROD hairpins are repressed (recompacted)

 Provides improved heater life, insulation resistance and heat transfer

WATLOW® \_\_\_\_\_\_ 237

### WATROD and FIREBAR ANSI Flange Immersion Heaters

#### Features and Benefits (Continued)

## FIREBAR flange heaters pack more kilowatts into a smaller bundle

 Includes a conventional round tubular 10 in. (254 mm) ANSI flange which can be replaced by a 6 in. (152 mm) ANSI FIREBAR flange with the same immersed length

## Branch circuits are designed for 48 amperes per circuit maximum

 Reduces risk of failure due to excessive temperatures generated by high amperage

## UL® and CSA component recognition under file numbers E52951 and 31388 respectively

Simplifies obtaining third-party recognition for assembly

### **Typical Applications**

• Water:

Deionized

Demineralized

Clean

Potable

**Process** 

- Industrial water rinse tanks
- Vapor degreasers
- Hydraulic oil, crude, asphalt
- Lubricating oils at API specified watt densities
- Air and gas flow
- Caustic solutions
- Chemical baths
- Process air equipment
- Boiler equipment
- Freeze protection of any fluid
- Anti-freeze (glycol) solutions
- Paraffin

#### **Options**

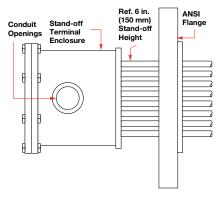
#### **Terminal Enclosures**

General purpose terminal enclosures, without thermostats, are standard on all flange immersion heaters. Optional terminal enclosures include:

- General purpose with a single or double-pole thermostat
- Moisture resistant—available with or without a singleor double-pole thermostat
- Corrosion resistant—available with or without a singleor double-pole thermostat
- Non-certified, explosion resistant suitable for use in non-classified areas only—available with or without a single- or double-pole thermostat
- Explosion resistant Class 1, Div. 1 and 2, Groups B, C, D, T1 - T6—available with or without a single- or double-pole thermostat
- Non-certified, explosion and moisture resistant combination suitable for use in non-classified areas only—available with or without a single- or double-pole thermostat

Prior to ordering, refer to the terminal enclosure dimensions on page 243. Order by adding the appropriate suffix letter(s) to the base flange heater part number, as shown on the Ordering information chart. Heater part numbers and suffix letters are depicted on the charts, pages 244 to 305. Specify class and group, if applicable.




#### **Caution**

Certified explosion-resistant terminal enclosures are intended to provide explosion containment in the electrical termination/wiring enclosure only. No portion of the assembly outside of this enclosure is covered under this rating. Rating effectiveness may be compromised by abuse or misapplication.

# WATROD and FIREBAR ANSI Flange Immersion Heaters

**Options** (Continued)

#### **Stand-off Terminal Enclosures**



Stand-off terminal enclosures provide an air-insulating barrier between the flange and terminal enclosure by mounting the terminations and wiring away from the flange. Stand-off terminal enclosures are recommended whenever a process operating temperature exceeds 210°F (100°C). This helps minimize terminal enclosure temperatures.

To order, specify stand-off terminal enclosure.

#### **Certified Enclosures**

CSA, ATEX or IECEx certified enclosures protect wiring in hazardous gas environments. These terminal enclosures, covered under CSA file number 61707, ATEX certificate # SIRA 10ATEX1155X or IECEx certificate # IECEx CSA 09.0010X are available on WATROD flange heaters. For additional information, see page 567 and 568 or contact your Watlow representative.

For products that will be installed in hazardous locations, please provide the following information:

- Operating conditions
- Minimum and maximum ambient temperatures for the installation location
- Mounting orientation

Watlow must understand this information so that an appropriate design can be provided.

#### **ASME Pressure Vessel Code Welding**

Flange assemblies can be provided with an ASME Section VIII, Div. I pressure vessel stamp upon request.

#### **Thermostats**

To provide process temperature control, Watlow offers optional single pole, single throw (SPST) and double pole, single throw (DPST) thermostats.

Unless otherwise specified, thermostats are mounted inside the terminal enclosure. For details and ordering information, refer to *Thermostats* on pages 534 to 537. Please verify that the thermostat's sensing bulb O.D. is compatible with the flange heater's thermowell I.D.

#### **Thermocouples**

ASTM Type J or K thermocouples offer more accurate sensing of process and/or sheath temperatures. A thermocouple may be inserted into the thermowell or attached to the heater's sheath.

Thermocouples are supplied with 120 in. (3050 mm) leads (longer lead lengths available). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the *Thermocouple Types* chart.

Using a thermocouple requires an appropriate temperature and power controller. These must be purchased separately. Watlow offers a wide variety of temperature and power controllers to meet virtually all applications. Temperature controllers can be configured to accept process variable inputs, too. Contact your Watlow representative for details.

To order, specify **Type J** or **K** thermocouple and lead length. Indicate if the thermocouple is for **process temperature sensing** or heater sheath **high-limit protection**. Please specify if the flange heater will be mounted **vertical** or **horizontal** in the tank. **If vertical**, **specify if the housing is on top or bottom**.

If the flange heater is part of an in-line circulation heating application, indicate flow direction relative to the heater's enclosure.

#### **Thermocouple Types**

| ASTM<br>Type | Conductor C<br>Positive | haracteristics<br>Negative |           | nended <sup>①</sup><br>ture Range<br>(°C) |
|--------------|-------------------------|----------------------------|-----------|-------------------------------------------|
| J            | Iron                    | Constantan                 | 0 to 1000 | (-20 to 540)                              |
|              | (Magnetic)              | (Non-magnetic)             |           |                                           |
| K            | Chromel®                | Alumel®                    | 0 to 2000 | (-20 to 1100)                             |
|              | (Non-magnetic)          | (Magnetic)                 |           |                                           |

① Type J and Type K thermocouples are rated 32 to 1382°F and 32 to 2282°F (0-750°C and 0-1250°C), respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.

WATLOW<sup>®</sup> 239

### WATROD and FIREBAR ANSI Flange Immersion Heaters

**Options** (Continued)

#### **Wattages and Voltages**

Watlow routinely supplies flange immersion heaters with 240 to 480VAC as well as wattages from 150 watts to one megawatt.

#### **Sheath Materials**

The following sheath materials are available on WATROD and FIREBAR flange heaters:

#### Standard Sheath Materials

| WATROD  | Alloy 800, 840 |
|---------|----------------|
|         | 316 SS         |
|         | Steel          |
| FIREBAR | Alloy 800      |

#### **Exotic Sheath Materials**

Contact your Watlow representative for details and availability.

#### **External Finishing**

#### **Passivation**

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode, produce rust spots and/or contaminate the process. For critical sheath applications, passivation will remove free iron from the sheath. To order, specify **passivation**.

#### **Other Finishes**

Bright annealing available to meet cosmetic demands.

#### **Flanges**

#### Flange Sizes and Styles

**Standard**:  $2^{\circ}$ ,  $2^{1/2^{\circ}}$ , 3 to 48 inch ANSI raised face/blind flanges.

**Made-to-Order**: 16, 18, 20 and 24 inch in any recognized configuration, as well as customer specified. Over 48 inch ANSI flange, contact your Watlow representative.

#### Flange Materials

| Standard | Carbon steel |
|----------|--------------|
|          | 316 SS       |
|          | 304 SS       |

#### **Pressure Classes**

| Standard | 150 lb |
|----------|--------|
|          | 300 lb |
|          | 600 lb |

1 ANSI bolt pattern only

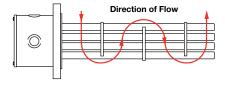
### **Gaskets**

Rubber, asbestos-free and spiral wound gaskets are available for all flange sizes. Order by specifying gasket type, flange size/rating, process operating temperature and pressure.

To make the correct selection, see the *Gasket Selection* chart. It provides a recommended gasket type and effective temperature rating.

To use this chart, multiply operating temperature by the operating pressure to arrive at "Maximum PSIG x °F." This is listed in the chart's first column.

#### **Gasket Selection**


| Maximum<br>PSIG x °F | Gasket<br>Temperature<br>°F | Gasket Type   |
|----------------------|-----------------------------|---------------|
| Up to 15,000         | 300                         | Rubber        |
| Over 250,000         | 700                         | Asbestos-Free |
| Over 250,000         | 3                           | Spiral Wound  |

3 Depends on metal gasket material.

# WATROD and FIREBAR ANSI Flange Immersion Heaters

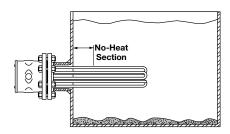
**Options** (Continued)

#### **Baffles**



For forced circulation applications, 316 stainless steel baffles can be arranged on the heating element bundle to enhance and/or modify fluid or gas flow for better heat transfer.

For open tank or convection heating applications, standard element supports will be supplied.


To order, specify **baffles**.

## ANSI Raised Face Blind Flange, 150# Class Dimensions

| Pipe Size | Outside<br>Diameter | Flange<br>Thickness | Diameter<br>of Bolt<br>Circle | Diameter<br>of Bolt<br>Holes | Number of<br>Bolt Holes |
|-----------|---------------------|---------------------|-------------------------------|------------------------------|-------------------------|
| 3         | 7.50                | 0.94                | 6.00                          | 0.75                         | 4                       |
| 4         | 9.00                | 0.94                | 7.50                          | 0.75                         | 8                       |
| 5         | 10.00               | 0.94                | 8.50                          | 0.88                         | 8                       |
| 6         | 11.00               | 1.00                | 9.50                          | 0.88                         | 8                       |
| 8         | 13.50               | 1.12                | 11.75                         | 0.88                         | 8                       |
| 10        | 16.00               | 1.19                | 14.25                         | 1.00                         | 12                      |
| 12        | 19.00               | 1.25                | 17.00                         | 1.00                         | 12                      |
| 14        | 21.00               | 1.38                | 18.75                         | 1.12                         | 12                      |
| 16        | 23.50               | 1.44                | 21.25                         | 1.12                         | 16                      |
| 18        | 25.00               | 1.56                | 22.75                         | 1.25                         | 16                      |
| 20        | 27.50               | 1.69                | 25.00                         | 1.25                         | 20                      |
| 24        | 32.00               | 1.88                | 29.50                         | 1.38                         | 20                      |

### **Application Hints**

- Select the recommended heating element sheath material and watt density for the substance being heated. Use the *Supplemental Applications Chart* on pages 555 to 560. If unable to determine the correct heating element sheath material and type, contact your Watlow representative.
- Extend the element no-heat section completely into the fluid being heated to help prevent premature heater failure. See accompanying illustration for proper no-heat section placement.
- Locate flange heater low in the tank, but above the sludge level.
- Choose a FIREBAR element when your application requires a smaller system package or lower watt density.
- Ensure wiring integrity by keeping terminal enclosure temperature below 400°F (205°C).
- Size power feeder wires in accordance with National Electrical Code guidelines and other applicable codes.
- Keep electrical connections clean, dry and tight.
- Minimize problems associated with low liquid level conditions by using low liquid level sensor or sheath temperature high-limit control.



- Periodically remove the flange assembly to inspect and clean the heating element(s). This preventive maintenance will reduce premature failure and optimize heater performance.
- Refer to the Installation and Maintenance Instructions
  for correct orientation of FIREBAR elements. This is
  important in air applications with customer-supplied
  circulation tanks. Correct element orientation to flow
  minimizes pressure drop and increases buoyancy force
  and heater performance.



# Extended Capabilities For WATROD and FIREBAR ANSI Flange Immersion Heaters

### **Options**

#### **Enclosure Enhancements**

- Enclosure heater to solve condensation and freeze problems.
- Power distribution blocks to facilitate power feed line wiring.

#### **RTDs**

If the process requires greater temperature sensing accuracy than is possible with thermocouples, Watlow can also supply RTDs in DIN or JIS calibrations. Contact your Watlow representative for details.

#### **Wattages and Voltages**

If required, Watlow will make heaters with voltage up to 600VAC and wattage beyond one megawatt. For more information on special voltage and wattage configurations, contact your Watlow representative.

#### **Sheath Materials**

The following sheath materials are available on WATROD and FIREBAR flange heaters:

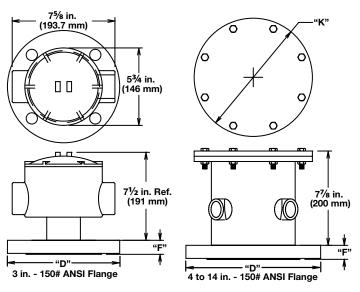
### **Extended Sheath Materials**

| WATROD  | Titanium          |
|---------|-------------------|
|         | 304 and 321 SS    |
|         | Hastelloy C276    |
|         | Alloy 400 and 600 |
| FIREBAR | 304 SS            |

#### **Flanges**

#### Flange Materials

| i lange materials |                     |
|-------------------|---------------------|
| Extended          | Exotic materials to |
|                   | meet specific       |
|                   | application needs ① |


#### **Pressure Classes**

| Extended | Over 600 lb ① |
|----------|---------------|

1) Contact your Watlow representative

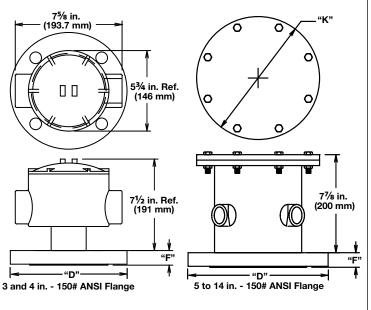
# WATROD and FIREBAR ANSI Flange Immersion Heaters

### Optional Moisture/Explosion Resistant Enclosure Without Thermostat



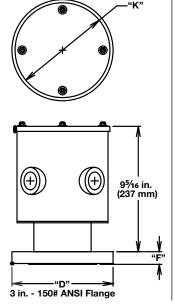
#### **Terminal Enclosure Dimensions**

**General Purpose & Moisture Resistant Enclosures** 

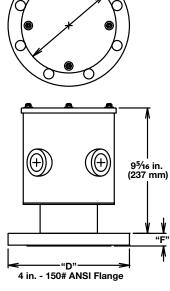

| ANSI Flange<br>Size<br>in. | Thickness in. (mm) |        | "K"<br>With<br>Thermostat | "K"<br>Without<br>Thermostat | "D"<br>in. (mm) |         |
|----------------------------|--------------------|--------|---------------------------|------------------------------|-----------------|---------|
| 3                          | <sup>15</sup> /16  | (23.8) | 5 <sup>3</sup> /4 (146)   | See heater dwg.              | 71/             | 2 (191) |
| 4                          | <sup>15</sup> /16  | (23.8) | 5 <sup>3</sup> /4 (146)   | See heater dwg.              | 9               | (229)   |

Note: 5 thru 12 in. (127 thru 305 mm) flange dimensions are on catalog heater drawings.

Moisture/Explosion Resistant Enclosures


| ANSI Flange<br>Size<br>in. | "F"<br>Thickness<br>in. (mm)         | "K"<br>With<br>Thermostat  | "K"<br>Without<br>Thermostat           | "D"<br>in. (mm)                      |
|----------------------------|--------------------------------------|----------------------------|----------------------------------------|--------------------------------------|
| 3                          | <sup>15</sup> /16 (23.8)             | N/A                        | N/A                                    | 7 <sup>1</sup> /2 (191)              |
| 4                          | <sup>15</sup> /16 (23.8)             | N/A                        | 7 <sup>7</sup> /8 (200.0)              | 9 (229)                              |
| 5                          | <sup>15</sup> /16 (23.8)             | 8 <sup>7</sup> /8 (225.4)  | 8 <sup>7</sup> /8 (225.4)              | 10 (254)                             |
| 6                          | 1 (25.0)                             | 9 <sup>7</sup> /8 (250.8)  | 9 <sup>7</sup> /8 (250.8)              | 11 (280)                             |
| 8                          | 1 <sup>1</sup> /8 (28.6)             | 12 <sup>1</sup> /8 (308.0) | 12 <sup>1</sup> /8 (308.0)             | 13 <sup>1</sup> / <sub>2</sub> (343) |
| 10                         | 1 <sup>3</sup> /16 (30.2)            | 14 <sup>5</sup> /8 (371.5) | 14 <sup>5</sup> /8 (371.5)             | 16 (407)                             |
| 12                         | 1 <sup>1</sup> / <sub>4</sub> (32.0) | 17 <sup>1</sup> /4 (438.0) | 17 <sup>1</sup> / <sub>4</sub> (438.0) | 19 (483)                             |
| 14                         | 1 <sup>3</sup> /8 (34.9)             | 19 <sup>3</sup> /8 (492.1) | 19 <sup>3</sup> /8 (492.1)             | 21 (534)                             |

## Optional Moisture/Explosion Resistant Enclosure With Thermostat




To order: Reference the Ordering Information on page 306

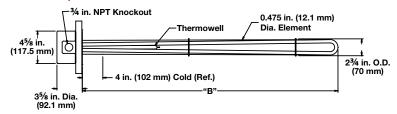
### Optional General Purpose/Moisture Resistant Enclosure With Thermostat



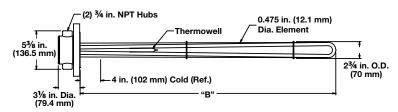
### Optional Moisture Resistant Enclosure With Thermostat



**Note:** Dimensions for all 5 to 14 in. flange heaters with General Purpose or Moisture Resistant Enclosure with thermostats are identical to units supplied without thermostats.


## WATROD and FIREBAR ANSI Flange Immersion Heaters




### **Application: Clean Water**

- 3 inch 150 lb ANSI flange.
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures
- Single circuit

#### **General Purpose**



#### **Moisture Resistant**



| Description                 | Volte | 1-347 | Di |                                | Dim.   |     | Wt.  | Part               | Del  | Part               | D.d. |
|-----------------------------|-------|-------|----|--------------------------------|--------|-----|------|--------------------|------|--------------------|------|
| Description                 | Volts | kW    | Ph | in.                            | (mm)   | lbs | (kg) | Number             | Del. | Number             | Del. |
| 00 14/2 - 2                 |       |       |    | 1 4.                           |        | l   |      | General Purpose En | 1    | Moisture-Resistant |      |
| 60 W/in²                    | 120   | 6.0   | 1  | 15 <sup>1</sup> /2             | (394)  | 22  | (10) | FMN715J10S         | RS   | FMN715J10W         | RS   |
| Steel Flange<br>3-Alloy 800 | 240   | 6.0   | 3  | 15 <sup>1</sup> /2             | (394)  | 22  | (10) | FMN715J3S          | RS   | FMN715J3W          | RS   |
| Elements                    | 480   | 6.0   | 1  | 15 <sup>1</sup> /2             | (394)  | 22  | (10) | FMN715J11S         | RS   | FMN715J11W         | RS   |
| (9.3 W/cm²)                 | 480   | 6.0   | 3  | 15 <sup>1</sup> /2             | (394)  | 22  | (10) | FMN715J5S          | RS   | FMN715J5W          | RS   |
|                             | 120   | 9.0   | 1  | 21 <sup>1</sup> /2             | (546)  | 25  | (12) | FMN721J10S         | RS   | FMN721J10W         | RS   |
|                             | 240   | 9.0   | 3  | 21 <sup>1</sup> /2             | (546)  | 25  | (12) | FMN721J3S          | RS   | FMN721J3W          | RS   |
|                             | 480   | 9.0   | 1  | 21 <sup>1</sup> /2             | (546)  | 25  | (12) | FMN721J11S         | RS   | FMN721J11W         | RS   |
|                             | 480   | 9.0   | 3  | 21 <sup>1</sup> / <sub>2</sub> | (546)  | 25  | (12) | FMN721J5S          | RS   | FMN721J5W          | RS   |
|                             | 240   | 12.0  | 3  | 27                             | (686)  | 27  | (13) | FMN727A3S          | RS   | FMN727A3W          | RS   |
|                             | 480   | 12.0  | 1  | 27                             | (686)  | 27  | (13) | FMN727A11S         | RS   | FMN727A11W         | RS   |
|                             | 480   | 12.0  | 3  | 27                             | (686)  | 27  | (13) | FMN727A5S          | RS   | FMN727A5W          | RS   |
|                             | 240   | 15.0  | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 28  | (13) | FMN732J3S          | RS   | FMN732J3W          | RS   |
|                             | 480   | 15.0  | 1  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 28  | (13) | FMN732J11S         | RS   | FMN732J11W         | RS   |
|                             | 480   | 15.0  | 3  | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 28  | (13) | FMN732J5S          | RS   | FMN732J5W          | RS   |
|                             | 240   | 18.0  | 3  | 38                             | (965)  | 30  | (14) | FMN738A3S          | RS   | FMN738A3W          | RS   |
|                             | 480   | 18.0  | 1  | 38                             | (965)  | 30  | (14) | FMN738A11S         | RS   | FMN738A11W         | RS   |
|                             | 480   | 18.0  | 3  | 38                             | (965)  | 30  | (14) | FMN738A5S          | RS   | FMN738A5W          | RS   |
|                             | 480   | 25.0  | 1  | 51                             | (1295) | 34  | (16) | FMN751A11S         | RS   | FMN751A11W         | RS   |
|                             | 480   | 25.0  | 3  | 51                             | (1295) | 34  | (16) | FMN751A5S          | RS   | FMN751A5W          | RS   |
|                             | 480   | 30.0  | 1  | 60 <sup>1</sup> /2             | (1537) | 36  | (17) | FMN760J11S         | М    | FMN760J11W         | RS   |
|                             | 480   | 30.0  | 3  | 60 <sup>1</sup> /2             | (1537) | 36  | (17) | FMN760J5S          | М    | FMN760J5W          | RS   |

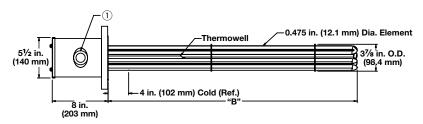


• RS - Next day shipment up to 5 pieces

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241


## **WATROD** and **FIREBAR** ANSI Flange **Immersion Heaters**



### **Application: Clean Water**

- 4 inch 150 lb ANSI flange
- WATROD element
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

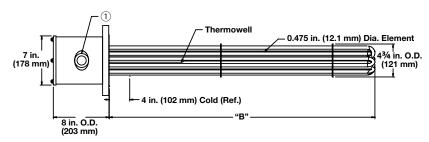
|                             |       |      |    | #     |                                | Dim.   |     | o Wt. | Part               |         | Part                 |          |
|-----------------------------|-------|------|----|-------|--------------------------------|--------|-----|-------|--------------------|---------|----------------------|----------|
| Description                 | Volts | kW   | Ph | Circ. | in.                            | (mm)   | lbs | (kg)  | Number             | Del.    | Number               | Del.     |
|                             |       |      | ,  |       |                                |        |     |       | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 60 W/in²                    | 240   | 12.0 | 1  | 2     | 15 <sup>1</sup> /2             | (394)  | 31  | (14)  | FON715J10S         | RS      | FON715J10W           | RS       |
| Steel Flange<br>6-Alloy 800 | 240   | 12.0 | 3  | 1     | 15 <sup>1</sup> /2             | (394)  | 31  | (14)  | FON715J3S          | RS      | FON715J3W            | RS       |
| Elements                    | 480   | 12.0 | 1  | 1     | 15 <sup>1</sup> /2             | (394)  | 31  | (14)  | FON715J11S         | RS      | FON715J11W           | RS       |
| (9.3 W/cm²)                 | 480   | 12.0 | 3  | 1     | 15 <sup>1</sup> /2             | (394)  | 31  | (14)  | FON715J5S          | RS      | FON715J5W            | RS       |
|                             | 240   | 18.0 | 1  | 2     | 21 <sup>1</sup> /2             | (546)  | 34  | (16)  | FON721J10S         | RS      | FON721J10W           | RS       |
|                             | 240   | 18.0 | 3  | 1     | 21 <sup>1</sup> /2             | (546)  | 34  | (16)  | FON721J3S          | RS      | FON721J3W            | RS       |
|                             | 480   | 18.0 | 1  | 1     | 21 <sup>1</sup> /2             | (546)  | 34  | (16)  | FON721J11S         | RS      | FON721J11W           | RS       |
|                             | 480   | 18.0 | 3  | 1     | 21 <sup>1</sup> / <sub>2</sub> | (546)  | 34  | (16)  | FON721J5S          | RS      | FON721J5W            | RS       |
|                             | 240   | 24.0 | 1  | 2     | 27                             | (686)  | 36  | (17)  | FON727A10S         | RS      | FON727A10W           | RS       |
|                             | 240   | 24.0 | 3  | 2     | 27                             | (686)  | 36  | (17)  | FON727A3S          | RS      | FON727A3W            | RS       |
|                             | 480   | 24.0 | 1  | 1     | 27                             | (686)  | 36  | (17)  | FON727A11S         | RS      | FON727A11W           | RS       |
|                             | 480   | 24.0 | 3  | 1     | 27                             | (686)  | 36  | (17)  | FON727A5S          | RS      | FON727A5W            | RS       |
|                             | 240   | 30.0 | 3  | 2     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 39  | (18)  | FON732J3S          | RS      | FON732J3W            | RS       |
|                             | 480   | 30.0 | 1  | 2     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 39  | (18)  | FON732J11S         | RS      | FON732J11W           | RS       |
|                             | 480   | 30.0 | 3  | 1     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 39  | (18)  | FON732J5S          | RS      | FON732J5W            | RS       |
|                             | 240   | 36.0 | 3  | 2     | 38                             | (965)  | 43  | (20)  | FON738A3S          | RS      | FON738A3W            | RS       |
|                             | 480   | 36.0 | 1  | 2     | 38                             | (965)  | 43  | (20)  | FON738A11S         | RS      | FON738A11W           | RS       |
|                             | 480   | 36.0 | 3  | 1     | 38                             | (965)  | 43  | (20)  | FON738A5S          | RS      | FON738A5W            | RS       |
|                             | 480   | 50.0 | 3  | 2     | 51                             | (1295) | 48  | (22)  | FON751A5S          | RS      | FON751A5W            | RS       |
|                             | 480   | 60.0 | 3  | 2     | 60 <sup>1</sup> / <sub>2</sub> | (1537) | 52  | (24)  | FON760J5S          | М       | FON760J5W            | М        |



 RS - Next day shipment up to 5 pieces

• M - Manufacturing lead times

- Notes: All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241


# WATROD and FIREBAR ANSI Flange Immersion Heaters



### **Application: Clean Water**

- 5 inch 150 lb ANSI flange
- WATROD element
- Without thermostat
- General purpose or moisture-resistant enclosures

## **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description             | Velte | LAM  | Dh | #     |                                | Dim.   |     | p Wt. | Part                         | Del. | Part                         | Del. |
|-------------------------|-------|------|----|-------|--------------------------------|--------|-----|-------|------------------------------|------|------------------------------|------|
| Description             | Volts | kW   | Ph | Circ. | in.                            | (mm)   | lbs | (kg)  | Number<br>General Purpose Er |      | Number<br>Moisture-Resistant |      |
| 60 W/in²                | 240   | 12.0 | 1  | 2     | 15 <sup>1</sup> /2             | (394)  | 35  | (16)  | FNN715J10S                   | RS   | FNN715J10W                   | RS   |
| Steel Flange            | 240   | 12.0 | 3  | 1     | 15 <sup>1</sup> /2             | (394)  | 35  | (16)  | FNN715J3S                    | RS   | FNN715J3W                    | RS   |
| 6-Alloy 800<br>Elements | 480   | 12.0 | 1  | 1     | 15 <sup>1</sup> /2             | (394)  | 35  | (16)  | FNN715J11S                   | RS   | FNN715J11W                   | RS   |
| (9.3 W/cm²)             | 480   | 12.0 | 3  | 1     | 15 <sup>1</sup> /2             | (394)  | 35  | (16)  | FNN715J5S                    | RS   | FNN715J5W                    | RS   |
|                         | 240   | 18.0 | 1  | 2     | 21 <sup>1</sup> /2             | (546)  | 38  | (18)  | FNN721J10S                   | RS   | FNN721J10W                   | RS   |
|                         | 240   | 18.0 | 3  | 1     | 21 <sup>1</sup> / <sub>2</sub> | (546)  | 38  | (18)  | FNN721J3S                    | RS   | FNN721J3W                    | RS   |
|                         | 480   | 18.0 | 1  | 1     | 21 <sup>1</sup> / <sub>2</sub> | (546)  | 38  | (18)  | FNN721J11S                   | RS   | FNN721J11W                   | RS   |
|                         | 480   | 18.0 | 3  | 1     | 21 <sup>1</sup> / <sub>2</sub> | (546)  | 38  | (18)  | FNN721J5S                    | RS   | FNN721J5W                    | RS   |
|                         | 240   | 24.0 | 1  | 3     | 27                             | (686)  | 40  | (19)  | FNN727A10S                   | RS   | FNN727A10W                   | RS   |
|                         | 240   | 24.0 | 3  | 2     | 27                             | (686)  | 40  | (19)  | FNN727A3S                    | RS   | FNN727A3W                    | RS   |
|                         | 480   | 24.0 | 1  | 3     | 27                             | (686)  | 40  | (19)  | FNN727A11S                   | RS   | FNN727A11W                   | RS   |
|                         | 480   | 24.0 | 3  | 1     | 27                             | (686)  | 40  | (19)  | FNN727A5S                    | RS   | FNN727A5W                    | RS   |
|                         | 240   | 30.0 | 3  | 2     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 43  | (20)  | FNN732J3S                    | RS   | FNN732J3W                    | RS   |
|                         | 480   | 30.0 | 1  | 2     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 43  | (20)  | FNN732J11S                   | RS   | FNN732J11W                   | RS   |
|                         | 480   | 30.0 | 3  | 1     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 43  | (20)  | FNN732J5S                    | RS   | FNN732J5W                    | RS   |
|                         | 240   | 36.0 | 3  | 2     | 38                             | (965)  | 47  | (22)  | FNN738A3S                    | RS   | FNN738A3W                    | RS   |
|                         | 480   | 36.0 | 1  | 2     | 38                             | (965)  | 47  | (22)  | FNN738A11S                   | RS   | FNN738A11W                   | RS   |
|                         | 480   | 36.0 | 3  | 1     | 38                             | (965)  | 47  | (22)  | FNN738A5S                    | RS   | FNN738A5W                    | RS   |
|                         | 480   | 50.0 | 3  | 2     | 51                             | (1295) | 52  | (24)  | FNN751A5S                    | RS   | FNN751A5W                    | RS   |
|                         | 480   | 60.0 | 3  | 2     | 60 <sup>1</sup> / <sub>2</sub> | (1537) | 56  | (26)  | FNN760J5S                    | М    | FNN760J5W                    | М    |



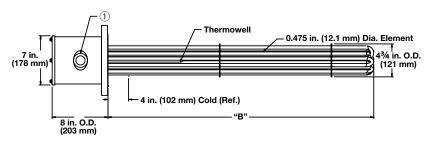
• **RS** - Next day shipment up to 5 pieces

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

■ WATLOW®


# WATROD and FIREBAR ANSI Flange Immersion Heaters



### **Application: Clean Water**

- 5 inch 150 lb ANSI flange
- WATROD element
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



 The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                             |        |       | I   | 1     | l                              |        |     |       |                    | ı    |                       | _    |
|-----------------------------|--------|-------|-----|-------|--------------------------------|--------|-----|-------|--------------------|------|-----------------------|------|
| B                           | V. II. | 1.387 | DI. | #     |                                | Dim.   |     | p Wt. | Part               |      | Part                  |      |
| Description                 | Volts  | kW    | Ph  | Circ. | in.                            | (mm)   | lbs | (kg)  | Number             | Del. | Number                | Del. |
|                             |        |       |     |       |                                |        |     |       | General Purpose En | 1    | Moisture-Resistant En |      |
| 60 W/in²                    | 240    | 18.0  | 1   | 3     | 15 <sup>1</sup> /2             | (394)  | 38  | (18)  | FNN715J10XS        | RS   | FNN715J10XW           | RS   |
| Steel Flange<br>9-Alloy 800 | 240    | 18.0  | 3   | 1     | 15 <sup>1</sup> /2             | (394)  | 38  | (18)  | FNN715J3XS         | RS   | FNN715J3XW            | RS   |
| Elements                    | 480    | 18.0  | 1   | 1     | 15 <sup>1</sup> /2             | (394)  | 38  | (18)  | FNN715J11XS        | RS   | FNN715J11XW           | RS   |
| (9.3 W/cm²)                 | 480    | 18.0  | 3   | 1     | 15 <sup>1</sup> /2             | (394)  | 38  | (18)  | FNN715J5XS         | RS   | FNN715J5XW            | RS   |
|                             | 240    | 27.0  | 1   | 3     | 21 <sup>1</sup> /2             | (546)  | 42  | (19)  | FNN721J10XS        | RS   | FNN721J10XW           | RS   |
|                             | 240    | 27.0  | 3   | 3     | 21 <sup>1</sup> / <sub>2</sub> | (546)  | 42  | (19)  | FNN721J3XS         | RS   | FNN721J3XW            | RS   |
|                             | 480    | 27.0  | 1   | 3     | 21 <sup>1</sup> /2             | (546)  | 42  | (19)  | FNN721J11XS        | RS   | FNN721J11XW           | RS   |
|                             | 480    | 27.0  | 3   | 1     | 21 <sup>1</sup> /2             | (546)  | 42  | (19)  | FNN721J5XS         | RS   | FNN721J5XW            | RS   |
|                             | 240    | 36.0  | 3   | 3     | 27                             | (686)  | 45  | (21)  | FNN727A3XS         | RS   | FNN727A3XW            | RS   |
|                             | 480    | 36.0  | 1   | 3     | 27                             | (686)  | 45  | (21)  | FNN727A11XS        | RS   | FNN727A11XW           | RS   |
|                             | 480    | 36.0  | 3   | 1     | 27                             | (686)  | 45  | (21)  | FNN727A5XS         | RS   | FNN727A5XW            | RS   |
|                             | 240    | 45.0  | 3   | 3     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 48  | (22)  | FNN732J3XS         | RS   | FNN732J3XW            | RS   |
|                             | 480    | 45.0  | 1   | 3     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 48  | (22)  | FNN732J11XS        | RS   | FNN732J11XW           | RS   |
|                             | 480    | 45.0  | 3   | 3     | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 48  | (22)  | FNN732J5XS         | RS   | FNN732J5XW            | RS   |
|                             | 240    | 54.0  | 3   | 3     | 38                             | (965)  | 53  | (24)  | FNN738A3XS         | RS   | FNN738A3XW            | RS   |
|                             | 480    | 54.0  | 1   | 3     | 38                             | (965)  | 53  | (24)  | FNN738A11XS        | RS   | FNN738A11XW           | RS   |
|                             | 480    | 54.0  | 3   | 3     | 38                             | (965)  | 53  | (24)  | FNN738A5XS         | RS   | FNN738A5XW            | RS   |
|                             | 480    | 75.0  | 3   | 3     | 51                             | (1295) | 60  | (28)  | FNN751A5XS         | RS   | FNN751A5XW            | RS   |
|                             | 480    | 90.0  | 3   | 3     | 60 <sup>1</sup> /2             | (1537) | 66  | (30)  | FNN760J5XS         | М    | FNN760J5XW            | М    |

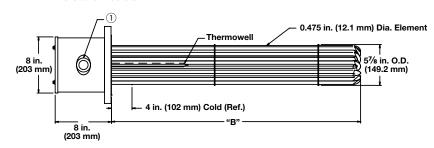


up to 5 pieces

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241


# WATROD and FIREBAR ANSI Flange Immersion Heaters



### **Application: Clean Water**

- 6 inch 150 lb ANSI flange
- WATROD element
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                         | 1     | ı     |      | 1          | l                  |          |                          |               |                     | ı    |                | 1    |
|-------------------------|-------|-------|------|------------|--------------------|----------|--------------------------|---------------|---------------------|------|----------------|------|
| Description             | Volts | kW    | Ph   | #<br>Circ. | "B"<br>in.         | Dim.     | Shi <sub>l</sub><br> Ibs | p Wt.<br>(kg) | Part<br>Number      | Del. | Part<br>Number | Del. |
| Description             | Volts | KVV   | 1111 | Oli C.     | 1111               | (11111)  | IDS                      | (NG)          | General Purpose End |      |                |      |
| 60 W/in²                | 240   | 24.0  | 1    | 3          | 15 <sup>3</sup> /8 | (390.5)  | 73                       | (33)          | FPN715G10S          | RS   | FPN715G10W     | RS   |
| Steel Flange            | 240   | 24.0  | 3    | 2          | 15 <sup>3</sup> /8 | (390.5)  | 73                       | ( /           | FPN715G3S           | RS   | FPN715G3W      | RS   |
| 12-Alloy 800            | 480   | 24.0  | 1    | 2          | 15 <sup>3</sup> /8 | (390.5)  | 73                       | . ,           | FPN715G11S          | RS   | FPN715G11W     | RS   |
| Elements<br>(9.3 W/cm²) | 480   | 24.0  | 3    | 1          | 15 <sup>3</sup> /8 | (390.5)  | 73                       | ( /           | FPN715G5S           | RS   | FPN715G5W      | RS   |
| (6.6 11, 6.11 )         | 240   | 36.0  | 1    | 4          | 21 <sup>3</sup> /8 | (542.9)  | 78                       | ( /           | FPN721G10S          | M    | FPN721G10W     | M    |
|                         | 240   | 36.0  | 3    | 2          | 21 <sup>3</sup> /8 | (542.9)  | 78                       | . ,           | FPN721G103          | M    | FPN721G3W      | M    |
|                         | 480   | 36.0  | 1    | 2          | 21 <sup>3</sup> /8 | (542.9)  | 78                       | ( /           | FPN721G33           | M    | FPN721G3W      | M    |
|                         |       |       |      |            | 21 <sup>3</sup> /8 | , ,      |                          | ()            |                     |      |                |      |
|                         | 480   | 36.0  | 3    | 1          |                    | (542.9)  | 78                       | . ,           | FPN721G5S           | M    | FPN721G5W      | M    |
|                         | 240   | 48.0  | 3    | 4          | 26 <sup>7</sup> /8 | (682.6)  | 81                       | (- /          | FPN726R3S           | М    | FPN726R3W      | М    |
|                         | 480   | 48.0  | 1    | 3          | 26 <sup>7</sup> /8 | (682.6)  | 81                       | (37)          | FPN726R11S          | М    | FPN726R11W     | М    |
|                         | 480   | 48.0  | 3    | 2          | 26 <sup>7</sup> /8 | (682.6)  | 81                       | (37)          | FPN726R5S           | М    | FPN726R5W      | М    |
|                         | 240   | 60.0  | 3    | 4          | 32 <sup>3</sup> /8 | (822.3)  | 85                       | (39)          | FPN732G3S           | М    | FPN732G3W      | М    |
|                         | 480   | 60.0  | 1    | 3          | 32 <sup>3</sup> /8 | (822.3)  | 85                       | (39)          | FPN732G11S          | М    | FPN732G11W     | М    |
|                         | 480   | 60.0  | 3    | 2          | 32 <sup>3</sup> /8 | (822.3)  | 85                       | (39)          | FPN732G5S           | М    | FPN732G5W      | М    |
|                         | 240   | 72.0  | 3    | 4          | 37 <sup>7</sup> /8 | (962.0)  | 92                       | (42)          | FPN737R3S           | М    | FPN737R3W      | М    |
|                         | 480   | 72.0  | 3    | 2          | 37 <sup>7</sup> /8 | (962.0)  | 92                       | (42)          | FPN737R5S           | М    | FPN737R5W      | М    |
|                         | 480   | 100.0 | 3    | 4          | 50 <sup>7</sup> /8 | (1292.2) | 100                      | (45)          | FPN750R5S           | М    | FPN750R5W      | М    |
|                         | 480   | 120.0 | 3    | 4          | 60 <sup>3</sup> /8 | (1533.5) | 110                      | (50)          | FPN760G5S           | М    | FPN760G5W      | М    |

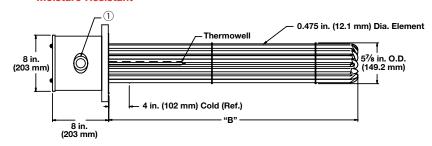


- RS Next day shipment up to 2 pieces
- M Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters



### **Application: Clean Water**

- 6 inch 150 lb ANSI flange
- WATROD element
- Without thermostat
- General purpose or moisture-resistant enclosures

## **General Purpose and Moisture Resistant**



 The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                              |       |       |    | #     | "B"                | Dim.     | Ship | Wt.  | Part               |         | Part                 |          |
|------------------------------|-------|-------|----|-------|--------------------|----------|------|------|--------------------|---------|----------------------|----------|
| Description                  | Volts | kW    | Ph | Circ. | in.                | (mm)     | lbs  | (kg) | Number             | Del.    | Number               | Del.     |
|                              |       |       |    |       |                    |          |      |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 60 W/in²                     | 240   | 30.0  | 1  | 3     | 15 <sup>3</sup> /8 | (390.5)  | 76   | (35) | FPN715G10XS        | М       | FPN715G10XW          | М        |
| Steel Flange<br>15-Alloy 800 | 240   | 30.0  | 3  | 5     | 15 <sup>3</sup> /8 | (390.5)  | 76   | (35) | FPN715G3XS         | М       | FPN715G3XW           | М        |
| Elements                     | 480   | 30.0  | 1  | 3     | 15 <sup>3</sup> /8 | (390.5)  | 76   | (35) | FPN715G11XS        | М       | FPN715G11XW          | М        |
| (9.3 W/cm²)                  | 480   | 30.0  | 3  | 1     | 15 <sup>3</sup> /8 | (390.5)  | 76   | (35) | FPN715G5XS         | М       | FPN715G5XW           | М        |
|                              | 240   | 45.0  | 1  | 5     | 21 <sup>3</sup> /8 | (542.9)  | 82   | (38) | FPN721G10XS        | М       | FPN721G10XW          | М        |
|                              | 240   | 45.0  | 3  | 5     | 21 <sup>3</sup> /8 | (542.9)  | 82   | (38) | FPN721G3XS         | М       | FPN721G3XW           | М        |
|                              | 480   | 45.0  | 1  | 3     | 21 <sup>3</sup> /8 | (542.9)  | 82   | (38) | FPN721G11XS        | М       | FPN721G11XW          | М        |
|                              | 480   | 45.0  | 3  | 5     | 21 <sup>3</sup> /8 | (542.9)  | 82   | (38) | FPN721G5XS         | М       | FPN721G5XW           | М        |
|                              | 240   | 60.0  | 3  | 5     | 26 <sup>7</sup> /8 | (682.6)  | 85   | (39) | FPN726R3XS         | М       | FPN726R3XW           | М        |
|                              | 480   | 60.0  | 1  | 3     | 26 <sup>7</sup> /8 | (682.6)  | 85   | (39) | FPN726R11XS        | М       | FPN726R11XW          | М        |
|                              | 480   | 60.0  | 3  | 5     | 26 <sup>7</sup> /8 | (682.6)  | 85   | (39) | FPN726R5XS         | М       | FPN726R5XW           | М        |
|                              | 240   | 75.0  | 3  | 5     | 32 <sup>3</sup> /8 | (822.3)  | 90   | (41) | FPN732G3XS         | М       | FPN732G3XW           | М        |
|                              | 480   | 75.0  | 1  | 5     | 32 <sup>3</sup> /8 | (822.3)  | 90   | (41) | FPN732G11XS        | М       | FPN732G11XW          | М        |
|                              | 480   | 75.0  | 3  | 5     | 32 <sup>3</sup> /8 | (822.3)  | 90   | (41) | FPN732G5XS         | М       | FPN732G5XW           | М        |
|                              | 240   | 90.0  | 3  | 5     | 37 <sup>7</sup> /8 | (962.0)  | 98   | (45) | FPN737R3XS         | М       | FPN737R3XW           | М        |
|                              | 480   | 90.0  | 3  | 5     | 37 <sup>7</sup> /8 | (962.0)  | 98   | (45) | FPN737R5XS         | М       | FPN737R5XW           | М        |
|                              | 480   | 125.0 | 3  | 5     | 50 <sup>7</sup> /8 | (1292.2) | 108  | (49) | FPN750R5XS         | М       | FPN750R5XW           | М        |
|                              | 480   | 150.0 | 3  | 5     | 60 <sup>3</sup> /8 | (1533.5) | 120  | (55) | FPN760G5XS         | М       | FPN760G5XW           | М        |

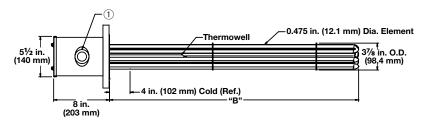
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only

**WATLOW**<sup>®</sup> 249


# WATROD and FIREBAR ANSI Flange Immersion Heaters



### Application: Deionized or Demineralized Water

- 4 inch 150 lb ANSI flange
- WATROD element
- Without thermostat
- General purpose or moisture-resistant enclosures

## **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

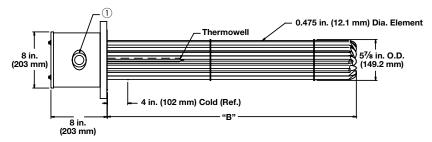
| Description                        | Volts | kW   | Ph | #<br>Circ. | "B" l<br>in.                   | Dim.<br>(mm) | Ship Wt<br>lbs (k |    | Part<br>Number     | Del. | Part<br>Number       | Del. |
|------------------------------------|-------|------|----|------------|--------------------------------|--------------|-------------------|----|--------------------|------|----------------------|------|
| Description                        | VOILS | 1000 |    | 0110.      |                                | (11111)      | n) cai            | 9) | General Purpose Er | _ =  | Moisture-Resistant E |      |
| 60 W/in <sup>2</sup>               | 240   | 12.0 | 1  | 2          | 16                             | (406)        | 31 (14            | )  | FOR716A10S         | RS   | FOR716A10W           | RS   |
| 316 SS Flange<br>6-316 SS Elements | 240   | 12.0 | 3  | 1          | 16                             | (406)        | 31 (14            | )  | FOR716A3S          | RS   | FOR716A3W            | RS   |
| (9.3 W/cm²)                        | 480   | 12.0 | 1  | 1          | 16                             | (406)        | 31 (14            | )  | FOR716A11S         | RS   | FOR716A11W           | RS   |
| Passivated                         | 480   | 12.0 | 3  | 1          | 16                             | (406)        | 31 (14            | )  | FOR716A5S          | RS   | FOR716A5W            | RS   |
|                                    | 240   | 18.0 | 1  | 2          | 22                             | (559)        | 34 (16            | )  | FOR722A10S         | RS   | FOR722A10W           | RS   |
|                                    | 240   | 18.0 | 3  | 1          | 22                             | (559)        | 34 (16            | )  | FOR722A3S          | RS   | FOR722A3W            | RS   |
|                                    | 480   | 18.0 | 1  | 1          | 22                             | (559)        | 34 (16            | )  | FOR722A11S         | RS   | FOR722A11W           | RS   |
|                                    | 480   | 18.0 | 3  | 1          | 22                             | (559)        | 34 (16            | )  | FOR722A5S          | RS   | FOR722A5W            | RS   |
|                                    | 240   | 24.0 | 1  | 2          | 27 <sup>1</sup> /2             | (699)        | 36 (17            | )  | FOR727J10S         | RS   | FOR727J10W           | RS   |
|                                    | 240   | 24.0 | 3  | 2          | 27 <sup>1</sup> /2             | (699)        | 36 (17            | )  | FOR727J3S          | RS   | FOR727J3W            | RS   |
|                                    | 480   | 24.0 | 1  | 1          | 27 <sup>1</sup> /2             | (699)        | 36 (17            | )  | FOR727J11S         | RS   | FOR727J11W           | RS   |
|                                    | 480   | 24.0 | 3  | 1          | 27 <sup>1</sup> /2             | (699)        | 36 (17            | )  | FOR727J5S          | RS   | FOR727J5W            | RS   |
|                                    | 240   | 30.0 | 3  | 2          | 33                             | (838)        | 39 (18            | )  | FOR733A3S          | RS   | FOR733A3W            | RS   |
|                                    | 480   | 30.0 | 1  | 2          | 33                             | (838)        | 39 (18            | )  | FOR733A11S         | RS   | FOR733A11W           | RS   |
|                                    | 480   | 30.0 | 3  | 1          | 33                             | (838)        | 39 (18            | )  | FOR733A5S          | RS   | FOR733A5W            | RS   |
|                                    | 240   | 36.0 | 3  | 2          | 38 <sup>1</sup> / <sub>2</sub> | (978)        | 43 (20)           | )  | FOR738J3S          | RS   | FOR738J3W            | RS   |
|                                    | 480   | 36.0 | 1  | 2          | 38 <sup>1</sup> / <sub>2</sub> | (978)        | 43 (20)           | )  | FOR738J11S         | RS   | FOR738J11W           | RS   |
|                                    | 480   | 36.0 | 3  | 1          | 38 <sup>1</sup> / <sub>2</sub> | (978)        | 43 (20)           | )  | FOR738J5S          | RS   | FOR738J5W            | RS   |
|                                    | 480   | 50.0 | 3  | 2          | 51 <sup>1</sup> /2             | (1308)       | 48 (22            | )  | FOR751J5S          | RS   | FOR751J5W            | RS   |
|                                    | 480   | 60.0 | 3  | 2          | 61                             | (1549)       | 52 (24            | )  | FOR761A5S          | RS   | FOR761A5W            | RS   |



• **RS** - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241


# WATROD and FIREBAR ANSI Flange Immersion Heaters



### Application: Deionized or Demineralized Water

- 6 inch 150 lb ANSI flange
- WATROD element
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                         | Volts | kW    | Ph | #<br>Circ. | "B"                            | Dim.<br>(mm) | Ship<br>lbs | Wt.<br>(kg) | Part<br>Number     | Del.    | Part<br>Number       | Del.      |
|-------------------------------------|-------|-------|----|------------|--------------------------------|--------------|-------------|-------------|--------------------|---------|----------------------|-----------|
|                                     |       |       |    |            | 1                              | ()           |             | (3)         | General Purpose En | closure | Moisture-Resistant E | Enclosure |
| 60 W/in <sup>2</sup>                | 240   | 24.0  | 1  | 3          | 15 <sup>3</sup> /4             | (400)        | 73          | (33)        | FPR715N10S         | RS      | FPR715N10W           | RS        |
| 316 SS Flange<br>12-316 SS Elements | 240   | 24.0  | 3  | 2          | 15 <sup>3</sup> /4             | (400)        | 73          | (33)        | FPR715N3S          | RS      | FPR715N3W            | RS        |
| (9.3 W/cm²)                         | 480   | 24.0  | 1  | 2          | 15 <sup>3</sup> /4             | (400)        | 73          | (33)        | FPR715N11S         | RS      | FPR715N11W           | RS        |
| (Passivated)                        | 480   | 24.0  | 3  | 1          | 15 <sup>3</sup> /4             | (400)        | 73          | (33)        | FPR715N5S          | RS      | FPR715N5W            | RS        |
|                                     | 240   | 36.0  | 1  | 4          | 21 <sup>3</sup> /4             | (552)        | 78          | (36)        | FPR721N10S         | М       | FPR721N10W           | М         |
|                                     | 240   | 36.0  | 3  | 2          | 21 <sup>3</sup> /4             | (552)        | 78          | (36)        | FPR721N3S          | М       | FPR721N3W            | М         |
|                                     | 480   | 36.0  | 1  | 2          | 21 <sup>3</sup> /4             | (552)        | 78          | (36)        | FPR721N11S         | М       | FPR721N11W           | М         |
|                                     | 480   | 36.0  | 3  | 1          | 21 <sup>3</sup> /4             | (552)        | 78          | (36)        | FPR721N5S          | М       | FPR721N5W            | М         |
|                                     | 240   | 48.0  | 3  | 4          | 27 <sup>1</sup> /4             | (692)        | 81          | (37)        | FPR727E3S          | М       | FPR727E3W            | М         |
|                                     | 480   | 48.0  | 1  | 3          | 27 <sup>1</sup> / <sub>4</sub> | (692)        | 81          | (37)        | FPR727E11S         | М       | FPR727E11W           | М         |
|                                     | 480   | 48.0  | 3  | 2          | 27 <sup>1</sup> /4             | (692)        | 81          | (37)        | FPR727E5S          | М       | FPR727E5W            | М         |
|                                     | 240   | 60.0  | 3  | 4          | 323/4                          | (832)        | 85          | (39)        | FPR732N3S          | М       | FPR732N3W            | М         |
|                                     | 480   | 60.0  | 1  | 3          | 323/4                          | (832)        | 85          | (39)        | FPR732N11S         | М       | FPR732N11W           | М         |
|                                     | 480   | 60.0  | 3  | 2          | 323/4                          | (832)        | 85          | (39)        | FPR732N5S          | М       | FPR732N5W            | М         |
|                                     | 240   | 72.0  | 3  | 4          | 38 <sup>1</sup> / <sub>4</sub> | (972)        | 92          | (42)        | FPR738E3S          | М       | FPR738E3W            | М         |
|                                     | 480   | 72.0  | 3  | 2          | 38 <sup>1</sup> / <sub>4</sub> | (972)        | 92          | (42)        | FPR738E5S          | М       | FPR738E5W            | М         |
|                                     | 480   | 100.0 | 3  | 4          | 51 <sup>1</sup> /4             | (1302)       | 100         | (45)        | FPR751E5S          | М       | FPR751E5W            | М         |
|                                     | 480   | 120.0 | 3  | 4          | 60 <sup>3</sup> /4             | (1543)       | 110         | (50)        | FPR760N5S          | М       | FPR760N5W            | М         |



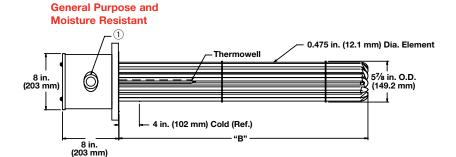
 RS - Next day shipment up to 2 pieces

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 251

# WATROD and FIREBAR ANSI Flange Immersion Heaters



### Application: Deionized or Demineralized Water

- 6 inch 150 lb ANSI flange
- WATROD element
- Without thermostat
- General purpose or moisture-resistant enclosures



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

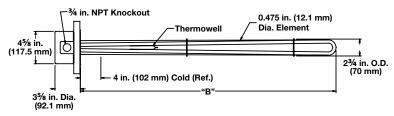
| Description                         | Volts | kW    | Ph | #<br>Circ. | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number     | Del.     | Part<br>Number       | Del.     |
|-------------------------------------|-------|-------|----|------------|--------------------------------|--------------|-------------|-------------|--------------------|----------|----------------------|----------|
|                                     |       |       |    | '          | •                              |              |             |             | General Purpose Er | nclosure | Moisture-Resistant E | nclosure |
| 60 W/in²                            | 240   | 30.0  | 1  | 3          | 15 <sup>3</sup> /4             | (400)        | 76          | (35)        | FPR715N10XS        | М        | FPR715N10XW          | М        |
| 316 SS Flange<br>15-316 SS Elements | 240   | 30.0  | 3  | 5          | 15 <sup>3</sup> /4             | (400)        | 76          | (35)        | FPR715N3XS         | М        | FPR715N3XW           | М        |
| (9.3 W/cm²)                         | 480   | 30.0  | 1  | 3          | 15 <sup>3</sup> /4             | (400)        | 76          | (35)        | FPR715N11XS        | М        | FPR715N11XW          | М        |
| (Passivated)                        | 480   | 30.0  | 3  | 1          | 15 <sup>3</sup> /4             | (400)        | 76          | (35)        | FPR715N5XS         | М        | FPR715N5XW           | М        |
|                                     | 240   | 45.0  | 1  | 5          | 21 <sup>3</sup> / <sub>4</sub> | (552)        | 82          | (38)        | FPR721N10XS        | М        | FPR721N10XW          | М        |
|                                     | 240   | 45.0  | 3  | 5          | 21 <sup>3</sup> / <sub>4</sub> | (552)        | 82          | (38)        | FPR721N3XS         | М        | FPR721N3XW           | М        |
|                                     | 480   | 45.0  | 1  | 3          | 21 <sup>3</sup> / <sub>4</sub> | (552)        | 82          | (38)        | FPR721N11XS        | М        | FPR721N11XW          | М        |
|                                     | 480   | 45.0  | 3  | 5          | 21 <sup>3</sup> / <sub>4</sub> | (552)        | 82          | (38)        | FPR721N5XS         | М        | FPR721N5XW           | М        |
|                                     | 240   | 60.0  | 3  | 5          | 27 <sup>1</sup> / <sub>4</sub> | (692)        | 85          | (39)        | FPR727E3XS         | М        | FPR727E3XW           | М        |
|                                     | 480   | 60.0  | 1  | 3          | 27 <sup>1</sup> / <sub>4</sub> | (692)        | 85          | (39)        | FPR727E11XS        | М        | FPR727E11XW          | М        |
|                                     | 480   | 60.0  | 3  | 5          | 27 <sup>1</sup> / <sub>4</sub> | (692)        | 85          | (39)        | FPR727E5XS         | М        | FPR727E5XW           | М        |
|                                     | 240   | 75.0  | 3  | 5          | 32 <sup>3</sup> /4             | (832)        | 90          | (41)        | FPR732N3XS         | М        | FPR732N3XW           | М        |
|                                     | 480   | 75.0  | 1  | 5          | 32 <sup>3</sup> /4             | (832)        | 90          | (41)        | FPR732N11XS        | М        | FPR732N11XW          | М        |
|                                     | 480   | 75.0  | 3  | 5          | 32 <sup>3</sup> /4             | (832)        | 90          | (41)        | FPR732N5XS         | М        | FPR732N5XW           | М        |
|                                     | 240   | 90.0  | 3  | 5          | 38 <sup>1</sup> / <sub>4</sub> | (972)        | 98          | (45)        | FPR738E3XS         | М        | FPR738E3XW           | М        |
|                                     | 480   | 90.0  | 3  | 5          | 38 <sup>1</sup> / <sub>4</sub> | (972)        | 98          | (45)        | FPR738E5XS         | М        | FPR738E5XW           | М        |
|                                     | 480   | 125.0 | 3  | 5          | 51 <sup>1</sup> /4             | (1302)       | 108         | (49)        | FPR751E5XS         | М        | FPR751E5XW           | М        |
|                                     | 480   | 150.0 | 3  | 5          | 60 <sup>3</sup> / <sub>4</sub> | (1543)       | 120         | (55)        | FPR760N5XS         | М        | FPR760N5XW           | М        |

• M - Manufacturing lead times

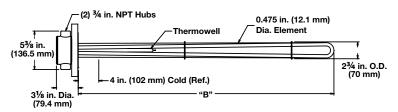
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




#### **Application: Process Water**

- 3 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures
- Single circuit

#### **General Purpose**



#### **Moisture Resistant**

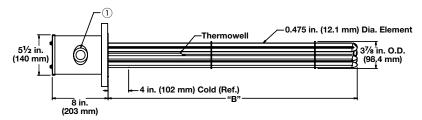


|                             |       |      |    | "B"                            | Dim.   | Ship | Wt.  | Part                |        | Part                  |          |
|-----------------------------|-------|------|----|--------------------------------|--------|------|------|---------------------|--------|-----------------------|----------|
| Description                 | Volts | kW   | Ph | in.                            | (mm)   | lbs  | (kg) | Number              | Del.   | Number                | Del.     |
|                             |       |      |    |                                |        |      |      | General Purpose End | losure | Moisture-Resistant Er | nclosure |
| 48 W/in² ⑥                  | 240   | 4.5  | 1  | 13 <sup>1</sup> /2             | (343)  | 22   | (10) | FMN713J10S          | RS     | FMN713J10W            | RS       |
| Steel Flange<br>3-Alloy 800 | 240   | 4.5  | 3  | 13 <sup>1</sup> /2             | (343)  | 22   | (10) | FMN713J3S           | RS     | FMN713J3W             | RS       |
| Elements                    | 480   | 4.5  | 1  | 13 <sup>1</sup> /2             | (343)  | 22   | (10) | FMN713J11S          | RS     | FMN713J11W            | RS       |
| (7.5 W/cm²)                 | 480   | 4.5  | 3  | 13 <sup>1</sup> /2             | (343)  | 22   | (10) | FMN713J5S           | RS     | FMN713J5W             | RS       |
|                             | 240   | 6.0  | 1  | 18                             | (457)  | 23   | (11) | FMN718A10S          | RS     | FMN718A10W            | RS       |
|                             | 240   | 6.0  | 3  | 18                             | (457)  | 23   | (11) | FMN718A3S           | RS     | FMN718A3W             | RS       |
|                             | 480   | 6.0  | 1  | 18                             | (457)  | 23   | (11) | FMN718A11S          | RS     | FMN718A11W            | RS       |
|                             | 480   | 6.0  | 3  | 18                             | (457)  | 23   | (11) | FMN718A5S           | RS     | FMN718A5W             | RS       |
|                             | 240   | 7.5  | 1  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 25   | (12) | FMN720J10S          | RS     | FMN720J10W            | RS       |
|                             | 240   | 7.5  | 3  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 25   | (12) | FMN720J3S           | RS     | FMN720J3W             | RS       |
|                             | 480   | 7.5  | 1  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 25   | (12) | FMN720J11S          | RS     | FMN720J11W            | RS       |
|                             | 480   | 7.5  | 3  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 25   | (12) | FMN720J5S           | RS     | FMN720J5W             | RS       |
|                             | 240   | 9.0  | 1  | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 27   | (13) | FMN725J10S          | RS     | FMN725J10W            | RS       |
|                             | 240   | 9.0  | 3  | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 27   | (13) | FMN725J3S           | RS     | FMN725J3W             | RS       |
|                             | 480   | 9.0  | 1  | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 27   | (13) | FMN725J11S          | RS     | FMN725J11W            | RS       |
|                             | 480   | 9.0  | 3  | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 27   | (13) | FMN725J5S           | RS     | FMN725J5W             | RS       |
|                             | 240   | 12.0 | 3  | 33                             | (838)  | 28   | (13) | FMN733A3S           | RS     | FMN733A3W             | RS       |
|                             | 480   | 12.0 | 1  | 33                             | (838)  | 28   | (13) | FMN733A11S          | RS     | FMN733A11W            | RS       |
|                             | 480   | 12.0 | 3  | 33                             | (838)  | 28   | (13) | FMN733A5S           | RS     | FMN733A5W             | RS       |
|                             | 240   | 15.0 | 3  | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 30   | (14) | FMN740J3S           | RS     | FMN740J3W             | RS       |
|                             | 480   | 15.0 | 1  | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 30   | (14) | FMN740J11S          | RS     | FMN740J11W            | RS       |
|                             | 480   | 15.0 | 3  | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 30   | (14) | FMN740J5S           | RS     | FMN740J5W             | RS       |
|                             | 240   | 18.0 | 3  | 48                             | (1219) | 32   | (15) | FMN748A3S           | RS     | FMN748A3W             | RS       |
|                             | 480   | 18.0 | 1  | 48                             | (1219) | 32   | (15) | FMN748A11S          | RS     | FMN748A11W            | RS       |
|                             | 480   | 18.0 | 3  | 48                             | (1219) | 32   | (15) | FMN748A5S           | RS     | FMN748A5W             | RS       |



• **RS** - Next day shipment up to 5 pieces

- **Notes:** All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241
- © Can be rewired wye to produce <sup>1</sup>/<sub>3</sub> of the original kW and watt density (3-phase only)


### WATROD and FIREBAR ANSI Flange Immersion Heaters



#### **Application: Process Water**

- 4 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

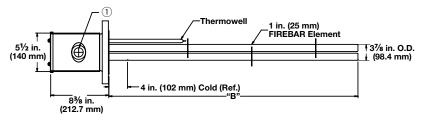
|                            | II    |      |    | #     |                                | Dim.   |     | o Wt. | Part               | ١    | Part                 | l    |
|----------------------------|-------|------|----|-------|--------------------------------|--------|-----|-------|--------------------|------|----------------------|------|
| Description                | Volts | kW   | Ph | Circ. | in.                            | (mm)   | lbs | (kg)  | Number             | Del. | Number               | Del. |
|                            |       |      |    |       |                                |        |     |       | General Purpose En | 1    | Moisture-Resistant E |      |
| 48 W/in² 6<br>Steel Flange | 240   | 9.0  | 1  | 1     | 13 <sup>1</sup> /2             | (343)  | 29  | . ,   | FON713J10S         | RS   | FON713J10W           | RS   |
| 6-Alloy 800                | 240   | 9.0  | 3  | 1     | 13 <sup>1</sup> /2             | (343)  | 29  | . ,   | FON713J3S          | RS   | FON713J3W            | RS   |
| Elements                   | 480   | 9.0  | 1  | 1     | 13 <sup>1</sup> /2             | (343)  | 29  | (14)  | FON713J11S         | RS   | FON713J11W           | RS   |
| (7.5 W/cm²)                | 480   | 9.0  | 3  | 1     | 13 <sup>1</sup> /2             | (343)  | 29  | (14)  | FON713J5S          | RS   | FON713J5W            | RS   |
|                            | 240   | 12.0 | 1  | 2     | 18                             | (457)  | 32  | (15)  | FON718A10S         | RS   | FON718A10W           | RS   |
|                            | 240   | 12.0 | 3  | 1     | 18                             | (457)  | 32  | (15)  | FON718A3S          | RS   | FON718A3W            | RS   |
|                            | 480   | 12.0 | 1  | 1     | 18                             | (457)  | 32  | (15)  | FON718A11S         | RS   | FON718A11W           | RS   |
|                            | 480   | 12.0 | 3  | 1     | 18                             | (457)  | 32  | (15)  | FON718A5S          | RS   | FON718A5W            | RS   |
|                            | 240   | 15.0 | 1  | 2     | 201/2                          | (521)  | 34  | (16)  | FON720J10S         | RS   | FON720J10W           | RS   |
|                            | 240   | 15.0 | 3  | 1     | 20 <sup>1</sup> /2             | (521)  | 34  | (16)  | FON720J3S          | RS   | FON720J3W            | RS   |
|                            | 480   | 15.0 | 1  | 1     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 34  | (16)  | FON720J11S         | RS   | FON720J11W           | RS   |
|                            | 480   | 15.0 | 3  | 1     | 20 <sup>1</sup> /2             | (521)  | 34  | (16)  | FON720J5S          | RS   | FON720J5W            | RS   |
|                            | 240   | 18.0 | 1  | 2     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36  | (17)  | FON725J10S         | RS   | FON725J10W           | RS   |
|                            | 240   | 18.0 | 3  | 1     | 25 <sup>1</sup> /2             | (648)  | 36  | (17)  | FON725J3S          | RS   | FON725J3W            | RS   |
|                            | 480   | 18.0 | 1  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36  | (17)  | FON725J11S         | RS   | FON725J11W           | RS   |
|                            | 480   | 18.0 | 3  | 1     | 25 <sup>1</sup> /2             | (648)  | 36  | (17)  | FON725J5S          | RS   | FON725J5W            | RS   |
|                            | 240   | 24.0 | 1  | 2     | 33                             | (838)  | 39  | (18)  | FON733A10S         | RS   | FON733A10W           | RS   |
|                            | 240   | 24.0 | 3  | 2     | 33                             | (838)  | 39  | (18)  | FON733A3S          | RS   | FON733A3W            | RS   |
|                            | 480   | 24.0 | 1  | 1     | 33                             | (838)  | 39  | (18)  | FON733A11S         | RS   | FON733A11W           | RS   |
|                            | 480   | 24.0 | 3  | 1     | 33                             | (838)  | 39  | (18)  | FON733A5S          | RS   | FON733A5W            | RS   |
|                            | 240   | 30.0 | 3  | 2     | 40 <sup>1</sup> /2             | (1029) | 43  | (20)  | FON740J3S          | RS   | FON740J3W            | RS   |
|                            | 480   | 30.0 | 1  | 2     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FON740J11S         | RS   | FON740J11W           | RS   |
|                            | 480   | 30.0 | 3  | 1     | 40 <sup>1</sup> /2             | (1029) | 43  | (20)  | FON740J5S          | RS   | FON740J5W            | RS   |
|                            | 240   | 36.0 | 3  | 2     | 48                             | (1219) | 48  | (22)  | FON748A3S          | RS   | FON748A3W            | RS   |
|                            | 480   | 36.0 | 1  | 2     | 48                             | (1219) | 48  | (22)  | FON748A11S         | RS   | FON748A11W           | RS   |
|                            | 480   | 36.0 | 3  | 1     | 48                             | (1219) | 48  | (22)  | FON748A5S          | RS   | FON748A5W            | RS   |



**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

 Can be rewired wye to produce <sup>1</sup>/<sub>3</sub> of the original kW and watt density (3-phase only)


## WATROD and FIREBAR ANSI Flange Immersion Heaters



#### **Application: Process Water**

- 4 inch 150 lb ANSI flange
- FIREBAR elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| 2                       | T.,   |      |    | #     |                    | ' Dim.   |     | p Wt. | Part               |         | Part                 | l        |
|-------------------------|-------|------|----|-------|--------------------|----------|-----|-------|--------------------|---------|----------------------|----------|
| Description             | Volts | kW   | Ph | Circ. | in.                | (mm)     | lbs | (kg)  | Number             | Del.    | Number               | Del.     |
|                         |       |      |    |       |                    |          |     |       | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 45 W/in²                | 240   | 12.0 | 3  | 1     | 13 <sup>3</sup> /8 | (339.7)  | 32  | (15)  | FONF13G27S         | RS      | FONF13G27W           | RS       |
| 304 SS Flange           | 240   | 15.0 | 3  | 1     | 16                 | (406.0)  | 35  | (16)  | FONF16A27S         | RS      | FONF16A27W           | RS       |
| 6-Alloy 800<br>Elements | 240   | 18.0 | 3  | 1     | 18 <sup>3</sup> /8 | (466.7)  | 38  | (17)  | FONF18G27S         | RS      | FONF18G27W           | RS       |
| (7 W/cm²)               | 240   | 24.0 | 3  | 2     | 22 <sup>7</sup> /8 | (581.0)  | 41  | (19)  | FONF22R27S         | RS      | FONF22R27W           | RS       |
| , ,,                    | 480   | 24.0 | 3  | 1     | 22 <sup>7</sup> /8 | (581.0)  | 41  | (19)  | FONF22R28S         | RS      | FONF22R28W           | RS       |
|                         | 240   | 30.0 | 3  | 2     | 27 <sup>7</sup> /8 | (708.0)  | 44  | (20)  | FONF27R27S         | RS      | FONF27R27W           | RS       |
|                         | 480   | 30.0 | 3  | 1     | 27 <sup>7</sup> /8 | (708.0)  | 44  | (20)  | FONF27R28S         | RS      | FONF27R28W           | RS       |
|                         | 240   | 36.0 | 3  | 2     | 32 <sup>7</sup> /8 | (835.0)  | 46  | (21)  | FONF32R27S         | RS      | FONF32R27W           | RS       |
|                         | 480   | 36.0 | 3  | 1     | 32 <sup>7</sup> /8 | (835.0)  | 46  | (21)  | FONF32R28S         | RS      | FONF32R28W           | RS       |
|                         | 480   | 48.0 | 3  | 2     | 42 <sup>3</sup> /8 | (1076.3) | 50  | (23)  | FONF42G28S         | RS      | FONF42G28W           | RS       |
|                         | 480   | 60.0 | 3  | 2     | 51 <sup>7</sup> /8 | (1317.6) | 54  | (25)  | FONF51R28S         | RS      | FONF51R28W           | RS       |

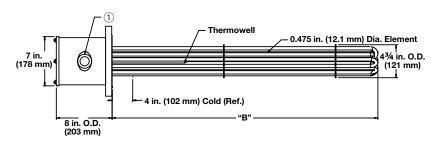


• RS - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

WATLOW<sup>®</sup> \_\_\_\_\_\_ 255


## WATROD and FIREBAR ANSI Flange Immersion Heaters



#### **Application: Process Water**

- 5 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### General Purpose and Moisture Resistant

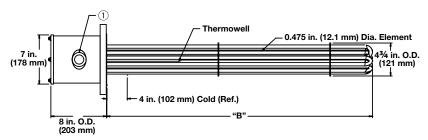


① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                                         |       |      |    | #     | "B"                            | Dim.   | Shir | Wt.  | Part               |         | Part                 |          |
|-----------------------------------------|-------|------|----|-------|--------------------------------|--------|------|------|--------------------|---------|----------------------|----------|
| Description                             | Volts | kW   | Ph | Circ. | in.                            | (mm)   | lbs  | (kg) | Number             | Del.    | Number               | Del.     |
|                                         |       |      |    |       |                                |        | ,    |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 48 W/in <sup>2</sup>                    | 240   | 9.0  | 1  | 1     | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 33   | (15) | FNN713J10S         | RS      | FNN713J10W           | RS       |
| Steel Flange                            | 240   | 9.0  | 3  | 1     | 13 <sup>1</sup> /2             | (343)  | 33   | (15) | FNN713J3S          | RS      | FNN713J3W            | RS       |
| 6-Alloy 800<br>Elements                 | 480   | 9.0  | 1  | 1     | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 33   | (15) | FNN713J11S         | RS      | FNN713J11W           | RS       |
| (7.5 W/cm²)                             | 480   | 9.0  | 3  | 1     | 13 <sup>1</sup> /2             | (343)  | 33   | (15) | FNN713J5S          | RS      | FNN713J5W            | RS       |
| (************************************** | 240   | 12.0 | 1  | 2     | 18                             | (457)  | 36   | (17) | FNN718A10S         | RS      | FNN718A10W           | RS       |
|                                         | 240   | 12.0 | 3  | 1     | 18                             | (457)  | 36   | (17) | FNN718A3S          | RS      | FNN718A3W            | RS       |
|                                         | 480   | 12.0 | 1  | 1     | 18                             | (457)  | 36   | (17) | FNN718A11S         | RS      | FNN718A11W           | RS       |
|                                         | 480   | 12.0 | 3  | 1     | 18                             | (457)  | 36   | (17) | FNN718A5S          | RS      | FNN718A5W            | RS       |
|                                         | 240   | 15.0 | 1  | 2     | 20 <sup>1</sup> /2             | (521)  | 38   | (18) | FNN720J10S         | RS      | FNN720J10W           | RS       |
|                                         | 240   | 15.0 | 3  | 1     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 38   | (18) | FNN720J3S          | RS      | FNN720J3W            | RS       |
|                                         | 480   | 15.0 | 1  | 1     | 20 <sup>1</sup> /2             | (521)  | 38   | (18) | FNN720J11S         | RS      | FNN720J11W           | RS       |
|                                         | 480   | 15.0 | 3  | 1     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 38   | (18) | FNN720J5S          | RS      | FNN720J5W            | RS       |
|                                         | 240   | 18.0 | 1  | 2     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 40   | (19) | FNN725J10S         | RS      | FNN725J10W           | RS       |
|                                         | 240   | 18.0 | 3  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 40   | (19) | FNN725J3S          | RS      | FNN725J3W            | RS       |
|                                         | 480   | 18.0 | 1  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 40   | (19) | FNN725J11S         | RS      | FNN725J11W           | RS       |
|                                         | 480   | 18.0 | 3  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 40   | (19) | FNN725J5S          | RS      | FNN725J5W            | RS       |
|                                         | 240   | 24.0 | 1  | 3     | 33                             | (838)  | 43   | (20) | FNN733A10S         | RS      | FNN733A10W           | RS       |
|                                         | 240   | 24.0 | 3  | 2     | 33                             | (838)  | 43   | (20) | FNN733A3S          | RS      | FNN733A3W            | RS       |
|                                         | 480   | 24.0 | 1  | 1     | 33                             | (838)  | 43   | (20) | FNN733A11S         | RS      | FNN733A11W           | RS       |
|                                         | 480   | 24.0 | 3  | 1     | 33                             | (838)  | 43   | (20) | FNN733A5S          | RS      | FNN733A5W            | RS       |
|                                         | 240   | 30.0 | 3  | 2     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 47   | (22) | FNN740J3S          | RS      | FNN740J3W            | RS       |
|                                         | 480   | 30.0 | 1  | 2     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 47   | (22) | FNN740J11S         | RS      | FNN740J11W           | RS       |
|                                         | 480   | 30.0 | 3  | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 47   | (22) | FNN740J5S          | RS      | FNN740J5W            | RS       |
|                                         | 240   | 36.0 | 3  | 2     | 48                             | (1219) | 52   | (24) | FNN748A3S          | RS      | FNN748A3W            | RS       |
|                                         | 480   | 36.0 | 1  | 2     | 48                             | (1219) | 52   | (24) | FNN748A11S         | RS      | FNN748A11W           | RS       |
|                                         | 480   | 36.0 | 3  | 1     | 48                             | (1219) | 52   | (24) | FNN748A5S          | RS      | FNN748A5W            | RS       |



 RS - Next day shipment up to 5 pieces **Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe


## WATROD and FIREBAR ANSI Flange Immersion Heaters



#### **Application: Process Water**

- 5 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| December     | Valle | 1.347 | Dh | #     |                                | Dim.   |     | Wt.   | Part        | Del  | Part                           | Dal  |
|--------------|-------|-------|----|-------|--------------------------------|--------|-----|-------|-------------|------|--------------------------------|------|
| Description  | Volts | kW    | Ph | Circ. | in.                            | (mm)   | lbs | (kg)  | Number      | Del. | Number<br>Moisture-Resistant E | Del. |
| 48 W/in²     | 240   | 14.0  | 1  | 3     | 13 <sup>1</sup> /2             | (0.40) | 35  | (1.6) | FNN713J10XS | RS   | FNN713J10XW                    | RS   |
| Steel Flange |       | -     |    |       |                                | (343)  |     | (16)  |             | -    |                                |      |
| 9-Alloy 800  | 240   | 14.0  | 3  | 1     | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 35  | (16)  | FNN713J3XS  | RS   | FNN713J3XW                     | RS   |
| Elements     | 480   | 14.0  | 1  | 1     | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 35  | (16)  | FNN713J11XS | RS   | FNN713J11XW                    | RS   |
| (7.5 W/cm²)  | 480   | 14.0  | 3  | 1     | 13 <sup>1</sup> /2             | (343)  | 35  | (16)  | FNN713J5XS  | RS   | FNN713J5XW                     | RS   |
|              | 240   | 18.0  | 1  | 3     | 18                             | (457)  | 39  | (18)  | FNN718A10XS | RS   | FNN718A10XW                    | RS   |
|              | 240   | 18.0  | 3  | 1     | 18                             | (457)  | 39  | (18)  | FNN718A3XS  | RS   | FNN718A3XW                     | RS   |
|              | 480   | 18.0  | 1  | 1     | 18                             | (457)  | 39  | (18)  | FNN718A11XS | RS   | FNN718A11XW                    | RS   |
|              | 480   | 18.0  | 3  | 1     | 18                             | (457)  | 39  | (18)  | FNN718A5XS  | RS   | FNN718A5XW                     | RS   |
|              | 240   | 23.0  | 1  | 3     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 42  | (19)  | FNN720J10XS | RS   | FNN720J10XW                    | RS   |
|              | 240   | 23.0  | 3  | 3     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 42  | (19)  | FNN720J3XS  | RS   | FNN720J3XW                     | RS   |
|              | 480   | 23.0  | 1  | 1     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 42  | (19)  | FNN720J11XS | RS   | FNN720J11XW                    | RS   |
|              | 480   | 23.0  | 3  | 1     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 42  | (19)  | FNN720J5XS  | RS   | FNN720J5XW                     | RS   |
|              | 240   | 27.0  | 1  | 3     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 45  | (21)  | FNN725J10XS | RS   | FNN725J10XW                    | RS   |
|              | 240   | 27.0  | 3  | 3     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 45  | (21)  | FNN725J3XS  | RS   | FNN725J3XW                     | RS   |
|              | 480   | 27.0  | 1  | 3     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 45  | (21)  | FNN725J11XS | RS   | FNN725J11XW                    | RS   |
|              | 480   | 27.0  | 3  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 45  | (21)  | FNN725J5XS  | RS   | FNN725J5XW                     | RS   |
|              | 240   | 36.0  | 3  | 3     | 33                             | (838)  | 48  | (22)  | FNN733A3XS  | RS   | FNN733A3XW                     | RS   |
|              | 480   | 36.0  | 1  | 3     | 33                             | (838)  | 48  | (22)  | FNN733A11XS | RS   | FNN733A11XW                    | RS   |
|              | 480   | 36.0  | 3  | 1     | 33                             | (838)  | 48  | (22)  | FNN733A5XS  | RS   | FNN733A5XW                     | RS   |
|              | 240   | 45.0  | 3  | 3     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 53  | (24)  | FNN740J3XS  | RS   | FNN740J3XW                     | RS   |
|              | 480   | 45.0  | 1  | 3     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 53  | (24)  | FNN740J11XS | RS   | FNN740J11XW                    | RS   |
|              | 480   | 45.0  | 3  | 3     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 53  | (24)  | FNN740J5XS  | RS   | FNN740J5XW                     | RS   |
|              | 240   | 54.0  | 3  | 3     | 48                             | (1219) | 60  | (28)  | FNN748A3XS  | RS   | FNN748A3XW                     | RS   |
|              | 480   | 54.0  | 1  | 3     | 48                             | (1219) | 60  | (28)  | FNN748A11XS | RS   | FNN748A11XW                    | RS   |
|              | 480   | 54.0  | 3  | 3     | 48                             | (1219) | 60  | (28)  | FNN748A5XS  | RS   | FNN748A5XW                     | RS   |



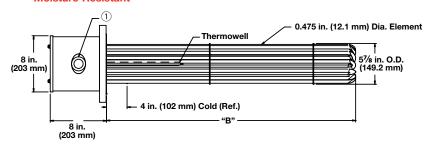
up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

**WATLOW®** 

257


## **WATROD and FIREBAR ANSI Flange Immersion Heaters**



#### **Application: Process Water**

- 6 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



1 The number and size of the conduit opening will comply with the National Electrical Code® standards.

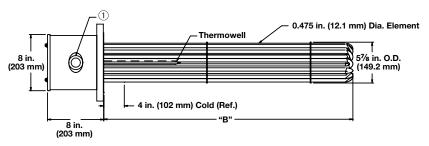
|                              |       |      |    | #     |                    | Dim.     | Ship |      | Part               |         | Part                 |          |
|------------------------------|-------|------|----|-------|--------------------|----------|------|------|--------------------|---------|----------------------|----------|
| Description                  | Volts | kW   | Ph | Circ. | in.                | (mm)     | lbs  | (kg) | Number             | Del.    | Number               | Del.     |
|                              |       |      |    |       |                    |          |      |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 48 W/in²                     | 240   | 18.0 | 1  | 2     | 13 <sup>3</sup> /8 | (339.7)  | 73   | (33) | FPN713G10S         | RS      | FPN713G10W           | RS       |
| Steel Flange<br>12-Alloy 800 | 240   | 18.0 | 3  | 1     | 13 <sup>3</sup> /8 | (339.7)  | 73   | (33) | FPN713G3S          | RS      | FPN713G3W            | RS       |
| Elements                     | 480   | 18.0 | 1  | 1     | 13 <sup>3</sup> /8 | (339.7)  | 73   | (33) | FPN713G11S         | RS      | FPN713G11W           | RS       |
| (7.5 W/cm²)                  | 480   | 18.0 | 3  | 1     | 13 <sup>3</sup> /8 | (339.7)  | 73   | (33) | FPN713G5S          | RS      | FPN713G5W            | RS       |
|                              | 240   | 24.0 | 1  | 3     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPN717R10S         | М       | FPN717R10W           | М        |
|                              | 240   | 24.0 | 3  | 2     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPN717R3S          | М       | FPN717R3W            | М        |
|                              | 480   | 24.0 | 1  | 2     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPN717R11S         | М       | FPN717R11W           | М        |
|                              | 480   | 24.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPN717R5S          | М       | FPN717R5W            | М        |
|                              | 240   | 30.0 | 1  | 3     | 20 <sup>3</sup> /8 | (517.5)  | 78   | (36) | FPN720G10S         | М       | FPN720G10W           | М        |
|                              | 240   | 30.0 | 3  | 2     | 20 <sup>3</sup> /8 | (517.5)  | 78   | (36) | FPN720G3S          | М       | FPN720G3W            | М        |
|                              | 480   | 30.0 | 1  | 2     | 20 <sup>3</sup> /8 | (517.5)  | 78   | (36) | FPN720G11S         | М       | FPN720G11W           | М        |
|                              | 480   | 30.0 | 3  | 1     | 20 <sup>3</sup> /8 | (517.5)  | 78   | (36) | FPN720G5S          | М       | FPN720G5W            | М        |
|                              | 240   | 36.0 | 1  | 4     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPN725G10S         | М       | FPN725G10W           | М        |
|                              | 240   | 36.0 | 3  | 2     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPN725G3S          | М       | FPN725G3W            | М        |
|                              | 480   | 36.0 | 1  | 2     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPN725G11S         | М       | FPN725G11W           | М        |
|                              | 480   | 36.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPN725G5S          | М       | FPN725G5W            | М        |
|                              | 240   | 48.0 | 3  | 4     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPN732R3S          | М       | FPN732R3W            | М        |
|                              | 480   | 48.0 | 1  | 3     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPN732R11S         | М       | FPN732R11W           | М        |
|                              | 480   | 48.0 | 3  | 2     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPN732R5S          | М       | FPN732R5W            | М        |
|                              | 240   | 60.0 | 3  | 4     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPN740G3S          | М       | FPN740G3W            | М        |
|                              | 480   | 60.0 | 1  | 3     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPN740G11S         | М       | FPN740G11W           | М        |
|                              | 480   | 60.0 | 3  | 2     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPN740G5S          | М       | FPN740G5W            | М        |
|                              | 240   | 72.0 | 3  | 4     | 47 <sup>7</sup> /8 | (1216.0) | 100  | . ,  | FPN747R3S          | М       | FPN747R3W            | М        |
|                              | 480   | 72.0 | 3  | 2     | 47 <sup>7</sup> /8 | (1216.0) |      | . ,  | FPN747R5S          | М       | FPN747R5W            | М        |



- RS Next day shipment up to 2 pieces
- M Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241 Truck Shipment only


## **WATROD and FIREBAR ANSI Flange Immersion Heaters**



#### **Application: Process Water**

- 6 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### General Purpose and Moisture Resistant



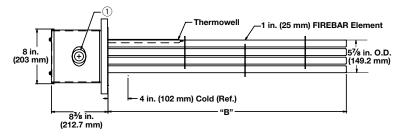
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                  | Volts | kW   | Ph  | #<br>Circ. | "B'<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number | Del. | Part<br>Number       | Del. |
|------------------------------|-------|------|-----|------------|--------------------|--------------|-------------|-------------|----------------|------|----------------------|------|
| Description                  | Voits | KVV  | FII | Oli C.     |                    | (11111)      | IDS         | (Kg)        |                |      | Moisture-Resistant E |      |
| 48 W/in²                     | 240   | 23.0 | 1   | 3          | 13 <sup>3</sup> /8 | (339.7)      | 76          | (35)        | FPN713G10XS    | М    | FPN713G10XW          | М    |
| Steel Flange<br>I5-Alloy 800 | 240   | 23.0 | 3   | 5          | 13 <sup>3</sup> /8 | (339.7)      | 76          |             | FPN713G3XS     | М    | FPN713G3XW           | М    |
| Elements                     | 480   | 23.0 | 1   | 1          | 13 <sup>3</sup> /8 | (339.7)      | 76          | (35)        | FPN713G11XS    | М    | FPN713G11XW          | М    |
| 7.5 W/cm²)                   | 480   | 23.0 | 3   | 1          | 13 <sup>3</sup> /8 | (339.7)      | 76          | (35)        | FPN713G5XS     | М    | FPN713G5XW           | М    |
|                              | 240   | 30.0 | 1   | 3          | 17 <sup>7</sup> /8 | (441.3)      | 78          | (36)        | FPN717R10XS    | М    | FPN717R10XW          | М    |
|                              | 240   | 30.0 | 3   | 5          | 17 <sup>7</sup> /8 | (441.3)      | 78          | (36)        | FPN717R3XS     | М    | FPN717R3XW           | М    |
|                              | 480   | 30.0 | 1   | 3          | 17 <sup>7</sup> /8 | (441.3)      | 78          | (36)        | FPN717R11XS    | М    | FPN717R11XW          | М    |
|                              | 480   | 30.0 | 3   | 1          | 17 <sup>7</sup> /8 | (441.3)      | 78          | (36)        | FPN717R5XS     | М    | FPN717R5XW           | М    |
|                              | 240   | 38.0 | 1   | 5          | 20 <sup>3</sup> /8 | (517.5)      | 82          | (38)        | FPN720G10XS    | М    | FPN720G10XW          | М    |
|                              | 240   | 38.0 | 3   | 5          | 20 <sup>3</sup> /8 | (517.5)      | 82          | (38)        | FPN720G3XS     | М    | FPN720G3XW           | М    |
|                              | 480   | 38.0 | 1   | 3          | 20 <sup>3</sup> /8 | (517.5)      | 82          | (38)        | FPN720G11XS    | М    | FPN720G11XW          | М    |
|                              | 480   | 38.0 | 3   | 1          | 20 <sup>3</sup> /8 | (517.5)      | 82          | (38)        | FPN720G5XS     | М    | FPN720G5XW           | М    |
|                              | 240   | 45.0 | 1   | 5          | 25 <sup>3</sup> /8 | (644.5)      | 85          | (39)        | FPN725G10XS    | М    | FPN725G10XW          | М    |
|                              | 240   | 45.0 | 3   | 5          | 25 <sup>3</sup> /8 | (644.5)      | 85          | (39)        | FPN725G3XS     | М    | FPN725G3XW           | М    |
|                              | 480   | 45.0 | 1   | 3          | 25 <sup>3</sup> /8 | (644.5)      | 85          | (39)        | FPN725G11XS    | М    | FPN725G11XW          | М    |
|                              | 480   | 45.0 | 3   | 5          | 25 <sup>3</sup> /8 | (644.5)      | 85          | (39)        | FPN725G5XS     | М    | FPN725G5XW           | М    |
|                              | 240   | 60.0 | 3   | 5          | 32 <sup>7</sup> /8 | (835.0)      | 90          | (41)        | FPN732R3XS     | М    | FPN732R3XW           | М    |
|                              | 480   | 60.0 | 1   | 3          | 32 <sup>7</sup> /8 | (835.0)      | 90          | (41)        | FPN732R11XS    | М    | FPN732R11XW          | М    |
|                              | 480   | 60.0 | 3   | 5          | 32 <sup>7</sup> /8 | (835.0)      | 90          | (41)        | FPN732R5XS     | М    | FPN732R5XW           | М    |
|                              | 240   | 75.0 | 3   | 5          | 40 <sup>3</sup> /8 | (1025.5)     | 98          | (45)        | FPN740G3XS     | М    | FPN740G3XW           | М    |
|                              | 480   | 75.0 | 1   | 5          | 40 <sup>3</sup> /8 | (1025.5)     | 98          | (45)        | FPN740G11XS    | М    | FPN740G11XW          | М    |
|                              | 480   | 75.0 | 3   | 5          | 40 <sup>3</sup> /8 | (1025.5)     | 98          | (45)        | FPN740G5XS     | М    | FPN740G5XW           | М    |
|                              | 240   | 90.0 | 3   | 5          | 47 <sup>7</sup> /8 | (1216.0)     | 108         | (49)        | FPN747R3XS     | М    | FPN747R3XW           | М    |
|                              | 480   | 90.0 | 3   | 5          | 47 <sup>7</sup> /8 | (1216.0)     | 108         | (49)        | FPN747R5XS     | М    | FPN747R5XW           | М    |

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241 Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



#### **Application: Process Water**

- 6 inch 150 lb ANSI flange
- FIREBAR elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                   | Volts   | kW    | Ph | #<br>Circ. | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number     | Del. | Part<br>Number       | Del. |
|-------------------------------|---------|-------|----|------------|--------------------|--------------|-------------|-------------|--------------------|------|----------------------|------|
|                               | 1 10110 |       |    | 00.        |                    | ()           |             | (9)         | General Purpose Er |      | Moisture-Resistant E |      |
| 45 W/in²                      | 240     | 30.0  | 3  | 5          | 13 <sup>3</sup> /8 | (339.7)      | 78          | (36)        | FPNF13G27S         | М    | FPNF13G27W           | М    |
| 304 SS Flange<br>15-Alloy 800 | 240     | 37.5  | 3  | 5          | 16                 | (406.0)      | 81          | (37)        | FPNF16A27S         | М    | FPNF16A27W           | М    |
| Elements                      | 240     | 45.0  | 3  | 5          | 18 <sup>3</sup> /8 | (466.7)      | 84          | (38)        | FPNF18G27S         | М    | FPNF18G27W           | М    |
| (7 W/cm²)                     | 240     | 60.0  | 3  | 5          | 22 <sup>7</sup> /8 | (581.0)      | 87          | (40)        | FPNF22R27S         | М    | FPNF22R27W           | М    |
|                               | 480     | 60.0  | 3  | 5          | 22 <sup>7</sup> /8 | (581.0)      | 87          | (40)        | FPNF22R28S         | М    | FPNF22R28W           | М    |
|                               | 240     | 75.0  | 3  | 5          | 27 <sup>7</sup> /8 | (708.0)      | 91          | (42)        | FPNF27R27S         | М    | FPNF27R27W           | М    |
|                               | 480     | 75.0  | 3  | 5          | 27 <sup>7</sup> /8 | (708.0)      | 91          | (42)        | FPNF27R28S         | М    | FPNF27R28W           | М    |
|                               | 240     | 90.0  | 3  | 5          | 32 <sup>7</sup> /8 | (835.0)      | 95          | (43)        | FPNF32R27S         | М    | FPNF32R27W           | М    |
|                               | 480     | 90.0  | 3  | 5          | 32 <sup>7</sup> /8 | (835.0)      | 95          | (43)        | FPNF32R28S         | М    | FPNF32R28W           | М    |
|                               | 480     | 120.0 | 3  | 5          | 42 <sup>3</sup> /8 | (1076.3)     | 106         | (48)        | FPNF42G28S         | М    | FPNF42G28W           | М    |
|                               | 480     | 150.0 | 3  | 5          | 51 <sup>7</sup> /8 | (1317.6)     | 116         | (53)        | FPNF51R28S         | М    | FPNF51R28W           | М    |

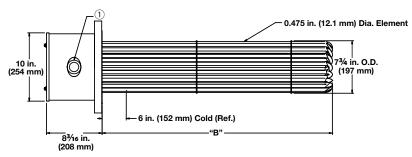
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only

260 WATLOW®


## WATROD and FIREBAR ANSI Flange Immersion Heaters



#### **Application: Process Water**

- 8 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                          |       |       |    | #     | "B" Dim.                                  | Ship Wt. | Part            |             | Part                 |          |
|--------------------------|-------|-------|----|-------|-------------------------------------------|----------|-----------------|-------------|----------------------|----------|
| Description              | Volts | kW    | Ph | Circ. | in. (mm)                                  | lbs (kg  |                 | Del.        | Number               | Del.     |
| ·                        |       |       |    | •     |                                           |          | General Purpose | e Enclosure | Moisture-Resistant E | nclosure |
| 48 W/in²                 | 240   | 50.0  | 3  | 3     | 25 <sup>3</sup> / <sub>4</sub> (654.0)    | 121 (5   | FRN725N3S       | М           | FRN725N3W            | М        |
| Steel Flange             | 480   | 50.0  | 1  | 3     | 25 <sup>3</sup> / <sub>4</sub> (654.0)    | 121 (5   | FRN725N11S      | М           | FRN725N11W           | М        |
| 18-Alloy 800<br>Elements | 480   | 50.0  | 3  | 2     | 25 <sup>3</sup> /4 (654.0)                | 121 (5   | FRN725N5S       | М           | FRN725N5W            | М        |
| (7.5 W/cm²)              | 240   | 75.0  | 3  | 6     | 35 <sup>3</sup> /4 (908.0)                | 130 (5   | FRN735N3S       | М           | FRN735N3W            | М        |
| ,                        | 480   | 75.0  | 3  | 2     | 35 <sup>3</sup> /4 (908.0)                | 130 (59  | FRN735N5S       | М           | FRN735N5W            | М        |
|                          | 240   | 100.0 | 3  | 6     | 44 <sup>1</sup> /4 (1124.0)               | 132 (6   | FRN744E3S       | М           | FRN744E3W            | М        |
|                          | 480   | 100.0 | 3  | 3     | 44 <sup>1</sup> /4 (1124.0)               | 132 (6   | FRN744E5S       | М           | FRN744E5W            | М        |
|                          | 240   | 125.0 | 3  | 6     | 54 <sup>11</sup> / <sub>16</sub> (1389.1) | 140 (6-  | FRN754M3S       | М           | FRN754M3W            | М        |
|                          | 480   | 125.0 | 3  | 6     | 54 <sup>11</sup> / <sub>16</sub> (1389.1) | 140 (6   | FRN754M5S       | М           | FRN754M5W            | М        |
|                          | 480   | 150.0 | 3  | 6     | 63 <sup>11</sup> /16 (1617.6)             | 145 (6   | FRN763M5S       | М           | FRN763M5W            | М        |
|                          | 480   | 175.0 | 3  | 6     | 73 <sup>3</sup> /16 (1859.0)              | 151 (6   | FRN773D5S       | М           | FRN773D5W            | М        |
|                          | 480   | 200.0 | 3  | 6     | 8211/16(2100.3)                           | 157 (7:  | ) FRN782M5S     | М           | FRN782M5W            | М        |
| 48 W/in²                 | 240   | 67.0  | 3  | 4     | 26 <sup>3</sup> / <sub>16</sub> (665.2)   | 129 (5   | FRN726D3XS      | М           | FRN726D3XW           | М        |
| Steel Flange             | 480   | 67.0  | 1  | 3     | 26 <sup>3</sup> /16 (665.2)               | 129 (5   | FRN726D11XS     | М           | FRN726D11XW          | М        |
| 24-Alloy 800<br>Elements | 480   | 67.0  | 3  | 2     | 26 <sup>3</sup> / <sub>16</sub> (665.2)   | 129 (5   | FRN726D5XS      | М           | FRN726D5XW           | М        |
| (7.5 W/cm²)              | 240   | 100.0 | 3  | 8     | 36 <sup>3</sup> /16 (919.2)               | 142 (6   | FRN736D3XS      | М           | FRN736D3XW           | М        |
| ,                        | 480   | 100.0 | 3  | 4     | 36 <sup>3</sup> / <sub>16</sub> (919.2)   | 142 (6   | FRN736D5XS      | М           | FRN736D5XW           | М        |
|                          | 240   | 133.0 | 3  | 8     | 44 <sup>11</sup> /16(1135.1)              | 147 (6   | ) FRN744M3XS    | М           | FRN744M3XW           | М        |
|                          | 480   | 133.0 | 3  | 4     | 44 <sup>11</sup> /16(1135.1)              | 147 (6   | ) FRN744M5XS    | М           | FRN744M5XW           | М        |
|                          | 240   | 167.0 | 3  | 8     | 54 <sup>11</sup> /16(1389.1)              | 158 (7:  | PRN754M3XS      | М           | FRN754M3XW           | М        |
|                          | 480   | 167.0 | 3  | 8     | 54 <sup>11</sup> /16(1389.1)              | 158 (7:  | P) FRN754M5XS   | М           | FRN754M5XW           | М        |
|                          | 480   | 200.0 | 3  | 8     | 63 <sup>11</sup> /16(1617.6)              | 166 (7   | FRN763M5XS      | М           | FRN763M5XW           | М        |
|                          | 480   | 233.0 | 3  | 8     | 73 <sup>3</sup> /16 (1859.0)              | 175 (8   | FRN773D5XS      | М           | FRN773D5XW           | М        |
|                          | 480   | 267.0 | 3  | 8     | 8211/16(2100.3)                           | 184 (8-  | FRN782M5XS      | М           | FRN782M5XW           | М        |

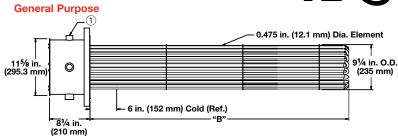
• M - Manufacturing lead times

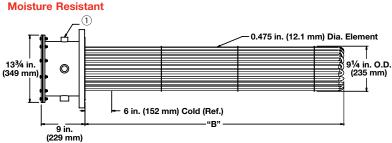
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only

WATROD and FIREBAR ANSI Flange


**Immersion Heaters** 

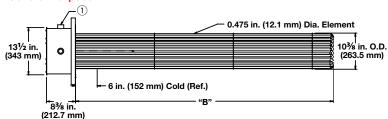



#### **Application: Process Water**

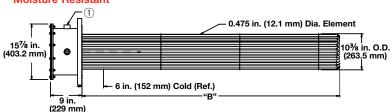
- 10 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

 The number and size of the conduit opening will comply with the National Electrical Code® standards.






|                              |       |       |    | #     | "B"                            | Dim.   | Shi | p Wt. | Part                |        | Part               |           |
|------------------------------|-------|-------|----|-------|--------------------------------|--------|-----|-------|---------------------|--------|--------------------|-----------|
| Description                  | Volts | kW    | Ph | Circ. | in.                            | (mm)   | lbs | (kg)  | Number              | Del.   | Number             | Del.      |
|                              |       |       |    |       |                                |        |     |       | General Purpose End | losure | Moisture-Resistant | Enclosure |
| 48 W/in²                     | 480   | 190.0 | 3  | 9     | 54 <sup>3</sup> /4             | (1391) | 240 | (109) | FSN754N5S           | М      | FSN754N5W          | М         |
| Steel Flange<br>27-Alloy 800 | 480   | 262.0 | 3  | 9     | 73 <sup>1</sup> / <sub>4</sub> | (1861) | 260 | (118) | FSN773E5S           | М      | FSN773E5W          | М         |
| Elements<br>(7.5 W/cm²)      |       |       |    |       |                                |        |     |       |                     |        |                    |           |


#### **Application: Process Water**

- 12 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**

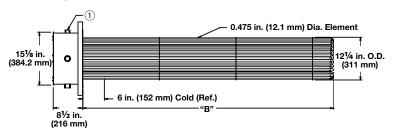


The number and size of the conduit opening will comply with the National Electrical Code® standards.

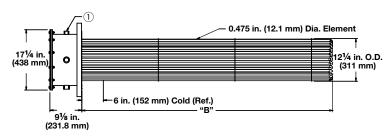
|                              |       |       |    | #     | "B"                | Dim.     | Shi | p Wt. | Part                |        | Part               |           |
|------------------------------|-------|-------|----|-------|--------------------|----------|-----|-------|---------------------|--------|--------------------|-----------|
| Description                  | Volts | kW    | Ph | Circ. | in.                | (mm)     | lbs | (kg)  | Number              | Del.   | Number             | Del.      |
|                              |       |       |    |       |                    |          |     |       | General Purpose End | losure | Moisture-Resistant | Enclosure |
| 48 W/in²                     | 480   | 250.0 | 3  | 6     | 54 <sup>5</sup> /8 | (1387.5) | 280 | (127) | FTN754L5S           | М      | FTN754L5W          | М         |
| Steel Flange<br>36-Alloy 800 | 480   | 350.0 | 3  | 12    | 73 <sup>1</sup> /8 | (1857.4) | 291 | (132) | FTN773C5S           | М      | FTN773C5W          | М         |
| Elements<br>(7.5 W/cm²)      |       |       |    |       |                    |          |     |       |                     |        |                    |           |

• M - Manufacturing lead times

- **Notes:** All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241
     Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




#### **Application: Process Water**

- 14 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

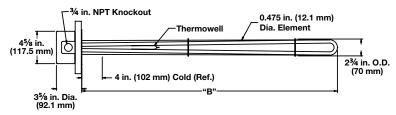
|                      |       |       |    | #     | "B"                            | "B" Dim. |     | o Wt. | Part                |         | Part               |           |
|----------------------|-------|-------|----|-------|--------------------------------|----------|-----|-------|---------------------|---------|--------------------|-----------|
| Description          | Volts | kW    | Ph | Circ. | in.                            | (mm)     | lbs | (kg)  | Number              | Del.    | Number             | Del.      |
|                      |       |       |    |       |                                |          |     |       | General Purpose End | closure | Moisture-Resistant | Enclosure |
| 48 W/in <sup>2</sup> | 480   | 315.0 | 3  | 15    | 54 <sup>1</sup> / <sub>2</sub> | (1384)   | 300 | (136) | FWN754J5S           | М       | FWN754J5W          | М         |
| Steel Flange         | 480   | 375.0 | 3  | 15    | 63 <sup>1</sup> / <sub>2</sub> | (1613)   | 310 | (141) | FWN763J5S           | М       | FWN763J5W          | М         |
| 45-Alloy 800         |       | ļ     |    |       |                                | , ,      |     | . ,   |                     |         |                    |           |
| Elements             |       |       |    |       |                                |          |     |       |                     |         |                    |           |
| (7.5 W/cm²)          |       |       |    |       |                                |          |     |       |                     |         |                    |           |

• M - Manufacturing lead times

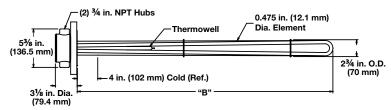
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


## **WATROD and FIREBAR ANSI Flange Immersion Heaters**




## Application: Forced Air and Caustic Solutions

- 3 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures
- Single circuit

#### **General Purpose**



#### **Moisture Resistant**



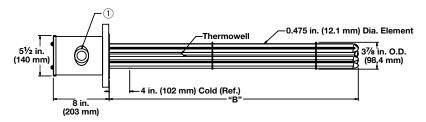
 The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                         |       |      |    | "B"                            | Dim.   | Shi | p Wt. | Part              |          | Part              |           |
|-------------------------|-------|------|----|--------------------------------|--------|-----|-------|-------------------|----------|-------------------|-----------|
| Description             | Volts | kW   | Ph | in.                            | (mm)   | lbs | (kg)  | Number            | Del.     | Number            | Del.      |
|                         |       |      |    |                                |        |     |       | General Purpose E | nclosure | Moisture-Resistan | Enclosure |
| 23 W/in <sup>2</sup> ⑥  | 240   | 3.0  | 1  | 18                             | (457)  | 23  | (11)  | FMNA18A10S        | RS       | FMNA18A10W        | RS        |
| Steel Flange            | 240   | 3.0  | 3  | 18                             | (457)  | 23  | (11)  | FMNA18A3S         | RS       | FMNA18A3W         | RS        |
| 3-Alloy 800<br>Elements | 480   | 3.0  | 1  | 18                             | (457)  | 23  | (11)  | FMNA18A11S        | RS       | FMNA18A11W        | RS        |
| (3.6 W/cm²)             | 480   | 3.0  | 3  | 18                             | (457)  | 23  | (11)  | FMNA18A5S         | RS       | FMNA18A5W         | RS        |
| ,                       | 240   | 4.5  | 1  | 25½                            | (648)  | 27  | (13)  | FMNA25J10S        | RS       | FMNA25J10W        | RS        |
|                         | 240   | 4.5  | 3  | 25½                            | (648)  | 27  | (13)  | FMNA25J3S         | RS       | FMNA25J3W         | RS        |
|                         | 480   | 4.5  | 1  | 25½                            | (648)  | 27  | (13)  | FMNA25J11S        | RS       | FMNA25J11W        | RS        |
|                         | 480   | 4.5  | 3  | 25½                            | (648)  | 27  | (13)  | FMNA25J5S         | RS       | FMNA25J5W         | RS        |
|                         | 240   | 6.0  | 1  | 33                             | (838)  | 28  | (13)  | FMNA33A10S        | RS       | FMNA33A10W        | RS        |
|                         | 240   | 6.0  | 3  | 33                             | (838)  | 28  | (13)  | FMNA33A3S         | RS       | FMNA33A3W         | RS        |
|                         | 480   | 6.0  | 1  | 33                             | (838)  | 28  | (13)  | FMNA33A11S        | RS       | FMNA33A11W        | RS        |
|                         | 480   | 6.0  | 3  | 33                             | (838)  | 28  | (13)  | FMNA33A5S         | RS       | FMNA33A5W         | RS        |
|                         | 240   | 7.5  | 1  | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 30  | (14)  | FMNA40J10S        | RS       | FMNA40J10W        | RS        |
|                         | 240   | 7.5  | 3  | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 30  | (14)  | FMNA40J3S         | RS       | FMNA40J3W         | RS        |
|                         | 480   | 7.5  | 1  | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 30  | (14)  | FMNA40J11S        | RS       | FMNA40J11W        | RS        |
|                         | 480   | 7.5  | 3  | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 30  | (14)  | FMNA40J5S         | RS       | FMNA40J5W         | RS        |
|                         | 240   | 9.0  | 1  | 48                             | (1219) | 32  | (15)  | FMNA48A10S        | RS       | FMNA48A10W        | RS        |
|                         | 240   | 9.0  | 3  | 48                             | (1219) | 32  | (15)  | FMNA48A3S         | RS       | FMNA48A3W         | RS        |
|                         | 480   | 9.0  | 1  | 48                             | (1219) | 32  | (15)  | FMNA48A11S        | RS       | FMNA48A11W        | RS        |
|                         | 480   | 9.0  | 3  | 48                             | (1219) | 32  | (15)  | FMNA48A5S         | RS       | FMNA48A5W         | RS        |
|                         | 240   | 12.5 | 3  | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 37  | (17)  | FMNA64J3S         | RS       | FMNA64J3W         | RS        |
|                         | 480   | 12.5 | 1  | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 37  | (17)  | FMNA64J11S        | RS       | FMNA64J11W        | RS        |
|                         | 480   | 12.5 | 3  | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 37  | (17)  | FMNA64J5S         | RS       | FMNA64J5W         | RS        |
|                         | 240   | 15.0 | 3  | 77                             | (1956) | 42  | (19)  | FMNA77A3S         | RS       | FMNA77A3W         | RS        |
|                         | 480   | 15.0 | 1  | 77                             | (1956) | 42  | (19)  | FMNA77A11S        | RS       | FMNA77A11W        | RS        |
|                         | 480   | 15.0 | 3  | 77                             | (1956) | 42  | (19)  | FMNA77A5S         | RS       | FMNA77A5W         | RS        |



• **RS** - Next day shipment up to 5 pieces

- **Notes:** All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241
- Can be rewired wye to produce <sup>1</sup>/<sub>3</sub> of the original kW and watt density (3-phase only)


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## Application: Forced Air and Caustic Solutions

- 4 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### General Purpose and Moisture Resistant



 The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                | Valle | 1-34/- | DI | #     |                                | Dim.   |     | o Wt. | Part              |      | Part               | <sub> </sub> |
|----------------------------|-------|--------|----|-------|--------------------------------|--------|-----|-------|-------------------|------|--------------------|--------------|
| Description                | Volts | kW     | Ph | Circ. | in.                            | (mm)   | lbs | (kg)  | Number            | Del. | Number             | Del.         |
| 00 11/2 0 0                |       |        |    |       |                                |        |     |       | General Purpose E |      | Moisture-Resistant |              |
| 23 W/in² 6<br>Steel Flange | 240   | 6.0    | 1  | 1     | 18                             | (457)  | 32  | . ,   | FONA18A10S        | RS   | FONA18A10W         | RS           |
| 6-Alloy 800                | 240   | 6.0    | 3  | 1     | 18                             | (457)  | 32  | (15)  | FONA18A3S         | RS   | FONA18A3W          | RS           |
| Elements                   | 480   | 6.0    | 1  | 1     | 18                             | (457)  | 32  | (15)  | FONA18A11S        | RS   | FONA18A11W         | RS           |
| (3.6 W/cm²)                | 480   | 6.0    | 3  | 1     | 18                             | (457)  | 32  | (15)  | FONA18A5S         | RS   | FONA18A5W          | RS           |
|                            | 240   | 9.0    | 1  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36  | (17)  | FONA25J10S        | RS   | FONA25J10W         | RS           |
|                            | 240   | 9.0    | 3  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36  | (17)  | FONA25J3S         | RS   | FONA25J3W          | RS           |
|                            | 480   | 9.0    | 1  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36  | (17)  | FONA25J11S        | RS   | FONA25J11W         | RS           |
|                            | 480   | 9.0    | 3  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36  | (17)  | FONA25J5S         | RS   | FONA25J5W          | RS           |
|                            | 240   | 12.0   | 1  | 2     | 33                             | (838)  | 39  | (18)  | FONA33A10S        | RS   | FONA33A10W         | RS           |
|                            | 240   | 12.0   | 3  | 1     | 33                             | (838)  | 39  | (18)  | FONA33A3S         | RS   | FONA33A3W          | RS           |
|                            | 480   | 12.0   | 1  | 1     | 33                             | (838)  | 39  | (18)  | FONA33A11S        | RS   | FONA33A11W         | RS           |
|                            | 480   | 12.0   | 3  | 1     | 33                             | (838)  | 39  | (18)  | FONA33A5S         | RS   | FONA33A5W          | RS           |
|                            | 240   | 15.0   | 1  | 2     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FONA40J10S        | RS   | FONA40J10W         | RS           |
|                            | 240   | 15.0   | 3  | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FONA40J3S         | RS   | FONA40J3W          | RS           |
|                            | 480   | 15.0   | 1  | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FONA40J11S        | RS   | FONA40J11W         | RS           |
|                            | 480   | 15.0   | 3  | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FONA40J5S         | RS   | FONA40J5W          | RS           |
|                            | 240   | 18.0   | 1  | 2     | 48                             | (1219) | 48  | (22)  | FONA48A10S        | RS   | FONA48A10W         | RS           |
|                            | 240   | 18.0   | 3  | 1     | 48                             | (1219) | 48  | (22)  | FONA48A3S         | RS   | FONA48A3W          | RS           |
|                            | 480   | 18.0   | 1  | 1     | 48                             | (1219) | 48  | (22)  | FONA48A11S        | RS   | FONA48A11W         | RS           |
|                            | 480   | 18.0   | 3  | 1     | 48                             | (1219) | 48  | (22)  | FONA48A5S         | RS   | FONA48A5W          | RS           |
|                            | 240   | 25.0   | 3  | 2     | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 53  | (24)  | FONA64J3S         | RS   | FONA64J3W          | RS           |
|                            | 480   | 25.0   | 1  | 2     | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 53  | (24)  | FONA64J11S        | RS   | FONA64J11W         | RS           |
|                            | 480   | 25.0   | 3  | 1     | 64 <sup>1</sup> / <sub>2</sub> | (1638) |     | (24)  | FONA64J5S         | RS   | FONA64J5W          | RS           |
|                            | 240   | 30.0   | 3  | 2     | 77                             | (1956) |     | (28)  | FONA77A3S         | RS   | FONA77A3W          | RS           |
|                            | 480   | 30.0   | 1  | 2     | 77                             | (1956) |     | ( - / |                   | RS   | FONA77A11W         | RS           |
|                            | 480   | 30.0   | 3  | 1     | 77                             | (1956) |     | ( - / | FONA77A5S         | RS   | FONA77A5W          | RS           |



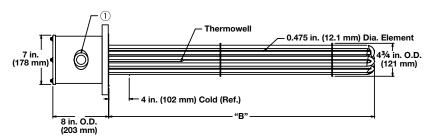
• **RS** - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Can be rewired wye to produce <sup>1</sup>/<sub>3</sub> of the original kW and watt density (3-phase only)

**WATLOW®** 


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## Application: Forced Air and Caustic Solutions

- 5 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

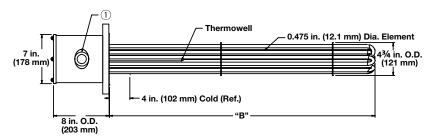
|                             |       |      |    | #     | "B"                            | Dim.   | Ship | Wt.  | Part               |         | Part                 |          |
|-----------------------------|-------|------|----|-------|--------------------------------|--------|------|------|--------------------|---------|----------------------|----------|
| Description                 | Volts | kW   | Ph | Circ. | in.                            | (mm)   | lbs  | (kg) | Number             | Del.    | Number               | Del.     |
|                             |       |      |    |       |                                |        |      |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 23 W/in² 6                  | 240   | 6.0  | 1  | 1     | 18                             | (457)  | 36   | (17) | FNNA18A10S         | RS      | FNNA18A10W           | RS       |
| Steel Flange<br>6-Alloy 800 | 240   | 6.0  | 3  | 1     | 18                             | (457)  | 36   | (17) | FNNA18A3S          | RS      | FNNA18A3W            | RS       |
| Elements                    | 480   | 6.0  | 1  | 1     | 18                             | (457)  | 36   | (17) | FNNA18A11S         | RS      | FNNA18A11W           | RS       |
| (3.6 W/cm²)                 | 480   | 6.0  | 3  | 1     | 18                             | (457)  | 36   | (17) | FNNA18A5S          | RS      | FNNA18A5W            | RS       |
|                             | 240   | 9.0  | 1  | 1     | 25 <sup>1</sup> /2             | (648)  | 40   | (19) | FNNA25J10S         | RS      | FNNA25J10W           | RS       |
|                             | 240   | 9.0  | 3  | 1     | 25 <sup>1</sup> /2             | (648)  | 40   | (19) | FNNA25J3S          | RS      | FNNA25J3W            | RS       |
|                             | 480   | 9.0  | 1  | 1     | 25 <sup>1</sup> /2             | (648)  | 40   | (19) | FNNA25J11S         | RS      | FNNA25J11W           | RS       |
|                             | 480   | 9.0  | 3  | 1     | 25 <sup>1</sup> /2             | (648)  | 40   | (19) | FNNA25J5S          | RS      | FNNA25J5W            | RS       |
|                             | 240   | 12.0 | 1  | 2     | 33                             | (838)  | 43   | (20) | FNNA33A10S         | RS      | FNNA33A10W           | RS       |
|                             | 240   | 12.0 | 3  | 1     | 33                             | (838)  | 43   | (20) | FNNA33A3S          | RS      | FNNA33A3W            | RS       |
|                             | 480   | 12.0 | 1  | 1     | 33                             | (838)  | 43   | (20) | FNNA33A11S         | RS      | FNNA33A11W           | RS       |
|                             | 480   | 12.0 | 3  | 1     | 33                             | (838)  | 43   | (20) | FNNA33A5S          | RS      | FNNA33A5W            | RS       |
|                             | 240   | 15.0 | 1  | 2     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 47   | (22) | FNNA40J10S         | RS      | FNNA40J10W           | RS       |
|                             | 240   | 15.0 | 3  | 1     | 40 <sup>1</sup> /2             | (1029) | 47   | (22) | FNNA40J3S          | RS      | FNNA40J3W            | RS       |
|                             | 480   | 15.0 | 1  | 1     | 40 <sup>1</sup> /2             | (1029) | 47   | (22) | FNNA40J11S         | RS      | FNNA40J11W           | RS       |
|                             | 480   | 15.0 | 3  | 1     | 40 <sup>1</sup> /2             | (1029) | 47   | (22) | FNNA40J5S          | RS      | FNNA40J5W            | RS       |
|                             | 240   | 18.0 | 1  | 2     | 48                             | (1219) | 52   | (24) | FNNA48A10S         | RS      | FNNA48A10W           | RS       |
|                             | 240   | 18.0 | 3  | 1     | 48                             | (1219) | 52   | (24) | FNNA48A3S          | RS      | FNNA48A3W            | RS       |
|                             | 480   | 18.0 | 1  | 1     | 48                             | (1219) | 52   | (24) | FNNA48A11S         | RS      | FNNA48A11W           | RS       |
|                             | 480   | 18.0 | 3  | 1     | 48                             | (1219) | 52   | (24) | FNNA48A5S          | RS      | FNNA48A5W            | RS       |
|                             | 240   | 25.0 | 3  | 2     | 64 <sup>1</sup> /2             | (1638) | 57   | (26) | FNNA64J3S          | RS      | FNNA64J3W            | RS       |
|                             | 480   | 25.0 | 1  | 2     | 64 <sup>1</sup> /2             | (1638) | 57   | (26) | FNNA64J11S         | RS      | FNNA64J11W           | RS       |
|                             | 480   | 25.0 | 3  | 1     | 64 <sup>1</sup> /2             | (1638) | 57   | (26) | FNNA64J5S          | RS      | FNNA64J5W            | RS       |
|                             | 240   | 30.0 | 3  | 2     | 77                             | (1956) | 65   | (30) | FNNA77A3S          | RS      | FNNA77A3W            | RS       |
|                             | 480   | 30.0 | 1  | 2     | 77                             | (1956) | 65   | (30) | FNNA77A11S         | RS      | FNNA77A11W           | RS       |
|                             | 480   | 30.0 | 3  | 1     | 77                             | (1956) | 65   | (30) | FNNA77A5S          | RS      | FNNA77A5W            | RS       |



• RS - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

- For ANSI flange dimensions, reference chart on page 241
- ® Can be rewired wye to produce <sup>1</sup>/<sub>3</sub> of the original kW and watt density (3-phase only)


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## Application: Forced Air and Caustic Solutions

- 5 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### **General Purpose and Moisture Resistant**



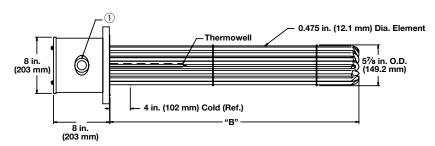
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                         | 1     | ı    | 1  |            |                                |              |    | ***           |                    | 1    |                      | 1        |
|-------------------------|-------|------|----|------------|--------------------------------|--------------|----|---------------|--------------------|------|----------------------|----------|
| Description             | Volts | kW   | Ph | #<br>Circ. | in.                            | Dim.<br>(mm) |    | p Wt.<br>(kg) | Part<br>Number     | Del. | Part<br>Number       | Del.     |
|                         | TOILS |      |    | 00.        |                                | ()           |    | (9)           | General Purpose Er | =    | Moisture-Resistant E | nclosure |
| 23 W/in² ⑥              | 240   | 9.0  | 1  | 1          | 18                             | (457)        | 39 | (18)          | FNNA18A10XS        | RS   | FNNA18A10XW          | RS       |
| Steel Flange            | 240   | 9.0  | 3  | 1          | 18                             | (457)        | 39 | (18)          | FNNA18A3XS         | RS   | FNNA18A3XW           | RS       |
| 9-Alloy 800<br>Elements | 480   | 9.0  | 1  | 1          | 18                             | (457)        | 39 | (18)          | FNNA18A11XS        | RS   | FNNA18A11XW          | RS       |
| (3.6 W/cm²)             | 480   | 9.0  | 3  | 1          | 18                             | (457)        | 39 | (18)          | FNNA18A5XS         | RS   | FNNA18A5XW           | RS       |
|                         | 240   | 14.0 | 1  | 3          | 25 <sup>1</sup> / <sub>2</sub> | (648)        | 45 | (21)          | FNNA25J10XS        | RS   | FNNA25J10XW          | RS       |
|                         | 240   | 14.0 | 3  | 1          | 25 <sup>1</sup> /2             | (648)        | 45 | (21)          | FNNA25J3XS         | RS   | FNNA25J3XW           | RS       |
|                         | 480   | 14.0 | 1  | 1          | 25 <sup>1</sup> /2             | (648)        | 45 | (21)          | FNNA25J11XS        | RS   | FNNA25J11XW          | RS       |
|                         | 480   | 14.0 | 3  | 1          | 25 <sup>1</sup> /2             | (648)        | 45 | (21)          | FNNA25J5XS         | RS   | FNNA25J5XW           | RS       |
|                         | 240   | 18.0 | 1  | 3          | 33                             | (838)        | 48 | (22)          | FNNA33A10XS        | RS   | FNNA33A10XW          | RS       |
|                         | 240   | 18.0 | 3  | 1          | 33                             | (838)        | 48 | (22)          | FNNA33A3XS         | RS   | FNNA33A3XW           | RS       |
|                         | 480   | 18.0 | 1  | 1          | 33                             | (838)        | 48 | (22)          | FNNA33A11XS        | RS   | FNNA33A11XW          | RS       |
|                         | 480   | 18.0 | 3  | 1          | 33                             | (838)        | 48 | (22)          | FNNA33A5XS         | RS   | FNNA33A5XW           | RS       |
|                         | 240   | 23.0 | 1  | 3          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 53 | (24)          | FNNA40J10XS        | RS   | FNNA40J10XW          | RS       |
|                         | 240   | 23.0 | 3  | 3          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 53 | (24)          | FNNA40J3XS         | RS   | FNNA40J3XW           | RS       |
|                         | 480   | 23.0 | 1  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 53 | (24)          | FNNA40J11XS        | RS   | FNNA40J11XW          | RS       |
|                         | 480   | 23.0 | 3  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 53 | (24)          | FNNA40J5XS         | RS   | FNNA40J5XW           | RS       |
|                         | 240   | 27.0 | 1  | 3          | 48                             | (1219)       | 60 | (28)          | FNNA48A10XS        | RS   | FNNA48A10XW          | RS       |
|                         | 240   | 27.0 | 3  | 3          | 48                             | (1219)       | 60 | (28)          | FNNA48A3XS         | RS   | FNNA48A3XW           | RS       |
|                         | 480   | 27.0 | 1  | 3          | 48                             | (1219)       | 60 | (28)          | FNNA48A11XS        | RS   | FNNA48A11XW          | RS       |
|                         | 480   | 27.0 | 3  | 1          | 48                             | (1219)       | 60 | (28)          | FNNA48A5XS         | RS   | FNNA48A5XW           | RS       |
|                         | 240   | 38.0 | 3  | 3          | 64 <sup>1</sup> / <sub>2</sub> | (1638)       | 68 | (31)          | FNNA64J3XS         | RS   | FNNA64J3XW           | RS       |
|                         | 480   | 38.0 | 1  | 3          | 64 <sup>1</sup> / <sub>2</sub> | (1638)       | 68 | (31)          | FNNA64J11XS        | RS   | FNNA64J11XW          | RS       |
|                         | 480   | 38.0 | 3  | 1          | 64 <sup>1</sup> / <sub>2</sub> | (1638)       | 68 | (31)          | FNNA64J5XS         | RS   | FNNA64J5XW           | RS       |
|                         | 240   | 45.0 | 3  | 3          | 77                             | (1956)       | 78 | (36)          | FNNA77A3XS         | М    | FNNA77A3XW           | М        |
|                         | 480   | 45.0 | 1  | 3          | 77                             | (1956)       | 78 | (36)          | FNNA77A11XS        | М    | FNNA77A11XW          | М        |
|                         | 480   | 45.0 | 3  | 3          | 77                             | (1956)       | 78 | (36)          | FNNA77A5XS         | М    | FNNA77A5XW           | М        |



• M - Manufacturing lead times

- **Notes:** All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241
- Can be rewired wye to produce 1/3 of the original kW and watt density (3-phase only)
- Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## Application: Forced Air and Caustic Solutions

- 6 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### General Purpose and Moisture Resistant



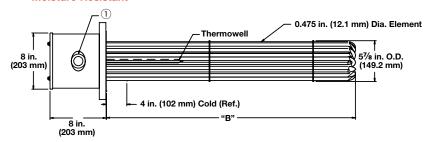
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                              |       |      |    | #     | "B"                | Dim.     | Ship | Wt.  | Part               |          | Part               |           |
|------------------------------|-------|------|----|-------|--------------------|----------|------|------|--------------------|----------|--------------------|-----------|
| Description                  | Volts | kW   | Ph | Circ. | in.                | (mm)     | lbs  | (kg) | Number             | Del.     | Number             | Del.      |
|                              |       |      |    |       |                    |          |      |      | General Purpose Er | nclosure | Moisture-Resistant | Enclosure |
| 23 W/in² ⑥                   | 240   | 12.0 | 1  | 2     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPNA17R10S         | М        | FPNA17R10W         | М         |
| Steel Flange<br>12-Alloy 800 | 240   | 12.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPNA17R3S          | М        | FPNA17R3W          | М         |
| Elements                     | 480   | 12.0 | 1  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPNA17R11S         | М        | FPNA17R11W         | М         |
| (3.6 W/cm²)                  | 480   | 12.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPNA17R5S          | М        | FPNA17R5W          | М         |
|                              | 240   | 18.0 | 1  | 2     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPNA25G10S         | М        | FPNA25G10W         | М         |
|                              | 240   | 18.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPNA25G3S          | М        | FPNA25G3W          | М         |
|                              | 480   | 18.0 | 1  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPNA25G11S         | М        | FPNA25G11W         | М         |
|                              | 480   | 18.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPNA25G5S          | М        | FPNA25G5W          | М         |
|                              | 240   | 24.0 | 1  | 3     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPNA32R10S         | М        | FPNA32R10W         | М         |
|                              | 240   | 24.0 | 3  | 2     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPNA32R3S          | М        | FPNA32R3W          | М         |
|                              | 480   | 24.0 | 1  | 2     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPNA32R11S         | М        | FPNA32R11W         | М         |
|                              | 480   | 24.0 | 3  | 1     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPNA32R5S          | М        | FPNA32R5W          | М         |
|                              | 240   | 30.0 | 1  | 3     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPNA40G10S         | М        | FPNA40G10W         | М         |
|                              | 240   | 30.0 | 3  | 2     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPNA40G3S          | М        | FPNA40G3W          | М         |
|                              | 480   | 30.0 | 1  | 2     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPNA40G11S         | М        | FPNA40G11W         | М         |
|                              | 480   | 30.0 | 3  | 1     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPNA40G5S          | М        | FPNA40G5W          | М         |
|                              | 240   | 36.0 | 1  | 4     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPNA47R10S         | М        | FPNA47R10W         | М         |
|                              | 240   | 36.0 | 3  | 2     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPNA47R3S          | М        | FPNA47R3W          | М         |
|                              | 480   | 36.0 | 1  | 2     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPNA47R11S         | М        | FPNA47R11W         | М         |
|                              | 480   | 36.0 | 3  | 1     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPNA47R5S          | М        | FPNA47R5W          | М         |
|                              | 240   | 50.0 | 3  | 4     | 64 <sup>3</sup> /8 | (1635.1) | 110  | (50) | FPNA64G3S          | М        | FPNA64G3W          | М         |
|                              | 480   | 50.0 | 1  | 3     | 64 <sup>3</sup> /8 | (1635.1) | 110  | (50) | FPNA64G11S         | М        | FPNA64G11W         | М         |
|                              | 480   | 50.0 | 3  | 2     | 64 <sup>3</sup> /8 | (1635.1) | 110  | (50) | FPNA64G5S          | М        | FPNA64G5W          | М         |
|                              | 240   | 60.0 | 3  | 4     | 76 <sup>7</sup> /8 | (1952.4) |      | (54) | FPNA76R3S          | М        | FPNA76R3W          | М         |
|                              | 480   | 60.0 | 1  | 3     | 76 <sup>7</sup> /8 | (1952.4) | 118  | (54) | FPNA76R11S         | М        | FPNA76R11W         | М         |
|                              | 480   | 60.0 | 3  | 2     | 76 <sup>7</sup> /8 | (1952.4) | 118  | (54) | FPNA76R5S          | М        | FPNA76R5W          | М         |

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

- For ANSI flange dimensions, reference chart on page 241
- © Can be rewired wye to produce <sup>1</sup>/<sub>3</sub> of the original kW and watt density (3-phase only)
- Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## Application: Forced Air and Caustic Solutions

- 6 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

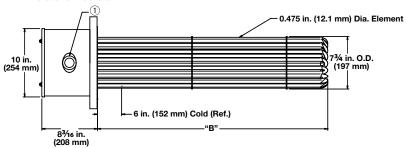
|                              |       |      |    | #     | " <u>B</u> '       | ' Dim.   | Ship | Wt.  | Part               |         | Part                 |          |
|------------------------------|-------|------|----|-------|--------------------|----------|------|------|--------------------|---------|----------------------|----------|
| Description                  | Volts | kW   | Ph | Circ. | in.                | (mm)     | lbs  | (kg) | Number             | Del.    | Number               | Del.     |
|                              |       |      |    |       |                    |          |      |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 23 W/in² ⑥                   | 240   | 15.0 | 1  | 3     | 17 <sup>7</sup> /8 | (454.0)  | 78   | (36) | FPNA17R10XS        | М       | FPNA17R10XW          | М        |
| Steel Flange<br>15-Alloy 800 | 240   | 15.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 78   | (36) | FPNA17R3XS         | М       | FPNA17R3XW           | М        |
| Elements                     | 480   | 15.0 | 1  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 78   | (36) | FPNA17R11XS        | М       | FPNA17R11XW          | М        |
| (3.6 W/cm²)                  | 480   | 15.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 78   | (36) | FPNA17R5XS         | М       | FPNA17R5XW           | М        |
|                              | 240   | 23.0 | 1  | 3     | 25 <sup>3</sup> /8 | (644.5)  | 85   | (39) | FPNA25G10XS        | М       | FPNA25G10XW          | М        |
|                              | 240   | 23.0 | 3  | 5     | 25 <sup>3</sup> /8 | (644.5)  | 85   | (39) | FPNA25G3XS         | М       | FPNA25G3XW           | М        |
|                              | 480   | 23.0 | 1  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 85   | (39) | FPNA25G11XS        | М       | FPNA25G11XW          | М        |
|                              | 480   | 23.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 85   | (39) | FPNA25G5XS         | М       | FPNA25G5XW           | М        |
|                              | 240   | 30.0 | 1  | 3     | 32 <sup>7</sup> /8 | (835.0)  | 90   | (41) | FPNA32R10XS        | М       | FPNA32R10XW          | М        |
|                              | 240   | 30.0 | 3  | 5     | 32 <sup>7</sup> /8 | (835.0)  | 90   | (41) | FPNA32R3XS         | М       | FPNA32R3XW           | М        |
|                              | 480   | 30.0 | 1  | 3     | 32 <sup>7</sup> /8 | (835.0)  | 90   | (41) | FPNA32R11XS        | М       | FPNA32R11XW          | М        |
|                              | 480   | 30.0 | 3  | 1     | 32 <sup>7</sup> /8 | (835.0)  | 90   | (41) | FPNA32R5XS         | М       | FPNA32R5XW           | М        |
|                              | 240   | 38.0 | 1  | 5     | 40 <sup>3</sup> /8 | (1025.5) | 98   | (45) | FPNA40G10XS        | М       | FPNA40G10XW          | М        |
|                              | 240   | 38.0 | 3  | 5     | 40 <sup>3</sup> /8 | (1025.5) | 98   | (45) | FPNA40G3XS         | М       | FPNA40G3XW           | М        |
|                              | 480   | 38.0 | 1  | 3     | 40 <sup>3</sup> /8 | (1025.5) | 98   | (45) | FPNA40G11XS        | М       | FPNA40G11XW          | М        |
|                              | 480   | 38.0 | 3  | 1     | 40 <sup>3</sup> /8 | (1025.5) | 98   | (45) | FPNA40G5XS         | М       | FPNA40G5XW           | М        |
|                              | 240   | 45.0 | 1  | 5     | 47 <sup>7</sup> /8 | (1216.0) | 108  | (49) | FPNA47R10XS        | М       | FPNA47R10XW          | М        |
|                              | 240   | 45.0 | 3  | 5     | 47 <sup>7</sup> /8 | (1216.0) | 108  | (49) | FPNA47R3XS         | М       | FPNA47R3XW           | М        |
|                              | 480   | 45.0 | 1  | 3     | 47 <sup>7</sup> /8 | (1216.0) | 108  | (49) | FPNA47R11XS        | М       | FPNA47R11XW          | М        |
|                              | 480   | 45.0 | 3  | 5     | 47 <sup>7</sup> /8 | (1216.0) | 108  | (49) | FPNA47R5XS         | М       | FPNA47R5XW           | М        |
|                              | 240   | 63.0 | 3  | 5     | 64 <sup>3</sup> /8 | (1635.1) | 120  | (55) | FPNA64G3XS         | М       | FPNA64G3XW           | М        |
|                              | 480   | 63.0 | 1  | 3     | 64 <sup>3</sup> /8 | (1635.1) | 120  | (55) | FPNA64G11XS        | М       | FPNA64G11XW          | М        |
|                              | 480   | 63.0 | 3  | 5     | 64 <sup>3</sup> /8 | (1635.1) | 120  | (55) | FPNA64G5XS         | М       | FPNA64G5XW           | М        |
|                              | 240   | 75.0 | 3  | 5     | 76 <sup>7</sup> /8 | (1952.4) | 131  | (60) | FPNA76R3XS         | М       | FPNA76R3XW           | М        |
|                              | 480   | 75.0 | 1  | 5     | 76 <sup>7</sup> /8 | (1952.4) | 131  | (60) | FPNA76R11XS        | М       | FPNA76R11XW          | М        |
|                              | 480   | 75.0 | 3  | 5     | 76 <sup>7</sup> /8 | (1952.4) | 131  | . ,  | FPNA76R5XS         | М       | FPNA76R5XW           | М        |

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

- For ANSI flange dimensions, reference chart on page 241
- Can be rewired wye to produce <sup>1</sup>/<sub>3</sub> of the original kW and watt density (3-phase only)
- Truck Shipment only

**WATLOW®** 


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Forced Air and Caustic Solutions**

- 8 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant

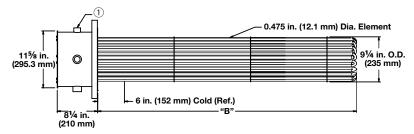


① The number and size of the conduit opening will comply with the National Electrical Code® standards.

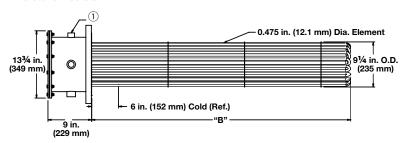
|                              | 1     |      | I  |            | <b>"</b> P"          |              | 01.         | 1071        |                |      |                      |      |
|------------------------------|-------|------|----|------------|----------------------|--------------|-------------|-------------|----------------|------|----------------------|------|
| Description                  | Volts | kW   | Ph | #<br>Circ. | "B" l<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | wt.<br>(kg) | Part<br>Number | Del. | Part<br>Number       | Del. |
|                              | 10.10 |      |    | 0          |                      | (,           |             | (9)         |                |      | Moisture-Resistant E |      |
| 23 W/in <sup>2</sup> ⑥       | 240   | 30.0 | 1  | 3          | 323/4                | (832.0)      | 130         | (59)        | FRNA32N10S     | М    | FRNA32N10W           | М    |
| Steel Flange<br>18-Alloy 800 | 240   | 30.0 | 3  | 2          | 323/4                | (832.0)      | 130         | (59)        | FRNA32N3S      | М    | FRNA32N3W            | М    |
| Elements                     | 480   | 30.0 | 1  | 2          | 323/4                | (832.0)      | 130         | (59)        | FRNA32N11S     | М    | FRNA32N11W           | М    |
| (3.6 W/cm²)                  | 480   | 30.0 | 3  | 1          | 323/4                | (832.0)      | 130         | (59)        | FRNA32N5S      | М    | FRNA32N5W            | М    |
|                              | 240   | 40.0 | 3  | 3          | 431/4                | (1099.0)     | 132         | (60)        | FRNA43E3S      | М    | FRNA43E3W            | М    |
|                              | 480   | 40.0 | 1  | 2          | 431/4                | (1099.0)     | 132         | (60)        | FRNA43E11S     | М    | FRNA43E11W           | М    |
|                              | 480   | 40.0 | 3  | 3          | 431/4                | (1099.0)     | 132         | (60)        | FRNA43E5S      | М    | FRNA43E5W            | М    |
|                              | 240   | 50.0 | 3  | 3          | 51 <sup>11</sup> /16 | (1312.9)     | 137         | (63)        | FRNA51M3S      | М    | FRNA51M3W            | М    |
|                              | 480   | 50.0 | 1  | 3          | 51 <sup>11</sup> /16 | (1312.9)     | 137         | (63)        | FRNA51M11S     | М    | FRNA51M11W           | М    |
|                              | 480   | 50.0 | 3  | 2          | 51 <sup>11</sup> /16 | (1312.9)     | 137         | (63)        | FRNA51M5S      | М    | FRNA51M5W            | М    |
| 23 W/in² ⑥                   | 240   | 40.0 | 1  | 4          | 33 <sup>3</sup> /16  | (843.0)      | 142         | (65)        | FRNA33D10XS    | М    | FRNA33D10XW          | М    |
| Steel Flange<br>24-Alloy 800 | 240   | 40.0 | 3  | 4          | 33 <sup>3</sup> /16  | (843.0)      | 142         | (65)        | FRNA33D3XS     | М    | FRNA33D3XW           | М    |
| Elements                     | 480   | 40.0 | 1  | 2          | 33 <sup>3</sup> /16  | (843.0)      | 142         | (65)        | FRNA33D11XS    | М    | FRNA33D11XW          | М    |
| (3.6 W/cm²)                  | 480   | 40.0 | 3  | 2          | 33 <sup>3</sup> /16  | (843.0)      | 142         | (65)        | FRNA33D5XS     | М    | FRNA33D5XW           | М    |
|                              | 240   | 53.0 | 3  | 4          | 43 <sup>11</sup> /16 | (1109.7)     | 147         | (67)        | FRNA43M3XS     | М    | FRNA43M3XW           | М    |
|                              | 480   | 53.0 | 1  | 3          | 43 <sup>11</sup> /16 | (1109.7)     | 147         | (67)        | FRNA43M11XS    | М    | FRNA43M11XW          | М    |
|                              | 480   | 53.0 | 3  | 2          | 43 <sup>11</sup> /16 | (1109.7)     | 147         | (67)        | FRNA43M5XS     | М    | FRNA43M5XW           | М    |
|                              | 240   | 67.0 | 3  | 4          | 51 <sup>11</sup> /16 | (1312.9)     | 154         | (70)        | FRNA51M3XS     | М    | FRNA51M3XW           | М    |
|                              | 480   | 67.0 | 1  | 3          | 51 <sup>11</sup> /16 | (1312.9)     | 154         | (70)        | FRNA51M11XS    | М    | FRNA51M11XW          | М    |
|                              | 480   | 67.0 | 3  | 2          | 51 <sup>11</sup> /16 | (1312.9)     | 154         | (70)        | FRNA51M5XS     | М    | FRNA51M5XW           | М    |

• M - Manufacturing lead times

- **Notes:** All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241
- Can be rewired wye to produce 1/3 of the original kW and watt density (3-phase only)
- Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




## **Application: Forced Air and Caustic Solutions**

- 10 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



The number and size of the conduit opening will comply with the National Electrical Code® standards.

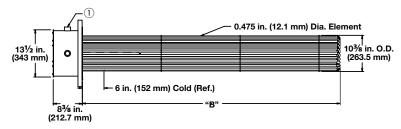
|                              |       |      |    | #     |                                | Dim.   |     | Wt.   | Part               |         | Part                  |         |
|------------------------------|-------|------|----|-------|--------------------------------|--------|-----|-------|--------------------|---------|-----------------------|---------|
| Description                  | Volts | kW   | Ph | Circ. | in.                            | (mm)   | lbs | (kg)  | Number             | Del.    | Number                | Del.    |
|                              |       |      |    |       |                                |        |     |       | General Purpose En | closure | Moisture-Resistant En | closure |
| 23 W/in <sup>2</sup>         | 240   | 45.0 | 3  | 3     | 331/4                          | (845)  | 165 | (75)  | FSNA33E3S          | М       | FSNA33E3W             | М       |
| Steel Flange<br>27-Alloy 800 | 480   | 45.0 | 3  | 3     | 331/4                          | (845)  | 165 | (75)  | FSNA33E5S          | М       | FSNA33E5W             | М       |
| Elements                     | 240   | 60.0 | 3  | 3     | 43 <sup>3</sup> / <sub>4</sub> | (1111) | 195 | (89)  | FSNA43N3S          | М       | FSNA43N3W             | М       |
| (3.6 W/cm²)                  | 480   | 60.0 | 3  | 3     | 43 <sup>3</sup> / <sub>4</sub> | (1111) | 195 | (89)  | FSNA43N5S          | М       | FSNA43N5W             | М       |
|                              | 240   | 75.0 | 3  | 9     | 51 <sup>3</sup> /4             | (1314) | 230 | (105) | FSNA51N3S          | М       | FSNA51N3W             | М       |
|                              | 480   | 75.0 | 3  | 3     | 51 <sup>3</sup> / <sub>4</sub> | (1314) | 230 | (105) | FSNA51N5S          | М       | FSNA51N5W             | М       |

• M - Manufacturing lead times

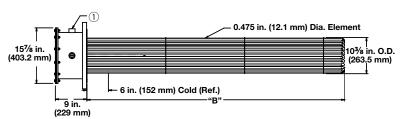
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




## Application: Forced Air and Caustic Solutions

- 12 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



 The number and size of the conduit opening will comply with the National Electrical Code® standards.

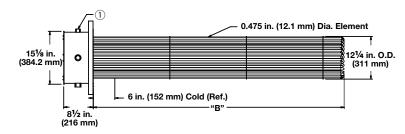
|                          |       |       |    | #     | "B"                | Dim.     | Ship | Wt.   | Part               |         | Part                  |          |
|--------------------------|-------|-------|----|-------|--------------------|----------|------|-------|--------------------|---------|-----------------------|----------|
| Description              | Volts | kW    | Ph | Circ. | in.                | (mm)     | lbs  | (kg)  | Number             | Del.    | Number                | Del.     |
|                          |       |       |    |       |                    |          |      |       | General Purpose En | closure | Moisture-Resistant En | nclosure |
| 23 W/in <sup>2</sup>     | 480   | 60.0  | 3  | 3     | 33 <sup>1</sup> /8 | (841.4)  | 205  | (93)  | FTNA33C5S          | М       | FTNA33C5W             | М        |
| Steel Flange             | 480   | 80.0  | 3  | 3     | 43 <sup>5</sup> /8 | (1108.1) | 240  | (109) | FTNA43L5S          | М       | FTNA43L5W             | М        |
| 36-Alloy 800<br>Elements | 480   | 100.0 | 3  | 3     | 51 <sup>5</sup> /8 | (1311.3) | 280  |       | FTNA51L5S          | М       | FTNA51L5W             | М        |
| (3.6 W/cm²)              |       |       |    |       |                    |          |      |       |                    |         |                       |          |

• M - Manufacturing lead times

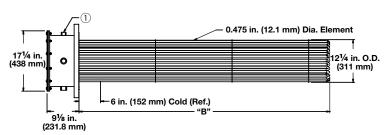
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




## Application: Forced Air and Caustic Solutions

- 14 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



 The number and size of the conduit opening will comply with the National Electrical Code® standards.

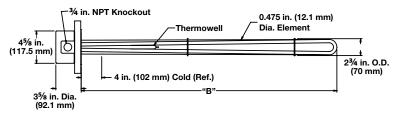
|                              |       |       |    | #     | "B"                            | Dim.   | Ship | Wt.   | Part                |         | Part                  |         |
|------------------------------|-------|-------|----|-------|--------------------------------|--------|------|-------|---------------------|---------|-----------------------|---------|
| Description                  | Volts | kW    | Ph | Circ. | in.                            | (mm)   | lbs  | (kg)  | Number              | Del.    | Number                | Del.    |
|                              |       |       |    |       |                                |        |      |       | General Purpose End | closure | Moisture-Resistant En | closure |
| 23 W/in²                     | 480   | 75.0  | 3  | 3     | 33                             | (838)  | 225  | (102) | FWNA33A5S           | М       | FWNA33A5W             | М       |
| Steel Flange<br>45-Alloy 800 | 480   | 100.0 | 3  | 3     | 43 <sup>1</sup> / <sub>2</sub> | (1105) | 255  | (116) | FWNA43J5S           | М       | FWNA43J5W             | М       |
| Elements                     | 480   | 125.0 | 3  | 5     | 51 <sup>1</sup> /2             | (1308) | 300  | (136) | FWNA51J5S           | М       | FWNA51J5W             | М       |
| (3.6 W/cm²)                  | ·     |       |    |       |                                |        |      |       |                     |         |                       |         |

• M - Manufacturing lead times

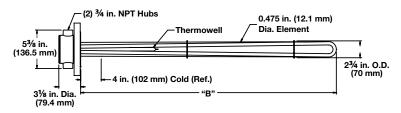
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




## **Application: Lightweight Oils and Heat Transfer Oils**

- 3 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures
- Single circuit

#### **General Purpose**



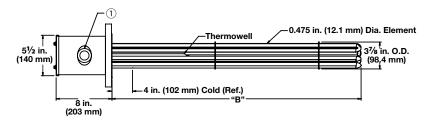
#### **Moisture Resistant**



| Description                      | Volts | kW   | Ph | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number      | Del.    | Part<br>Number        | Del.     |
|----------------------------------|-------|------|----|--------------------------------|--------------|-------------|-------------|---------------------|---------|-----------------------|----------|
|                                  |       |      |    |                                |              |             |             | General Purpose End | closure | Moisture-Resistant Er | nclosure |
| 23 W/in²                         | 240   | 3.0  | 1  | 18                             | (457)        | 23          | (11)        | FMS718A10S          | RS      | FMS718A10W            | RS       |
| Steel Flange<br>3-Steel Elements | 240   | 3.0  | 3  | 18                             | (457)        | 23          | (11)        | FMS718A3S           | RS      | FMS718A3W             | RS       |
| (3.6 W/cm²)                      | 480   | 3.0  | 1  | 18                             | (457)        | 23          | (11)        | FMS718A11S          | RS      | FMS718A11W            | RS       |
| (6.6 11, 6)                      | 480   | 3.0  | 3  | 18                             | (457)        | 23          | (11)        | FMS718A5S           | RS      | FMS718A5W             | RS       |
|                                  | 240   | 4.5  | 1  | 25 <sup>1</sup> /2             | (648)        | 27          | (13)        | FMS725J10S          | RS      | FMS725J10W            | RS       |
|                                  | 240   | 4.5  | 3  | 25 <sup>1</sup> /2             | (648)        | 27          | (13)        | FMS725J3S           | RS      | FMS725J3W             | RS       |
|                                  | 480   | 4.5  | 1  | 25 <sup>1</sup> /2             | (648)        | 27          | (13)        | FMS725J11S          | RS      | FMS725J11W            | RS       |
|                                  | 480   | 4.5  | 3  | 25 <sup>1</sup> / <sub>2</sub> | (648)        | 27          | (13)        | FMS725J5S           | RS      | FMS725J5W             | RS       |
|                                  | 240   | 6.0  | 1  | 33                             | (838)        | 28          | (13)        | FMS733A10S          | RS      | FMS733A10W            | RS       |
|                                  | 240   | 6.0  | 3  | 33                             | (838)        | 28          | (13)        | FMS733A3S           | RS      | FMS733A3W             | RS       |
|                                  | 480   | 6.0  | 1  | 33                             | (838)        | 28          | (13)        | FMS733A11S          | RS      | FMS733A11W            | RS       |
|                                  | 480   | 6.0  | 3  | 33                             | (838)        | 28          | (13)        | FMS733A5S           | RS      | FMS733A5W             | RS       |
|                                  | 240   | 7.5  | 1  | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 30          | (14)        | FMS740J10S          | RS      | FMS740J10W            | RS       |
|                                  | 240   | 7.5  | 3  | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 30          | (14)        | FMS740J3S           | RS      | FMS740J3W             | RS       |
|                                  | 480   | 7.5  | 1  | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 30          | (14)        | FMS740J11S          | RS      | FMS740J11W            | RS       |
|                                  | 480   | 7.5  | 3  | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 30          | (14)        | FMS740J5S           | RS      | FMS740J5W             | RS       |
|                                  | 240   | 9.0  | 1  | 48                             | (1219)       | 32          | (15)        | FMS748A10S          | RS      | FMS748A10W            | RS       |
|                                  | 240   | 9.0  | 3  | 48                             | (1219)       | 32          | (15)        | FMS748A3S           | RS      | FMS748A3W             | RS       |
|                                  | 480   | 9.0  | 1  | 48                             | (1219)       | 32          | (15)        | FMS748A11S          | RS      | FMS748A11W            | RS       |
|                                  | 480   | 9.0  | 3  | 48                             | (1219)       | 32          | (15)        | FMS748A5S           | RS      | FMS748A5W             | RS       |
|                                  | 240   | 12.5 | 3  | 64 <sup>1</sup> /2             | (1638)       | 37          | (17)        | FMS764J3S           | RS      | FMS764J3W             | RS       |
|                                  | 480   | 12.5 | 1  | 64 <sup>1</sup> /2             | (1638)       | 37          | (17)        | FMS764J11S          | RS      | FMS764J11W            | RS       |
|                                  | 480   | 12.5 | 3  | 64 <sup>1</sup> /2             | (1638)       | 37          | (17)        | FMS764J5S           | RS      | FMS764J5W             | RS       |
|                                  | 240   | 15.0 | 3  | 77                             | (1956)       | 42          | (19)        | FMS777A3S           | RS      | FMS777A3W             | RS       |
|                                  | 480   | 15.0 | 1  | 77                             | (1956)       | 42          | (19)        | FMS777A11S          | RS      | FMS777A11W            | RS       |
|                                  | 480   | 15.0 | 3  | 77                             | (1956)       | 42          | (19)        | FMS777A5S           | RS      | FMS777A5W             | RS       |



 RS - Next day shipment up to 5 pieces **Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Lightweight Oils and Heat Transfer Oils**

- 4 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### General Purpose and Moisture Resistant



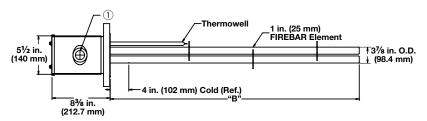
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| December         | V-li- | 1-347 | Die | #     |                                | Dim.   |     | Wt.   | Part                        | D-1  | Part                         | D-I  |
|------------------|-------|-------|-----|-------|--------------------------------|--------|-----|-------|-----------------------------|------|------------------------------|------|
| Description      | Volts | kW    | Ph  | Circ. | in.                            | (mm)   | lbs | (kg)  | Number<br>General Purpose E | Del. | Number<br>Moisture-Resistant | Del. |
| 23 W/in²         | 240   | 6.0   | 1   | 1     | 18                             | (457)  | 32  | /1 E\ | FOS718A10S                  | RS   | FOS718A10W                   | RS   |
| Steel Flange     | 240   | 6.0   | 3   | 1     |                                | . ,    | 32  | ( - / | FOS718A3S                   | RS   | FOS718A10W                   | RS   |
| 6-Steel Elements |       |       | _   | •     | 18                             | (457)  |     | ( - / |                             |      |                              |      |
| (3.6 W/cm²)      | 480   | 6.0   | 1   | 1     | 18                             | (457)  | 32  | ( - / | FOS718A11S                  | RS   | FOS718A11W                   | RS   |
|                  | 480   | 6.0   | 3   | 1     | 18                             | (457)  | 32  | ( - / | FOS718A5S                   | RS   | FOS718A5W                    | RS   |
|                  | 240   | 9.0   | 1   | 1     | 25 <sup>1</sup> /2             | (648)  | 36  | \ /   | FOS725J10S                  | RS   | FOS725J10W                   | RS   |
|                  | 240   | 9.0   | 3   | 1     | 25 <sup>1</sup> /2             | (648)  | 36  | . ,   | FOS725J3S                   | RS   | FOS725J3W                    | RS   |
|                  | 480   | 9.0   | 1   | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36  | (17)  | FOS725J11S                  | RS   | FOS725J11W                   | RS   |
|                  | 480   | 9.0   | 3   | 1     | 25 <sup>1</sup> /2             | (648)  | 36  | (17)  | FOS725J5S                   | RS   | FOS725J5W                    | RS   |
|                  | 240   | 12.0  | 1   | 2     | 33                             | (838)  | 39  | (18)  | FOS733A10S                  | RS   | FOS733A10W                   | RS   |
|                  | 240   | 12.0  | 3   | 1     | 33                             | (838)  | 39  | (18)  | FOS733A3S                   | RS   | FOS733A3W                    | RS   |
|                  | 480   | 12.0  | 1   | 1     | 33                             | (838)  | 39  | (18)  | FOS733A11S                  | RS   | FOS733A11W                   | RS   |
|                  | 480   | 12.0  | 3   | 1     | 33                             | (838)  | 39  | (18)  | FOS733A5S                   | RS   | FOS733A5W                    | RS   |
|                  | 240   | 15.0  | 1   | 2     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FOS740J10S                  | RS   | FOS740J10W                   | RS   |
|                  | 240   | 15.0  | 3   | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FOS740J3S                   | RS   | FOS740J3W                    | RS   |
|                  | 480   | 15.0  | 1   | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FOS740J11S                  | RS   | FOS740J11W                   | RS   |
|                  | 480   | 15.0  | 3   | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43  | (20)  | FOS740J5S                   | RS   | FOS740J5W                    | RS   |
|                  | 240   | 18.0  | 1   | 2     | 48                             | (1219) | 48  | (22)  | FOS748A10S                  | RS   | FOS748A10W                   | RS   |
|                  | 240   | 18.0  | 3   | 1     | 48                             | (1219) | 48  | (22)  | FOS748A3S                   | RS   | FOS748A3W                    | RS   |
|                  | 480   | 18.0  | 1   | 1     | 48                             | (1219) | 48  | (22)  | FOS748A11S                  | RS   | FOS748A11W                   | RS   |
|                  | 480   | 18.0  | 3   | 1     | 48                             | (1219) | 48  | (22)  | FOS748A5S                   | RS   | FOS748A5W                    | RS   |
|                  | 240   | 25.0  | 3   | 2     | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 53  | (24)  | FOS764J3S                   | RS   | FOS764J3W                    | RS   |
|                  | 480   | 25.0  | 1   | 2     | 641/2                          | (1638) | 53  | . ,   | FOS764J11S                  | RS   | FOS764J11W                   | RS   |
|                  | 480   | 25.0  | 3   | 1     | 641/2                          | (1638) | 53  | . ,   | FOS764J5S                   | RS   | FOS764J5W                    | RS   |
|                  | 240   | 30.0  | 3   | 2     | 77                             | (1956) | 61  | . ,   | FOS777A3S                   | RS   | FOS777A3W                    | RS   |
|                  | 480   | 30.0  | 1   | 2     | 77                             | (1956) | 61  | ( - / | FOS777A11S                  | RS   | FOS777A11W                   | RS   |
|                  | 480   | 30.0  | 3   | 1     | 77                             | (1956) | 61  | . ,   | FOS777ATTS                  | RS   | FOS777ATTW                   | RS   |



• **RS** - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Lightweight Oils and Heat Transfer Oils**

- 4 inch 150 lb ANSI flange
- FIREBAR elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### **General Purpose and Moisture Resistant**



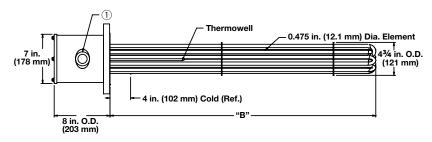
 The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                              |       |      |    | #     | "B"                            | Dim.   | Ship | Wt.  | Part               |         | Part                 |          |
|------------------------------|-------|------|----|-------|--------------------------------|--------|------|------|--------------------|---------|----------------------|----------|
| Description                  | Volts | kW   | Ph | Circ. | in.                            | (mm)   | _    | (kg) | Number             | Del.    | Number               | Del.     |
|                              |       |      |    |       |                                |        |      |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 30 W/in² ③                   | 240   | 10.0 | 3  | 1     | 16 <sup>1</sup> /2             | (420)  | 35   | (16) | FONF16J12S         | RS      | FONF16J12W           | RS       |
| 304 SS Flange<br>6-Alloy 800 | 480   | 10.0 | 3  | 1     | 16 <sup>1</sup> /2             | (420)  | 35   | (16) | FONF16J13S         | RS      | FONF16J13W           | RS       |
| Elements                     | 240   | 13.0 | 3  | 1     | 19 <sup>1</sup> /2             | (495)  | 38   | (17) | FONF19J12S         | RS      | FONF19J12W           | RS       |
| (4.7 W/cm²)                  | 480   | 13.0 | 3  | 1     | 19 <sup>1</sup> /2             | (495)  | 38   | (17) | FONF19J13S         | RS      | FONF19J13W           | RS       |
|                              | 240   | 17.0 | 3  | 1     | 24 <sup>1</sup> / <sub>2</sub> | (622)  | 41   | (19) | FONF24J12S         | RS      | FONF24J12W           | RS       |
|                              | 480   | 17.0 | 3  | 1     | 24 <sup>1</sup> / <sub>2</sub> | (622)  | 41   | (19) | FONF24J13S         | RS      | FONF24J13W           | RS       |
|                              | 240   | 21.0 | 3  | 2     | 30                             | (762)  | 44   | (20) | FONF30A12S         | RS      | FONF30A12W           | RS       |
|                              | 480   | 21.0 | 3  | 1     | 30                             | (762)  | 44   | (20) | FONF30A13S         | RS      | FONF30A13W           | RS       |
|                              | 240   | 25.5 | 3  | 2     | 35                             | (889)  | 46   | (21) | FONF35A12S         | RS      | FONF35A12W           | RS       |
|                              | 480   | 25.5 | 3  | 1     | 35                             | (889)  | 46   | (21) | FONF35A13S         | RS      | FONF35A13W           | RS       |
|                              | 240   | 34.0 | 3  | 2     | 45 <sup>1</sup> / <sub>2</sub> | (1156) | 50   | (23) | FONF45J12S         | RS      | FONF45J12W           | RS       |
|                              | 480   | 34.0 | 3  | 1     | 45 <sup>1</sup> / <sub>2</sub> | (1156) | 50   | (23) | FONF45J13S         | RS      | FONF45J13W           | RS       |
|                              | 480   | 43.0 | 3  | 2     | 56                             | (1422) | 54   | (25) | FONF56A13S         | RS      | FONF56A13W           | RS       |
| 23 W/in <sup>2</sup> ®       | 240   | 7.5  | 3  | 1     | 16 <sup>1</sup> /2             | (420)  | 35   | (16) | FONF16J20S         | RS      | FONF16J20W           | RS       |
| 304 SS Flange<br>6-Alloy 800 | 240   | 10.0 | 3  | 1     | 19 <sup>1</sup> /2             | (495)  | 38   | (17) | FONF19J20S         | RS      | FONF19J20W           | RS       |
| Elements                     | 240   | 12.8 | 3  | 1     | 24 <sup>1</sup> / <sub>2</sub> | (622)  | 41   | (19) | FONF24J20S         | RS      | FONF24J20W           | RS       |
| (3.6 W/cm²)                  | 480   | 12.8 | 3  | 1     | 24 <sup>1</sup> / <sub>2</sub> | (622)  | 41   | (19) | FONF24J19S         | RS      | FONF24J19W           | RS       |
|                              | 240   | 15.8 | 3  | 1     | 30                             | (762)  | 44   | (20) | FONF30A20S         | RS      | FONF30A20W           | RS       |
|                              | 480   | 15.8 | 3  | 1     | 30                             | (762)  | 44   | (20) | FONF30A19S         | RS      | FONF30A19W           | RS       |
|                              | 240   | 19.0 | 3  | 1     | 35                             | (889)  | 46   | (21) | FONF35A20S         | RS      | FONF35A20W           | RS       |
|                              | 480   | 19.0 | 3  | 1     | 35                             | (889)  | 46   | (21) | FONF35A19S         | RS      | FONF35A19W           | RS       |
|                              | 240   | 25.0 | 3  | 2     | 45 <sup>1</sup> / <sub>2</sub> | (1156) | 50   | (23) | FONF45J20S         | RS      | FONF45J20W           | RS       |
|                              | 480   | 25.0 | 3  | 1     | 45 <sup>1</sup> /2             | (1156) | 50   | (23) | FONF45J19S         | RS      | FONF45J19W           | RS       |
|                              | 240   | 32.3 | 3  | 2     | 56                             | (1422) | 54   | (25) | FONF56A20S         | RS      | FONF56A20W           | RS       |
|                              | 480   | 32.3 | 3  | 1     | 56                             | (1422) | 54   | (25) | FONF56A19S         | RS      | FONF56A19W           | RS       |



 RS - Next day shipment up to 5 pieces **Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

- 3 Wired for 3-phase operation only
- ® Can be rewired for 1-phase


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## Application: Lightweight Oils and Heat Transfer Oils

- 5 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



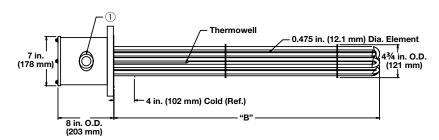
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                     | Volts | kW   | Ph   | #<br>Circ. | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number     | Del. | Part<br>Number       | Del. |
|---------------------------------|-------|------|------|------------|--------------------------------|--------------|-------------|-------------|--------------------|------|----------------------|------|
| Description                     | VOILS | KVV  | 1711 | Olic.      | 111.                           | (11111)      | Ins         | (kg)        | General Purpose En |      | Moisture-Resistant I |      |
| 23 W/in²                        | 240   | 6.0  | 1    | 1          | 18                             | (457)        | 36          | (17)        | FNS718A10S         | RS   | FNS718A10W           | RS   |
| Steel Flange                    | 240   | 6.0  | 3    | 1          | 18                             | (457)        | 36          | (17)        | FNS718A3S          | RS   | FNS718A3W            | RS   |
| 6-Steel Elements<br>(3.6 W/cm²) | 480   | 6.0  | 1    | 1          | 18                             | (457)        | 36          | (17)        | FNS718A11S         | RS   | FNS718A11W           | RS   |
| (6.6 1.7 6 )                    | 480   | 6.0  | 3    | 1          | 18                             | (457)        | 36          | (17)        | FNS718A5S          | RS   | FNS718A5W            | RS   |
|                                 | 240   | 9.0  | 1    | 1          | 25 <sup>1</sup> / <sub>2</sub> | (648)        | 40          | (19)        | FNS725J10S         | RS   | FNS725J10W           | RS   |
|                                 | 240   | 9.0  | 3    | 1          | 25 <sup>1</sup> / <sub>2</sub> | (648)        | 40          | (19)        | FNS725J3S          | RS   | FNS725J3W            | RS   |
|                                 | 480   | 9.0  | 1    | 1          | 25 <sup>1</sup> / <sub>2</sub> | (648)        | 40          | (19)        | FNS725J11S         | RS   | FNS725J11W           | RS   |
|                                 | 480   | 9.0  | 3    | 1          | 25 <sup>1</sup> / <sub>2</sub> | (648)        | 40          | (19)        | FNS725J5S          | RS   | FNS725J5W            | RS   |
|                                 | 240   | 12.0 | 1    | 2          | 33                             | (838)        | 43          | (20)        | FNS733A10S         | RS   | FNS733A10W           | RS   |
|                                 | 240   | 12.0 | 3    | 1          | 33                             | (838)        | 43          | (20)        | FNS733A3S          | RS   | FNS733A3W            | RS   |
|                                 | 480   | 12.0 | 1    | 1          | 33                             | (838)        | 43          | (20)        | FNS733A11S         | RS   | FNS733A11W           | RS   |
|                                 | 480   | 12.0 | 3    | 1          | 33                             | (838)        | 43          | (20)        | FNS733A5S          | RS   | FNS733A5W            | RS   |
|                                 | 240   | 15.0 | 1    | 2          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 47          | (22)        | FNS740J10S         | RS   | FNS740J10W           | RS   |
|                                 | 240   | 15.0 | 3    | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 47          | (22)        | FNS740J3S          | RS   | FNS740J3W            | RS   |
|                                 | 480   | 15.0 | 1    | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 47          | (22)        | FNS740J11S         | RS   | FNS740J11W           | RS   |
|                                 | 480   | 15.0 | 3    | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 47          | (22)        | FNS740J5S          | RS   | FNS740J5W            | RS   |
|                                 | 240   | 18.0 | 1    | 2          | 48                             | (1219)       | 52          | (24)        | FNS748A10S         | RS   | FNS748A10W           | RS   |
|                                 | 240   | 18.0 | 3    | 1          | 48                             | (1219)       | 52          | (24)        | FNS748A3S          | RS   | FNS748A3W            | RS   |
|                                 | 480   | 18.0 | 1    | 1          | 48                             | (1219)       | 52          | (24)        | FNS748A11S         | RS   | FNS748A11W           | RS   |
|                                 | 480   | 18.0 | 3    | 1          | 48                             | (1219)       | 52          | (24)        | FNS748A5S          | RS   | FNS748A5W            | RS   |
|                                 | 240   | 25.0 | 3    | 2          | 64 <sup>1</sup> /2             | (1638)       | 57          | (26)        | FNS764J3S          | RS   | FNS764J3W            | RS   |
|                                 | 480   | 25.0 | 1    | 2          | 64 <sup>1</sup> /2             | (1638)       | 57          | (26)        | FNS764J11S         | RS   | FNS764J11W           | RS   |
|                                 | 480   | 25.0 | 3    | 1          | 64 <sup>1</sup> /2             | (1638)       | 57          | (26)        | FNS764J5S          | RS   | FNS764J5W            | RS   |
|                                 | 240   | 30.0 | 3    | 2          | 77                             | (1956)       | 65          | (30)        | FNS777A3S          | RS   | FNS777A3W            | RS   |
|                                 | 480   | 30.0 | 1    | 2          | 77                             | (1956)       | 65          | (30)        | FNS777A11S         | RS   | FNS777A11W           | RS   |
|                                 | 480   | 30.0 | 3    | 1          | 77                             | (1956)       | 65          | (30)        | FNS777A5S          | RS   | FNS777A5W            | RS   |



• **RS** - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe


### **WATROD** and **FIREBAR** ANSI Flange **Immersion Heaters**



#### **Application: Lightweight Oils and Heat Transfer Oils**

- 5 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

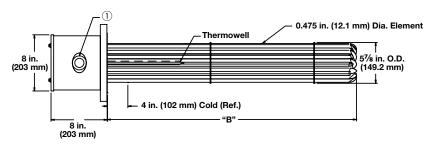
|                                  |       |      |    | #     | "B"                            | Dim.   | Ship | Wt.  | Part               |         | Part                 |          |
|----------------------------------|-------|------|----|-------|--------------------------------|--------|------|------|--------------------|---------|----------------------|----------|
| Description                      | Volts | kW   | Ph | Circ. | in.                            | (mm)   | lbs  | (kg) | Number             | Del.    | Number               | Del.     |
|                                  |       |      |    |       |                                |        |      |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 23 W/in²                         | 240   | 9.0  | 1  | 1     | 18                             | (457)  | 39   | (18) | FNS718A10XS        | RS      | FNS718A10XW          | RS       |
| Steel Flange<br>9-Steel Elements | 240   | 9.0  | 3  | 1     | 18                             | (457)  | 39   | (18) | FNS718A3XS         | RS      | FNS718A3XW           | RS       |
| (3.6 W/cm²)                      | 480   | 9.0  | 1  | 1     | 18                             | (457)  | 39   | (18) | FNS718A11XS        | RS      | FNS718A11XW          | RS       |
|                                  | 480   | 9.0  | 3  | 1     | 18                             | (457)  | 39   | (18) | FNS718A5XS         | RS      | FNS718A5XW           | RS       |
|                                  | 240   | 14.0 | 1  | 3     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 45   | (21) | FNS725J10XS        | RS      | FNS725J10XW          | RS       |
|                                  | 240   | 14.0 | 3  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 45   | (21) | FNS725J3XS         | RS      | FNS725J3XW           | RS       |
|                                  | 480   | 14.0 | 1  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 45   | (21) | FNS725J11XS        | RS      | FNS725J11XW          | RS       |
|                                  | 480   | 14.0 | 3  | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 45   | (21) | FNS725J5XS         | RS      | FNS725J5XW           | RS       |
|                                  | 240   | 18.0 | 1  | 3     | 33                             | (838)  | 48   | (22) | FNS733A10XS        | RS      | FNS733A10XW          | RS       |
|                                  | 240   | 18.0 | 3  | 1     | 33                             | (838)  | 48   | (22) | FNS733A3XS         | RS      | FNS733A3XW           | RS       |
|                                  | 480   | 18.0 | 1  | 1     | 33                             | (838)  | 48   | (22) | FNS733A11XS        | RS      | FNS733A11XW          | RS       |
|                                  | 480   | 18.0 | 3  | 1     | 33                             | (838)  | 48   | (22) | FNS733A5XS         | RS      | FNS733A5XW           | RS       |
|                                  | 240   | 23.0 | 1  | 3     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 53   | (24) | FNS740J10XS        | RS      | FNS740J10XW          | RS       |
|                                  | 240   | 23.0 | 3  | 3     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 53   | (24) | FNS740J3XS         | RS      | FNS740J3XW           | RS       |
|                                  | 480   | 23.0 | 1  | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 53   | (24) | FNS740J11XS        | RS      | FNS740J11XW          | RS       |
|                                  | 480   | 23.0 | 3  | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 53   | (24) | FNS740J5XS         | RS      | FNS740J5XW           | RS       |
|                                  | 240   | 27.0 | 1  | 3     | 48                             | (1219) | 60   | (28) | FNS748A10XS        | RS      | FNS748A10XW          | RS       |
|                                  | 240   | 27.0 | 3  | 3     | 48                             | (1219) | 60   | (28) | FNS748A3XS         | RS      | FNS748A3XW           | RS       |
|                                  | 480   | 27.0 | 1  | 3     | 48                             | (1219) | 60   | (28) | FNS748A11XS        | RS      | FNS748A11XW          | RS       |
|                                  | 480   | 27.0 | 3  | 1     | 48                             | (1219) | 60   | (28) | FNS748A5XS         | RS      | FNS748A5XW           | RS       |
|                                  | 240   | 38.0 | 3  | 3     | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 68   | (31) | FNS764J3XS         | RS      | FNS764J3XW           | RS       |
|                                  | 480   | 38.0 | 1  | 3     | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 68   | (31) | FNS764J11XS        | RS      | FNS764J11XW          | RS       |
|                                  | 480   | 38.0 | 3  | 1     | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 68   | (31) | FNS764J5XS         | RS      | FNS764J5XW           | RS       |
|                                  | 240   | 45.0 | 3  | 3     | 77                             | (1956) | 78   | (36) | FNS777A3XS         | М       | FNS777A3XW           | М        |
|                                  | 480   | 45.0 | 1  | 3     | 77                             | (1956) | 78   | (36) | FNS777A11XS        | М       | FNS777A11XW          | М        |
|                                  | 480   | 45.0 | 3  | 3     | 77                             | (1956) | 78   | (36) | FNS777A5XS         | М       | FNS777A5XW           | М        |



RS - Next day shipment up to 5 pieces

• M - Manufacturing lead times

- Notes: All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241
    - Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Lightweight Oils and Heat Transfer Oils**

- 6 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                                   |       |      |    | #     |                    | ' Dim.   | Ship |      | Part              |          | Part               |           |
|-----------------------------------|-------|------|----|-------|--------------------|----------|------|------|-------------------|----------|--------------------|-----------|
| Description                       | Volts | kW   | Ph | Circ. | in.                | (mm)     | lbs  | (kg) | Number            | Del.     | Number             | Del.      |
|                                   |       |      |    |       |                    |          |      |      | General Purpose E | nclosure | Moisture-Resistant | Enclosure |
| 23 W/in²                          | 240   | 12.0 | 1  | 2     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPS717R10S        | М        | FPS717R10W         | М         |
| Steel Flange<br>12-Steel Elements | 240   | 12.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPS717R3S         | М        | FPS717R3W          | М         |
| (3.6 W/cm²)                       | 480   | 12.0 | 1  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPS717R11S        | М        | FPS717R11W         | М         |
|                                   | 480   | 12.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPS717R5S         | М        | FPS717R5W          | М         |
|                                   | 240   | 18.0 | 1  | 2     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPS725G10S        | М        | FPS725G10W         | М         |
|                                   | 240   | 18.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPS725G3S         | М        | FPS725G3W          | М         |
|                                   | 480   | 18.0 | 1  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPS725G11S        | М        | FPS725G11W         | М         |
|                                   | 480   | 18.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPS725G5S         | М        | FPS725G5W          | М         |
|                                   | 240   | 24.0 | 1  | 3     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPS732R10S        | М        | FPS732R10W         | М         |
|                                   | 240   | 24.0 | 3  | 2     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPS732R3S         | М        | FPS732R3W          | М         |
|                                   | 480   | 24.0 | 1  | 2     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPS732R11S        | М        | FPS732R11W         | М         |
|                                   | 480   | 24.0 | 3  | 1     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPS732R5S         | М        | FPS732R5W          | М         |
|                                   | 240   | 30.0 | 1  | 3     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPS740G10S        | М        | FPS740G10W         | М         |
|                                   | 240   | 30.0 | 3  | 2     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPS740G3S         | М        | FPS740G3W          | М         |
|                                   | 480   | 30.0 | 1  | 2     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPS740G11S        | М        | FPS740G11W         | М         |
|                                   | 480   | 30.0 | 3  | 1     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPS740G5S         | М        | FPS740G5W          | М         |
|                                   | 240   | 36.0 | 1  | 4     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPS747R10S        | М        | FPS747R10W         | М         |
|                                   | 240   | 36.0 | 3  | 2     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPS747R3S         | М        | FPS747R3W          | М         |
|                                   | 480   | 36.0 | 1  | 2     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPS747R11S        | М        | FPS747R11W         | М         |
|                                   | 480   | 36.0 | 3  | 1     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPS747R5S         | М        | FPS747R5W          | М         |
|                                   | 240   | 50.0 | 3  | 4     | 64 <sup>3</sup> /8 | (1635.1) | 110  | (50) | FPS764G3S         | М        | FPS764G3W          | М         |
|                                   | 480   | 50.0 | 1  | 3     | 64 <sup>3</sup> /8 | (1635.1) | 110  | (50) | FPS764G11S        | М        | FPS764G11W         | М         |
|                                   | 480   | 50.0 | 3  | 2     | 64 <sup>3</sup> /8 | (1635.1) | 110  | . ,  | FPS764G5S         | М        | FPS764G5W          | М         |
|                                   | 240   | 60.0 | 3  | 4     | 76 <sup>7</sup> /8 | (1952.4) | 118  | (54) | FPS776R3S         | М        | FPS776R3W          | М         |
|                                   | 480   | 60.0 | 1  | 3     | 76 <sup>7</sup> /8 | (1952.4) |      | (54) | FPS776R11S        | М        | FPS776R11W         | М         |
|                                   | 480   | 60.0 | 3  | 2     | 76 <sup>7</sup> /8 | (1952.4) |      | . ,  | FPS776R5S         | М        | FPS776R5W          | М         |

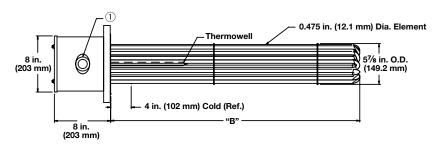
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only

WATLOW<sup>®</sup> \_\_\_\_\_\_ 279


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Lightweight Oils and Heat Transfer Oils**

- 6 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



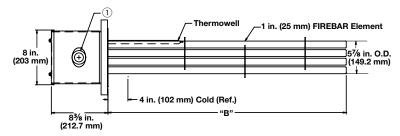
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description       | Volts | kW   | Ph | #<br>Circ. | "B"                | Dim.     | Ship<br>Ibs |      | Part<br>Number     | Del. | Part<br>Number       | Del. |
|-------------------|-------|------|----|------------|--------------------|----------|-------------|------|--------------------|------|----------------------|------|
| Description       | Voits | KVV  | Pn | Circ.      | in.                | (mm)     | IDS         | (kg) | General Purpose Er |      | Moisture-Resistant E |      |
| 23 W/in²          | 240   | 15.0 | 1  | 3          | 17 <sup>7</sup> /8 | (454.0)  | 78          | (36) | FPS717R10XS        | М    | FPS717R10XW          | М    |
| Steel Flange      | 240   | 15.0 | 3  | 1          | 17 <sup>7</sup> /8 | (454.0)  | 78          | ()   | FPS717R3XS         | M    | FPS717R3XW           | M    |
| 15-Steel Elements | 480   | 15.0 | 1  | 1          | 17 <sup>7</sup> /8 | (454.0)  | 78          | ( /  | FPS717R11XS        | M    | FPS717R11XW          | M    |
| 3.6 W/cm²)        | 480   | 15.0 | 3  | 1          | 17 <sup>7</sup> /8 | (454.0)  | 78          | ()   | FPS717R5XS         | M    | FPS717R5XW           | M    |
|                   | 240   | 23.0 | 1  | 3          | 25 <sup>3</sup> /8 | (644.5)  | 85          | ( /  | FPS725G10XS        | М    | FPS725G10XW          | M    |
|                   | 240   | 23.0 | 3  | 5          | 25 <sup>3</sup> /8 | (644.5)  | 85          | ()   | FPS725G3XS         | M    | FPS725G3XW           | M    |
|                   | 480   | 23.0 | 1  | 1          | 25 <sup>3</sup> /8 | (644.5)  | 85          | . ,  | FPS725G11XS        | М    | FPS725G11XW          | М    |
|                   | 480   | 23.0 | 3  | 1          | 253/8              | (644.5)  | 85          | ()   | FPS725G5XS         | М    | FPS725G5XW           | М    |
|                   | 240   | 30.0 | 1  | 3          | 32 <sup>7</sup> /8 | (835.0)  | 90          | . ,  | FPS732R10XS        | М    | FPS732R10XW          | М    |
|                   | 240   | 30.0 | 3  | 5          | 32 <sup>7</sup> /8 | (835.0)  | 90          |      | FPS732R3XS         | М    | FPS732R3XW           | М    |
|                   | 480   | 30.0 | 1  | 3          | 32 <sup>7</sup> /8 | (835.0)  | 90          | . ,  | FPS732R11XS        | М    | FPS732R11XW          | М    |
|                   | 480   | 30.0 | 3  | 1          | 32 <sup>7</sup> /8 | (835.0)  | 90          | (41) | FPS732R5XS         | М    | FPS732R5XW           | М    |
|                   | 240   | 38.0 | 1  | 5          | 40 <sup>3</sup> /8 | (1025.5) | 98          | . ,  | FPS740G10XS        | М    | FPS740G10XW          | М    |
|                   | 240   | 38.0 | 3  | 5          | 40 <sup>3</sup> /8 | (1025.5) | 98          | (45) | FPS740G3XS         | М    | FPS740G3XW           | М    |
|                   | 480   | 38.0 | 1  | 3          |                    | ,        | 98          | . ,  | FPS740G11XS        | М    | FPS740G11XW          | М    |
|                   | 480   | 38.0 | 3  | 1          | 40 <sup>3</sup> /8 | (1025.5) | 98          | (45) | FPS740G5XS         | М    | FPS740G5XW           | М    |
|                   | 240   | 45.0 | 1  | 5          | 47 <sup>7</sup> /8 | (1216.0) | 108         | (49) | FPS747R10XS        | М    | FPS747R10XW          | М    |
|                   | 240   | 45.0 | 3  | 5          | 47 <sup>7</sup> /8 | (1216.0) | 108         | (49) | FPS747R3XS         | М    | FPS747R3XW           | М    |
|                   | 480   | 45.0 | 1  | 3          |                    | (1216.0) | 108         | (49) | FPS747R11XS        | М    | FPS747R11XW          | М    |
|                   | 480   | 45.0 | 3  | 5          | 47 <sup>7</sup> /8 | (1216.0) | 108         | (49) | FPS747R5XS         | М    | FPS747R5XW           | М    |
|                   | 240   | 63.0 | 3  | 5          | 64 <sup>3</sup> /8 | (1635.1) | 120         | (55) | FPS764G3XS         | М    | FPS764G3XW           | М    |
|                   | 480   | 63.0 | 1  | 3          | 64 <sup>3</sup> /8 | (1635.1) | 120         | (55) | FPS764G11XS        | М    | FPS764G11XW          | М    |
|                   | 480   | 63.0 | 3  | 5          | 643/8              | (1635.1) | 120         | (55) | FPS764G5XS         | М    | FPS764G5XW           | М    |
|                   | 240   | 75.0 | 3  | 5          |                    | (1952.4) | 131         | (60) | FPS776R3XS         | М    | FPS776R3XW           | М    |
|                   | 480   | 75.0 | 1  | 5          | 76 <sup>7</sup> /8 | (1952.4) | 131         | (60) | FPS776R11XS        | М    | FPS776R11XW          | М    |
|                   | 480   | 75.0 | 3  | 5          | 76 <sup>7</sup> /8 | (1952.4) | 131         | (60) | FPS776R5XS         | М    | FPS776R5XW           | М    |

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

- For ANSI flange dimensions, reference chart on page 241
- Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Lightweight Oils and Heat Transfer Oils**

- 6 inch 150 lb ANSI flange
- FIREBAR elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                               |       |       |    | #     | "B"                            | Dim.   | Ship | Wt.  | Part               |         | Part               |           |
|-------------------------------|-------|-------|----|-------|--------------------------------|--------|------|------|--------------------|---------|--------------------|-----------|
| Description                   | Volts | kW    | Ph | Circ. | in.                            | (mm)   | lbs  | (kg) | Number             | Del.    | Number             | Del.      |
|                               |       |       |    |       |                                |        |      |      | General Purpose En | closure | Moisture-Resistant | Enclosure |
| 30 W/in <sup>2</sup> 3        | 240   | 25.0  | 3  | 5     | 16 <sup>1</sup> /2             | (419)  | 81   | (37) | FPNF16J12S         | М       | FPNF16J12W         | М         |
| 304 SS Flange<br>15-Alloy 800 | 480   | 25.0  | 3  | 5     | 16 <sup>1</sup> /2             | (419)  | 81   | (37) | FPNF16J13S         | М       | FPNF16J13W         | М         |
| Elements                      | 240   | 32.0  | 3  | 5     | 19 <sup>1</sup> / <sub>2</sub> | (495)  | 84   | (38) | FPNF19J12S         | М       | FPNF19J12W         | М         |
| (4.7 W/cm²)                   | 480   | 32.0  | 3  | 5     | 19 <sup>1</sup> / <sub>2</sub> | (495)  | 84   | (38) | FPNF19J13S         | М       | FPNF19J13W         | М         |
|                               | 240   | 42.0  | 3  | 5     | 24 <sup>1</sup> / <sub>2</sub> | (622)  | 87   | (40) | FPNF24J12S         | М       | FPNF24J12W         | М         |
|                               | 480   | 42.0  | 3  | 5     | 24 <sup>1</sup> / <sub>2</sub> | (622)  | 87   | (40) | FPNF24J13S         | М       | FPNF24J13W         | М         |
|                               | 240   | 52.0  | 3  | 5     | 30                             | (762)  | 91   | (42) | FPNF30A12S         | М       | FPNF30A12W         | М         |
|                               | 480   | 52.0  | 3  | 5     | 30                             | (762)  | 91   | (42) | FPNF30A13S         | М       | FPNF30A13W         | М         |
|                               | 240   | 64.0  | 3  | 5     | 35                             | (889)  | 95   | (43) | FPNF35A12S         | М       | FPNF35A12W         | М         |
|                               | 480   | 64.0  | 3  | 5     | 35                             | (889)  | 95   | (43) | FPNF35A13S         | М       | FPNF35A13W         | М         |
|                               | 240   | 85.0  | 3  | 5     | 45 <sup>1</sup> / <sub>2</sub> | (1156) | 106  | (48) | FPNF45J12S         | М       | FPNF45J12W         | М         |
|                               | 480   | 85.0  | 3  | 5     | 45 <sup>1</sup> / <sub>2</sub> | (1156) | 106  | (48) | FPNF45J13S         | М       | FPNF45J13W         | М         |
|                               | 480   | 110.0 | 3  | 5     | 56                             | (1422) | 116  | (53) | FPNF56A13S         | М       | FPNF56A13W         | М         |
| 23 W/in²                      | 240   | 19.0  | 3  | 5     | 16 <sup>1</sup> /2             | (419)  | 81   | (37) | FPNF16J20S         | М       | FPNF16J20W         | М         |
| 304 SS Flange                 | 240   | 24.0  | 3  | 5     | 19 <sup>1</sup> / <sub>2</sub> | (495)  | 84   | (38) | FPNF19J20S         | М       | FPNF19J20W         | М         |
| 15-Alloy 800<br>Elements      | 240   | 32.0  | 3  | 5     | 24 <sup>1</sup> / <sub>2</sub> | (622)  | 87   | (40) | FPNF24J20S         | М       | FPNF24J20W         | М         |
| (3.6 W/cm²)                   | 480   | 32.0  | 3  | 5     | 24 <sup>1</sup> / <sub>2</sub> | (622)  | 87   | (40) | FPNF24J19S         | М       | FPNF24J19W         | М         |
|                               | 240   | 40.0  | 3  | 5     | 30                             | (762)  | 91   | (42) | FPNF30A20S         | М       | FPNF30A20W         | М         |
|                               | 480   | 40.0  | 3  | 5     | 30                             | (762)  | 91   | (42) | FPNF30A19S         | М       | FPNF30A19W         | М         |
|                               | 240   | 48.0  | 3  | 5     | 35                             | (889)  | 95   | (43) | FPNF35A20S         | М       | FPNF35A20W         | М         |
|                               | 480   | 48.0  | 3  | 5     | 35                             | (889)  | 95   | (43) | FPNF35A19S         | М       | FPNF35A19W         | М         |
|                               | 240   | 64.0  | 3  | 5     | 45 <sup>1</sup> / <sub>2</sub> | (1156) | 106  | (48) | FPNF45J20S         | М       | FPNF45J20W         | М         |
|                               | 480   | 64.0  | 3  | 5     | 45 <sup>1</sup> / <sub>2</sub> | (1156) | 106  | (48) | FPNF45J19S         | М       | FPNF45J19W         | М         |
|                               | 240   | 80.0  | 3  | 5     | 56                             | (1422) | 116  | (53) | FPNF56A20S         | М       | FPNF56A20W         | М         |
|                               | 480   | 80.0  | 3  | 5     | 56                             | (1422) | 116  | (53) | FPNF56A19S         | М       | FPNF56A19W         | М         |

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Wired for 3-phase operation only

Truck Shipment only

WATLOW® 281

## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Lightweight Oils and Heat Transfer Oils**

- 8 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures
- The number and size of the conduit opening will comply with the National Electrical Code® standards.

# General Purpose and Moisture Resistant O.475 in. (12.1 mm) Dia. Element 10 in. (254 mm) 73/4 in. O.D. (197 mm)

-6 in. (152 mm) Cold (Ref.)

|                                  |       |       |    | #            | "B"                              | Dim.     | Shi | p Wt. | Part               |         | Part                       |          |
|----------------------------------|-------|-------|----|--------------|----------------------------------|----------|-----|-------|--------------------|---------|----------------------------|----------|
| Description                      | Volts | kW    | Ph | Circ.        | in.                              | (mm)     | lbs | (kg)  | Number             | Del.    | Number                     | Del.     |
|                                  |       |       |    |              |                                  |          |     |       | General Purpose En | closure | Moisture-Resistant Er      | nclosure |
| 23 W/in²                         | 240   | 30.0  | 1  | 3            | 32 <sup>3</sup> /4               | (832.0)  | 130 | (59)  | FRS732N10S         | М       | FRS732N10W                 | М        |
| Steel Flange                     | 240   | 30.0  | 3  | 2            | 32 <sup>3</sup> /4               | (832.0)  | 130 | (59)  | FRS732N3S          | М       | FRS732N3W                  | М        |
| 18-Steel Elements (3.6 W/cm²)    | 480   | 30.0  | 1  | 2            | 32 <sup>3</sup> /4               | (832.0)  | 130 | (59)  | FRS732N11S         | М       | FRS732N11W                 | М        |
| (3.0 44/6111)                    | 480   | 30.0  | 3  | 1            | 32 <sup>3</sup> /4               | (832.0)  | 130 | (59)  | FRS732N5S          | М       | FRS732N5W                  | М        |
|                                  | 240   | 40.0  | 3  | 3            | 43 <sup>1</sup> / <sub>4</sub>   | (1099.0) | 132 | (60)  | FRS743E3S          | М       | FRS743E3W                  | М        |
|                                  | 480   | 40.0  | 1  | 2            | 43 <sup>1</sup> / <sub>4</sub>   | (1099.0) | 132 | (60)  | FRS743E11S         | М       | FRS743E11W                 | М        |
|                                  | 480   | 40.0  | 3  | 2            | 43 <sup>1</sup> / <sub>4</sub>   | (1099.0) | 132 | (60)  | FRS743E5S          | М       | FRS743E5W                  | М        |
|                                  | 240   | 50.0  | 3  | 3            | 51 <sup>11</sup> /16             | (1312.9) | 137 | (63)  | FRS751M3S          | М       | FRS751M3W                  | М        |
|                                  | 480   | 50.0  | 1  | 3            | 51 <sup>11</sup> /16             | (1312.9) | 137 | (63)  | FRS751M11S         | М       | FRS751M11W                 | М        |
|                                  | 480   | 50.0  | 3  | 2            | 51 <sup>11</sup> /16             | (1312.9) | 137 | (63)  | FRS751M5S          | М       | FRS751M5W                  | М        |
|                                  | 240   | 60.0  | 3  | 6            | 62 <sup>3</sup> /16              | (1579.6) | 154 | (70)  | FRS762D3S          | М       | FRS762D3W                  | М        |
|                                  | 480   | 60.0  | 1  | 3            | 62 <sup>3</sup> /16              | (1579.6) | 154 | (70)  | FRS762D11S         | М       | FRS762D11W                 | М        |
|                                  | 480   | 60.0  | 3  | 2            | 62 <sup>3</sup> /16              | (1579.6) | 154 | (70)  | FRS762D5S          | М       | FRS762D5W                  | М        |
|                                  | 240   | 70.0  | 3  | 6            | 70 <sup>11</sup> /16             | (1795.5) | 160 | (73)  | FRS770M3S          | М       | FRS770M3W                  | М        |
|                                  | 480   | 70.0  | 1  | 6            | 70 <sup>11</sup> /16             | (1795.5) | 160 | (73)  | FRS770M11S         | М       | FRS770M11W                 | М        |
|                                  | 480   | 70.0  | 3  | 2            | 70 <sup>11</sup> /16             | (1795.5) | 160 | (73)  | FRS770M5S          | М       | FRS770M5W                  | М        |
|                                  | 240   | 80.0  | 3  | 6            | 79 <sup>11</sup> / <sub>16</sub> | (2024.1) | 172 | (78)  | FRS779M3S          | М       | FRS779M3W                  | М        |
|                                  | 480   | 80.0  | 3  | 3            | 79 <sup>11</sup> /16             | (2024.1) | 172 | (78)  | FRS779M5S          | М       | FRS779M5W                  | М        |
| 23 W/in <sup>2</sup>             | 240   | 40.0  | 1  | 4            | 33 <sup>3</sup> /16              | (843.0)  | 142 | (65)  | FRS733D10XS        | М       | FRS733D10XW                | М        |
| Steel Flange                     | 240   | 40.0  | 3  | 4            | 33 <sup>3</sup> /16              | (843.0)  | 142 | (65)  | FRS733D3XS         | М       | FRS733D3XW                 | М        |
| 24-Steel Elements<br>(3.6 W/cm²) | 480   | 40.0  | 1  | 2            | 33 <sup>3</sup> /16              | (843.0)  | 142 | (65)  | FRS733D11XS        | М       | FRS733D11XW                | М        |
| (3.6 W/CIII)                     | 480   | 40.0  | 3  | 2            | 33 <sup>3</sup> /16              | (843.0)  | 142 | (65)  | FRS733D5XS         | М       | FRS733D5XW                 | М        |
|                                  | 240   | 53.0  | 3  | 4            | 43 <sup>11</sup> /16             | (1109.7) | 147 | (67)  | FRS743M3XS         | М       | FRS743M3XW                 | М        |
|                                  | 480   | 53.0  | 1  | 3            | 43 <sup>11</sup> /16             | (1109.7) | 147 | (67)  | FRS743M11XS        | М       | FRS743M11XW                | М        |
|                                  | 480   | 53.0  | 3  | 2            | 43 <sup>11</sup> /16             | (1109.7) | 147 | (67)  | FRS743M5XS         | М       | FRS743M5XW                 | М        |
|                                  | 240   | 67.0  | 3  | 4            |                                  | (1312.9) |     | (70)  | FRS751M3XS         | М       | FRS751M3XW                 | М        |
|                                  | 480   | 67.0  | 1  | 3            | 51 <sup>11</sup> /16             | (1312.9) | 154 | (70)  | FRS751M11XS        | М       | FRS751M11XW                | М        |
|                                  | 480   | 67.0  | 3  | 2            | 51 <sup>11</sup> /16             | (1312.9) | 154 |       | FRS751M5XS         | М       | FRS751M5XW                 | М        |
|                                  | 240   | 80.0  | 3  | 8            | 62 <sup>3</sup> /16              | (1579.6) | 166 |       | FRS762D3XS         | М       | FRS762D3XW                 | М        |
|                                  | 480   | 80.0  | 1  | 4            | 62 <sup>3</sup> /16              | (1579.6) | 166 | (76)  | FRS762D11XS        | М       | FRS762D11XW                | М        |
|                                  | 480   | 80.0  | 3  | 4            | 62 <sup>3</sup> /16              | (1579.6) | 166 | (76)  | FRS762D5XS         | М       | FRS762D5XW                 | М        |
|                                  | 240   | 93.0  | 3  | 8            | 70 <sup>11</sup> / <sub>16</sub> | (1795.5) | 175 | (80)  | FRS770M3XS         | М       | FRS770M3XW                 | М        |
|                                  | 480   | 93.0  | 1  | 6            | 70 <sup>11</sup> / <sub>16</sub> | (1795.5) | 175 | (80)  | FRS770M11XS        | М       | FRS770M11XW                | М        |
|                                  | 480   | 93.0  | 3  | 4            | 70 <sup>11</sup> /16             | (1795.5) | 175 | (80)  | FRS770M5XS         | М       | FRS770M5XW                 | М        |
|                                  | 240   | 107.0 | 3  | 8            | 79 <sup>11</sup> / <sub>16</sub> | (2024.1) | 181 | (82)  | FRS779M3XS         | М       | FRS779M3XW                 | М        |
|                                  | 480   | 107.0 | 3  | 4            | 79 <sup>11</sup> / <sub>16</sub> | (2024.1) | 181 |       | FRS779M5XS         | М       | FRS779M5XW                 | М        |
| - B4 - N4 (1 - i                 |       |       |    | <del>-</del> | Chinmont                         |          |     | . ,   |                    |         | nd to fit the incide diame | T        |

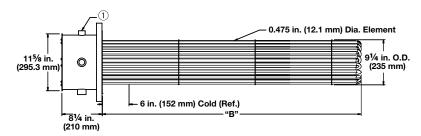
8<sup>3</sup>/<sub>16</sub> in. (208 mm)

<sup>•</sup> M - Manufacturing lead times

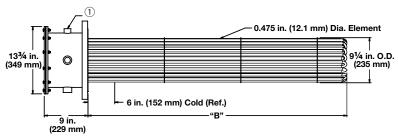
Truck Shipment only

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

<sup>•</sup> For ANSI flange dimensions, reference chart on page 241


## WATROD and FIREBAR ANSI Flange Immersion Heaters




## **Application: Light Weight Oils and Heat Transfer Oils**

- 10 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

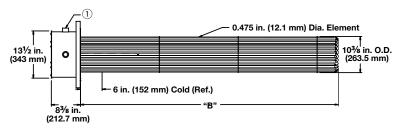
| Description                       | Volts | kW    | Ph | #<br>Circ. | "B"<br>in.                     | Dim.<br>(mm) |     | o Wt.<br>(kg) | Part<br>Number     | Del.    | Part<br>Number       | Del.     |
|-----------------------------------|-------|-------|----|------------|--------------------------------|--------------|-----|---------------|--------------------|---------|----------------------|----------|
|                                   |       |       |    |            |                                |              |     |               | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 23 W/in <sup>2</sup>              | 240   | 45.0  | 3  | 3          | 331/4                          | (845)        | 165 | (75)          | FSS733E3S          | М       | FSS733E3W            | М        |
| Steel Flange<br>27-Steel Elements | 480   | 45.0  | 3  | 3          | 33 <sup>1</sup> / <sub>4</sub> | (845)        | 165 | (75)          | FSS733E5S          | М       | FSS733E5W            | М        |
| (3.6 W/cm²)                       | 240   | 60.0  | 3  | 3          | 43 <sup>3</sup> /4             | (1111)       | 195 | (89)          | FSS743N3S          | М       | FSS743N3W            | М        |
| ,                                 | 480   | 60.0  | 3  | 3          | 43 <sup>3</sup> /4             | (1111)       | 195 | (89)          | FSS743N5S          | М       | FSS743N5W            | М        |
|                                   | 240   | 75.0  | 3  | 9          | 51 <sup>3</sup> /4             | (1314)       | 230 | (105)         | FSS751N3S          | М       | FSS751N3W            | М        |
|                                   | 480   | 75.0  | 3  | 3          | 51 <sup>3</sup> /4             | (1314)       | 230 | (105)         | FSS751N5S          | М       | FSS751N5W            | М        |
|                                   | 480   | 90.0  | 3  | 3          | 62 <sup>1</sup> /4             | (1581)       | 250 | (114)         | FSS762E5S          | М       | FSS762E5W            | М        |
|                                   | 480   | 105.0 | 3  | 3          | 70 <sup>3</sup> /4             | (1797)       | 258 | (117)         | FSS770N5S          | М       | FSS770N5W            | М        |
|                                   | 480   | 120.0 | 3  | 3          | 78 <sup>3</sup> /4             | (2000)       | 265 | (121)         | FSS778N5S          | М       | FSS778N5W            | М        |

• M - Manufacturing lead times

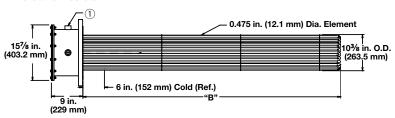
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




## Application: Light Weight Oils and Heat Transfer Oils

- 12 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



1 The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                       | Volts | kW    | Ph | #<br>Circ. | "B"<br>in.         | Dim. (mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number      | Del.    | Part<br>Number        | Del.     |
|-----------------------------------|-------|-------|----|------------|--------------------|-----------|-------------|-------------|---------------------|---------|-----------------------|----------|
|                                   |       |       |    |            |                    |           |             |             | General Purpose End | closure | Moisture-Resistant Er | nclosure |
| 23 W/in <sup>2</sup>              | 480   | 60.0  | 3  | 3          | 331/8              | (841.4)   | 205         | (93)        | FTS733C5S           | М       | FTS733C5W             | М        |
| Steel Flange<br>36-Steel Elements | 480   | 80.0  | 3  | 3          | 43 <sup>5</sup> /8 | (1108.1)  | 240         | (109)       | FTS743L5S           | М       | FTS743L5W             | М        |
| (3.6 W/cm²)                       | 480   | 100.0 | 3  | 3          | 51 <sup>5</sup> /8 | (1311.3)  | 280         | (127)       | FTS751L5S           | М       | FTS751L5W             | М        |
| ,                                 | 480   | 120.0 | 3  | 3          | 62 <sup>1</sup> /8 | (1578.0)  | 285         | (130)       | FTS762C5S           | М       | FTS762C5W             | М        |
|                                   | 480   | 140.0 | 3  | 4          | 70 <sup>5</sup> /8 | (1793.9)  | 290         | (132)       | FTS770L5S           | М       | FTS770L5W             | М        |
|                                   | 480   | 160.0 | 3  | 4          | 78 <sup>5</sup> /8 | (1997.1)  | 300         | (136)       | FTS778L5S           | М       | FTS778L5W             | М        |

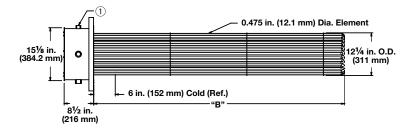
• M - Manufacturing lead times

284

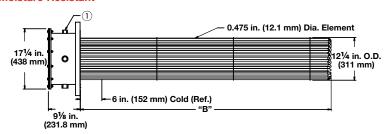
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

 $\bullet$  For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


### **WATROD and FIREBAR ANSI Flange Immersion Heaters**




## **Application: Light Weight Oils and Heat Transfer Oils**

- 14 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

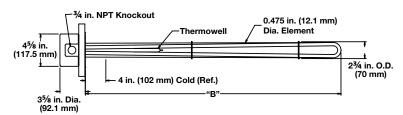
| Description                       | Volts | kW    | Ph | #<br>Circ. | "B"<br>in.                     | Dim.<br>(mm) | Shi <sub>l</sub><br>Ibs | p Wt.<br>(kg) | Part<br>Number     | Del. | Part<br>Number        | Del. |
|-----------------------------------|-------|-------|----|------------|--------------------------------|--------------|-------------------------|---------------|--------------------|------|-----------------------|------|
| Decemption                        | VOILO | 1000  |    | 01101      |                                | ()           | 150                     | (149)         | General Purpose En |      | Moisture-Resistant Er |      |
| 23 W/in²                          | 480   | 75.0  | 3  | 3          | 33                             | (838)        | 225                     | (102)         | FWS733A5S          | М    | FWS733A5W             | М    |
| Steel Flange<br>45-Steel Elements | 480   | 100.0 | 3  | 3          | 43 <sup>1</sup> / <sub>2</sub> | (1105)       | 255                     | (116)         | FWS743J5S          | М    | FWS743J5W             | М    |
| (3.6 W/cm²)                       | 480   | 125.0 | 3  | 5          | 51 <sup>1</sup> /2             | (1308)       | 300                     | (136)         | FWS751J5S          | М    | FWS751J5W             | М    |
|                                   | 480   | 150.0 | 3  | 5          | 62                             | (1575)       | 310                     | (141)         | FWS762A5S          | М    | FWS762A5W             | М    |
|                                   | 480   | 175.0 | 3  | 5          | 70 <sup>1</sup> / <sub>2</sub> | (1791)       | 318                     | (145)         | FWS770J5S          | М    | FWS770J5W             | М    |
|                                   | 480   | 200.0 | 3  | 5          | 78 <sup>1</sup> / <sub>2</sub> | (1994)       | 330                     | (150)         | FWS778J5S          | М    | FWS778J5W             | М    |

• M - Manufacturing lead times

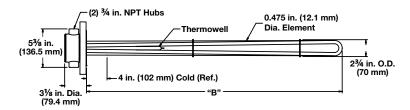
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




## **Application: Medium Weight Oils and Heat Transfer Oils**

- 3 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures
- Single circuit

#### **General Purpose**



#### **Moisture Resistant**



| Description             | Volts | kW  | Ph | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number      | Del.    | Part<br>Number        | Del.    |
|-------------------------|-------|-----|----|--------------------------------|--------------|-------------|-------------|---------------------|---------|-----------------------|---------|
|                         |       |     |    |                                |              |             |             | General Purpose End | closure | Moisture-Resistant En | closure |
| 16 W/in <sup>2</sup> ③  | 240   | 1.5 | 3  | 13 <sup>1</sup> / <sub>2</sub> | (343)        | 22          | (10)        | FMN713J12S          | RS      | FMN713J12W            | RS      |
| Steel Flange            | 480   | 1.5 | 3  | 13 <sup>1</sup> /2             | (343)        | 22          | (10)        | FMN713J13S          | RS      | FMN713J13W            | RS      |
| 3-Alloy 800<br>Elements | 240   | 2.0 | 3  | 18                             | (457)        | 23          | (11)        | FMN718A12S          | RS      | FMN718A12W            | RS      |
| (2.5 W/cm²)             | 480   | 2.0 | 3  | 18                             | (457)        | 23          | (11)        | FMN718A13S          | RS      | FMN718A13W            | RS      |
| ,                       | 240   | 2.5 | 3  | 20 <sup>1</sup> / <sub>2</sub> | (521)        | 25          | (12)        | FMN720J12S          | RS      | FMN720J12W            | RS      |
|                         | 480   | 2.5 | 3  | 20 <sup>1</sup> / <sub>2</sub> | (521)        | 25          | (12)        | FMN720J13S          | RS      | FMN720J13W            | RS      |
|                         | 240   | 3.0 | 3  | 25 <sup>1</sup> / <sub>2</sub> | (648)        | 27          | (13)        | FMN725J12S          | RS      | FMN725J12W            | RS      |
|                         | 480   | 3.0 | 3  | 25 <sup>1</sup> / <sub>2</sub> | (648)        | 27          | (13)        | FMN725J13S          | RS      | FMN725J13W            | RS      |
|                         | 240   | 4.0 | 3  | 33                             | (838)        | 28          | (13)        | FMN733A12S          | RS      | FMN733A12W            | RS      |
|                         | 480   | 4.0 | 3  | 33                             | (838)        | 28          | (13)        | FMN733A13S          | RS      | FMN733A13W            | RS      |
|                         | 240   | 5.0 | 3  | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 30          | (14)        | FMN740J12S          | RS      | FMN740J12W            | RS      |
|                         | 480   | 5.0 | 3  | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 30          | (14)        | FMN740J13S          | RS      | FMN740J13W            | RS      |
|                         | 240   | 6.0 | 3  | 48                             | (1219)       | 32          | (15)        | FMN748A12S          | RS      | FMN748A12W            | RS      |
|                         | 480   | 6.0 | 3  | 48                             | (1219)       | 32          | (15)        | FMN748A13S          | RS      | FMN748A13W            | RS      |

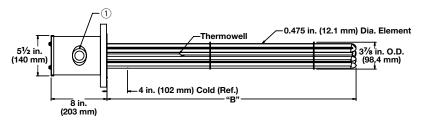


• RS - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Wired for 3-phase operation only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Medium Weight Oils and Heat Transfer Oils**

- 4 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                 | Volts | kW   | Ph | #<br>Circ. | "B"<br>in.                     | Dim.   | Ship<br>lbs | o Wt.<br>(kg) | Part<br>Number     | Del. | Part<br>Number       | Del. |
|-----------------------------|-------|------|----|------------|--------------------------------|--------|-------------|---------------|--------------------|------|----------------------|------|
|                             |       |      |    |            |                                | (,     |             | (3)           | General Purpose En |      | Moisture-Resistant E |      |
| 16 W/in² ③                  | 240   | 3.0  | 3  | 1          | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 29          | (14)          | FON713J12S         | RS   | FON713J12W           | RS   |
| Steel Flange<br>6-Alloy 800 | 480   | 3.0  | 3  | 1          | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 29          | (14)          | FON713J13S         | RS   | FON713J13W           | RS   |
| Elements                    | 240   | 4.0  | 3  | 1          | 18                             | (457)  | 32          | (15)          | FON718A12S         | RS   | FON718A12W           | RS   |
| (2.5 W/cm²)                 | 480   | 4.0  | 3  | 1          | 18                             | (457)  | 32          | (15)          | FON718A13S         | RS   | FON718A13W           | RS   |
|                             | 240   | 5.0  | 3  | 1          | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 34          | (16)          | FON720J12S         | RS   | FON720J12W           | RS   |
|                             | 480   | 5.0  | 3  | 1          | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 34          | (16)          | FON720J13S         | RS   | FON720J13W           | RS   |
|                             | 240   | 6.0  | 3  | 1          | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36          | (17)          | FON725J12S         | RS   | FON725J12W           | RS   |
|                             | 480   | 6.0  | 3  | 1          | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 36          | (17)          | FON725J13S         | RS   | FON725J13W           | RS   |
|                             | 240   | 8.0  | 3  | 1          | 33                             | (838)  | 39          | (18)          | FON733A12S         | RS   | FON733A12W           | RS   |
|                             | 480   | 8.0  | 3  | 1          | 33                             | (838)  | 39          | (18)          | FON733A13S         | RS   | FON733A13W           | RS   |
|                             | 240   | 10.0 | 3  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43          | (20)          | FON740J12S         | RS   | FON740J12W           | RS   |
|                             | 480   | 10.0 | 3  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 43          | (20)          | FON740J13S         | RS   | FON740J13W           | RS   |
|                             | 240   | 12.0 | 3  | 1          | 48                             | (1219) | 48          | (22)          | FON748A12S         | RS   | FON748A12W           | RS   |
|                             | 480   | 12.0 | 3  | 1          | 48                             | (1219) | 48          | (22)          | FON748A13S         | RS   | FON748A13W           | RS   |

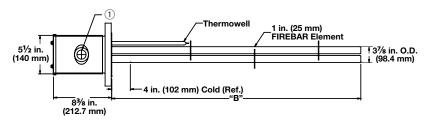


• RS - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



## **Application: Medium Weight Oils and Heat Transfer Oils**

- 4 inch 150 lb ANSI flange
- FIREBAR elements
- Without thermostat
- General purpose or moisture-resistant enclosures

### **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                                                                                   | Volts | kW   | Ph | #<br>Circ. | "B'<br>in.         | ' Dim.<br>(mm) | Shi <sub>l</sub><br>Ibs | o Wt.<br>(kg) | Part<br>Number     | Del.    | Part<br>Number       | Del.     |
|-----------------------------------------------------------------------------------------------|-------|------|----|------------|--------------------|----------------|-------------------------|---------------|--------------------|---------|----------------------|----------|
|                                                                                               |       |      |    |            |                    |                |                         |               | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 15 W/in <sup>2</sup> <sup>®</sup> 304 SS Flange 6-Alloy 800 Elements (2.3 W/cm <sup>2</sup> ) | 240   | 4.0  | 3  | 1          | 13 <sup>3</sup> /8 | (339.7)        | 32                      | (15)          | FONF13G29S         | RS      | FONF13G29W           | RS       |
|                                                                                               | 240   | 5.0  | 3  | 1          | 16                 | (406.0)        | 35                      | (16)          | FONF16A29S         | RS      | FONF16A29W           | RS       |
|                                                                                               | 240   | 6.0  | 3  | 1          | 18 <sup>3</sup> /8 | (466.7)        | 38                      | (17)          | FONF18G29S         | RS      | FONF18G29W           | RS       |
|                                                                                               | 240   | 8.0  | 3  | 1          | 22 <sup>7</sup> /8 | (581.0)        | 41                      | (19)          | FONF22R29S         | RS      | FONF22R29W           | RS       |
|                                                                                               | 480   | 8.0  | 3  | 1          | 22 <sup>7</sup> /8 | (581.0)        | 41                      | (19)          | FONF22R30S         | RS      | FONF22R30W           | RS       |
|                                                                                               | 240   | 10.0 | 3  | 1          | 27 <sup>7</sup> /8 | (708.0)        | 44                      | (20)          | FONF27R29S         | RS      | FONF27R29W           | RS       |
|                                                                                               | 480   | 10.0 | 3  | 1          | 27 <sup>7</sup> /8 | (708.0)        | 44                      | (20)          | FONF27R30S         | RS      | FONF27R30W           | RS       |
|                                                                                               | 240   | 12.0 | 3  | 1          | 32 <sup>7</sup> /8 | (835.0)        | 46                      | (21)          | FONF32R29S         | RS      | FONF32R29W           | RS       |
|                                                                                               | 480   | 12.0 | 3  | 1          | 32 <sup>7</sup> /8 | (835.0)        | 46                      | (21)          | FONF32R30S         | RS      | FONF32R30W           | RS       |
|                                                                                               | 240   | 16.0 | 3  | 1          | 42 <sup>3</sup> /8 | (1076.3)       | 50                      | (23)          | FONF42G29S         | RS      | FONF42G29W           | RS       |
|                                                                                               | 480   | 16.0 | 3  | 1          | 42 <sup>3</sup> /8 | (1076.3)       | 50                      | (23)          | FONF42G30S         | RS      | FONF42G30W           | RS       |
|                                                                                               | 240   | 20.0 | 3  | 1          | 51 <sup>7</sup> /8 | (1317.6)       | 54                      | (25)          | FONF51R29S         | RS      | FONF51R29W           | RS       |
|                                                                                               | 480   | 20.0 | 3  | 1          | 51 <sup>7</sup> /8 | (1317.6)       | 54                      | (25)          | FONF51R30S         | RS      | FONF51R30W           | RS       |

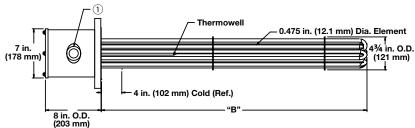


 RS - Next day shipment up to 5 pieces **Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

③ Wired for 3-phase operation only

**WATLOW®** 


# WATROD and FIREBAR ANSI Flange Immersion Heaters



# **Application: Medium Weight Oils and Heat Transfer Oils**

- 5 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

# General Purpose and Moisture Resistant



 $\begin{tabular}{ll} \hline \end{tabular}$  The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description             | Valle | kW   | Die | #     |                                | Dim.   | Ship \ |       | Part                         | Del  | Part                            | D-I  |
|-------------------------|-------|------|-----|-------|--------------------------------|--------|--------|-------|------------------------------|------|---------------------------------|------|
| Description             | Volts | KVV  | Ph  | Circ. | in.                            | (mm)   | lbs    | (kg)  | Number<br>General Purpose En | Del. | Number<br>Moisture-Resistant Er | Del. |
| 16 W/in² ③              | 240   | 3.0  | 3   | 1     | 13 <sup>1</sup> /2             | (343)  | 36     | (17)  | FNN713J12S                   | RS   | FNN713J12W                      | RS   |
| Steel Flange            | 480   | 3.0  | 3   | 1     | 13 <sup>1</sup> / <sub>2</sub> | (343)  | 36     | ٠ ,   | FNN713J13S                   | RS   | FNN713J13W                      | RS   |
| 6-Alloy 800             | 240   | 4.0  | 3   | 1     | 18                             | (457)  | 40     | , ,   | FNN718A12S                   | RS   | FNN718A12W                      | RS   |
| Elements<br>(2.5 W/cm²) | 480   | 4.0  | 3   | 1     | 18                             | (457)  | 40     | (19)  | FNN718A13S                   | RS   | FNN718A13W                      | RS   |
| (2.0 11, 0 )            | 240   | 5.0  | 3   | 1     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 43     | ( /   | FNN720J12S                   | RS   | FNN720J12W                      | RS   |
|                         | 480   | 5.0  | 3   | 1     | 201/2                          | (521)  | 43     | . ,   | FNN720J12S                   | RS   | FNN720J13W                      | RS   |
|                         | 240   | 6.0  | 3   | 1     | 20 <sup>-</sup> / <sub>2</sub> | (648)  | 43     | (20)  | FNN725J12S                   | RS   | FNN725J12W                      | RS   |
|                         | 480   | 6.0  | 3   | 1     | 25 <sup>1</sup> / <sub>2</sub> | (648)  | 47     | . ,   | FNN725J12S<br>FNN725J13S     | RS   | FNN725J12W<br>FNN725J13W        | RS   |
|                         |       | 8.0  | 3   | · ·   | 33                             | , ,    | 52     | . ,   | FNN733A12S                   | RS   | FNN733A12W                      | RS   |
|                         | 240   |      |     | 1     |                                | (838)  | -      | ٠ ,   |                              |      |                                 |      |
|                         | 480   | 8.0  | 3   | 1     | 33                             | (838)  | 52     | ٠ ,   | FNN733A13S                   | RS   | FNN733A13W                      | RS   |
|                         | 240   | 10.0 | 3   | 1     | 401/2                          | (1029) | 57     | ( - / | FNN740J12S                   | RS   | FNN740J12W                      | RS   |
|                         | 480   | 10.0 | 3   | 1     | 401/2                          | (1029) | 57     | ( - / | FNN740J13S                   | RS   | FNN740J13W                      | RS   |
|                         | 240   | 12.0 | 3   | 1     | 48                             | (1219) | 65     | (/    | FNN748A12S                   | RS   | FNN748A12W                      | RS   |
| 121111                  | 480   | 12.0 | 3   | 1     | 48                             | (1219) | 65     | (/    | FNN748A13S                   | RS   | FNN748A13W                      | RS   |
| 16 W/in² ③ Steel Flange | 240   | 4.5  | 3   | 1     | 13 <sup>1</sup> /2             | (343)  | 39     | ( - / | FNN713J12XS                  | RS   | FNN713J12XW                     | RS   |
| 9-Alloy 800             | 480   | 4.5  | 3   | 1     | 13 <sup>1</sup> /2             | (343)  | 39     | (18)  | FNN713J13XS                  | RS   | FNN713J13XW                     | RS   |
| Elements                | 240   | 6.0  | 3   | 1     | 18                             | (457)  | 45     | (21)  | FNN718A12XS                  | RS   | FNN718A12XW                     | RS   |
| (2.5 W/cm²)             | 480   | 6.0  | 3   | 1     | 18                             | (457)  | 45     | (21)  | FNN718A13XS                  | RS   | FNN718A13XW                     | RS   |
|                         | 240   | 7.5  | 3   | 1     | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 48     | (22)  | FNN720J12XS                  | RS   | FNN720J12XW                     | RS   |
|                         | 480   | 7.5  | 3   | 1     | 20 <sup>1</sup> /2             | (521)  | 48     | (22)  | FNN720J13XS                  | RS   | FNN720J13XW                     | RS   |
|                         | 240   | 9.0  | 3   | 1     | 25 <sup>1</sup> /2             | (648)  | 53     | (24)  | FNN725J12XS                  | RS   | FNN725J12XW                     | RS   |
|                         | 480   | 9.0  | 3   | 1     | 25 <sup>1</sup> /2             | (648)  | 53     | (24)  | FNN725J13XS                  | RS   | FNN725J13XW                     | RS   |
|                         | 240   | 12.0 | 3   | 1     | 33                             | (838)  | 60     | (28)  | FNN733A12XS                  | RS   | FNN733A12XW                     | RS   |
|                         | 480   | 12.0 | 3   | 1     | 33                             | (838)  | 60     | (28)  | FNN733A13XS                  | RS   | FNN733A13XW                     | RS   |
|                         | 240   | 15.0 | 3   | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 68     | (31)  | FNN740J12XS                  | RS   | FNN740J12XW                     | RS   |
|                         | 480   | 15.0 | 3   | 1     | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 68     | (31)  | FNN740J13XS                  | RS   | FNN740J13XW                     | RS   |
|                         | 240   | 18.0 | 3   | 1     | 48                             | (1219) | 78     | (36)  | FNN748A12XS                  | М    | FNN748A12XW                     | М    |
|                         | 480   | 18.0 | 3   | 1     | 48                             | (1219) | 78     | (36)  | FNN748A13XS                  | М    | FNN748A13XW                     | М    |



• RS - Next day shipment up to 5 pieces

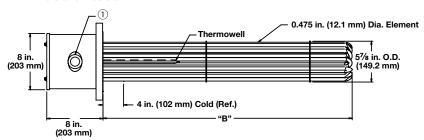
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Wired for 3-phase operation only

Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters



# **Application: Medium Weight Oils and Heat Transfer Oils**

- 6 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

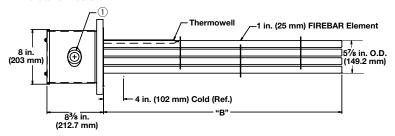
|                              |       |      |    | #     | "B'                | ' Dim.   | Ship | Wt.  | Part               |         | Part                 |          |
|------------------------------|-------|------|----|-------|--------------------|----------|------|------|--------------------|---------|----------------------|----------|
| Description                  | Volts | kW   | Ph | Circ. | in.                | (mm)     | lbs  | (kg) | Number             | Del.    | Number               | Del.     |
|                              |       |      |    |       |                    |          |      |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 16 W/in² ③                   | 240   | 6.0  | 3  | 1     | 13 <sup>3</sup> /8 | (339.7)  | 73   | (33) | FPN713G12S         | RS      | FPN713G12W           | RS       |
| Steel Flange<br>12-Alloy 800 | 480   | 6.0  | 3  | 1     | 13 <sup>3</sup> /8 | (339.7)  | 73   | (33) | FPN713G13S         | RS      | FPN713G13W           | RS       |
| Elements                     | 240   | 8.0  | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPN717R12S         | М       | FPN717R12W           | М        |
| (2.5 W/cm²)                  | 480   | 8.0  | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 75   | (34) | FPN717R13S         | М       | FPN717R13W           | М        |
|                              | 240   | 10.0 | 3  | 1     | 20 <sup>3</sup> /8 | (517.5)  | 78   | (36) | FPN720G12S         | М       | FPN720G12W           | М        |
|                              | 480   | 10.0 | 3  | 1     | 20 <sup>3</sup> /8 | (517.5)  | 78   | (36) | FPN720G13S         | М       | FPN720G13W           | М        |
|                              | 240   | 12.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPN725G12S         | М       | FPN725G12W           | М        |
|                              | 480   | 12.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 81   | (37) | FPN725G13S         | М       | FPN725G13W           | М        |
|                              | 240   | 16.0 | 3  | 1     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPN732R12S         | М       | FPN732R12W           | М        |
|                              | 480   | 16.0 | 3  | 1     | 32 <sup>7</sup> /8 | (835.0)  | 85   | (39) | FPN732R13S         | М       | FPN732R13W           | М        |
|                              | 240   | 20.0 | 3  | 2     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPN740G12S         | М       | FPN740G12W           | М        |
|                              | 480   | 20.0 | 3  | 1     | 40 <sup>3</sup> /8 | (1025.5) | 92   | (42) | FPN740G13S         | М       | FPN740G13W           | М        |
|                              | 240   | 24.0 | 3  | 2     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPN747R12S         | М       | FPN747R12W           | М        |
|                              | 480   | 24.0 | 3  | 1     | 47 <sup>7</sup> /8 | (1216.0) | 100  | (46) | FPN747R13S         | М       | FPN747R13W           | М        |
| 16 W/in² ③                   | 240   | 7.5  | 3  | 1     | 13 <sup>3</sup> /8 | (339.7)  | 76   | (35) | FPN713G12XS        | М       | FPN713G12XW          | М        |
| Steel Flange                 | 480   | 7.5  | 3  | 1     | 13 <sup>3</sup> /8 | (339.7)  | 76   | (35) | FPN713G13XS        | М       | FPN713G13XW          | М        |
| 15-Alloy 800<br>Elements     | 240   | 10.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 78   | (36) | FPN717R12XS        | М       | FPN717R12XW          | М        |
| (2.5 W/cm²)                  | 480   | 10.0 | 3  | 1     | 17 <sup>7</sup> /8 | (454.0)  | 78   | (36) | FPN717R13XS        | М       | FPN717R13XW          | М        |
|                              | 240   | 12.5 | 3  | 1     | 203/8              | (517.5)  | 82   | (38) | FPN720G12XS        | М       | FPN720G12XW          | М        |
|                              | 480   | 12.5 | 3  | 1     | 203/8              | (517.5)  | 82   | (38) | FPN720G13XS        | М       | FPN720G13XW          | М        |
|                              | 240   | 15.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 85   | (39) | FPN725G12XS        | М       | FPN725G12XW          | М        |
|                              | 480   | 15.0 | 3  | 1     | 25 <sup>3</sup> /8 | (644.5)  | 85   | (39) | FPN725G13XS        | М       | FPN725G13XW          | М        |
|                              | 240   | 20.0 | 3  | 5     | 32 <sup>7</sup> /8 | (835.0)  | 90   | (41) | FPN732R12XS        | М       | FPN732R12XW          | М        |
|                              | 480   | 20.0 | 3  | 1     | 32 <sup>7</sup> /8 | (835.0)  | 90   | (41) | FPN732R13XS        | М       | FPN732R13XW          | М        |
|                              | 240   | 25.0 | 3  | 5     | 40 <sup>3</sup> /8 | (1025.5) | 98   | (45) | FPN740G12XS        | М       | FPN740G12XW          | М        |
|                              | 480   | 25.0 | 3  | 1     | 40 <sup>3</sup> /8 | (1025.5) | 98   | (45) | FPN740G13XS        | М       | FPN740G13XW          | М        |
|                              | 240   | 30.0 | 3  | 5     | 47 <sup>7</sup> /8 | (1216.0) | 108  | (49) | FPN747R12XS        | М       | FPN747R12XW          | М        |
|                              | 480   | 30.0 | 3  | 1     |                    | (1216.0) | 108  | (49) | FPN747R13XS        | М       | FPN747R13XW          | М        |



 RS - Next day shipment up to 2 pieces

• M - Manufacturing lead times

- For ANSI flange dimensions, reference chart on page 241
- 3 Wired for 3-phase operation only
- Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters



# **Application: Medium Weight Oils and Heat Transfer Oils**

- 6 inch 150 lb ANSI flange
- FIREBAR elements
- Without thermostat
- General purpose or moisture-resistant enclosures

# **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                   | Volts | kW   | Ph | #<br>Circ. | "B'<br>in.         | Dim.     | Ship<br>lbs | Wt.<br>(kg) | Part<br>Number     | Del. | Part<br>Number       | Del. |
|-------------------------------|-------|------|----|------------|--------------------|----------|-------------|-------------|--------------------|------|----------------------|------|
| Description                   | Voits | KVV  |    | On o.      |                    | (11111)  | 103         | (Kg)        | General Purpose En |      | Moisture-Resistant E |      |
| 15 W/in² ③                    | 240   | 10.0 | 3  | 5          | 13 <sup>3</sup> /8 | (339.7)  | 78          | (36)        | FPNF13G29S         | М    | FPNF13G29W           | М    |
| 304 SS Flange<br>15-Alloy 800 | 240   | 12.5 | 3  | 5          | 16                 | (406.0)  | 81          | (37)        | FPNF16A29S         | М    | FPNF16A29W           | М    |
| Elements                      | 240   | 15.0 | 3  | 5          | 18 <sup>3</sup> /8 | (466.7)  | 84          | (38)        | FPNF18G29S         | М    | FPNF18G29W           | М    |
| (2.3 W/cm²)                   | 240   | 20.0 | 3  | 5          | 22 <sup>7</sup> /8 | (581.0)  | 87          | (40)        | FPNF22R29S         | М    | FPNF22R29W           | М    |
|                               | 480   | 20.0 | 3  | 5          | 22 <sup>7</sup> /8 | (581.0)  | 87          | (40)        | FPNF22R30S         | М    | FPNF22R30W           | М    |
|                               | 240   | 25.0 | 3  | 5          | 27 <sup>7</sup> /8 | (708.0)  | 91          | (42)        | FPNF27R29S         | М    | FPNF27R29W           | М    |
|                               | 480   | 25.0 | 3  | 5          | 27 <sup>7</sup> /8 | (708.0)  | 91          | (42)        | FPNF27R30S         | М    | FPNF27R30W           | М    |
|                               | 240   | 30.0 | 3  | 5          | 32 <sup>7</sup> /8 | (835.0)  | 95          | (43)        | FPNF32R29S         | М    | FPNF32R29W           | М    |
|                               | 480   | 30.0 | 3  | 5          | 32 <sup>7</sup> /8 | (835.0)  | 95          | (43)        | FPNF32R30S         | М    | FPNF32R30W           | М    |
|                               | 240   | 40.0 | 3  | 5          | 42 <sup>3</sup> /8 | (1076.3) | 106         | (48)        | FPNF42G29S         | М    | FPNF42G29W           | М    |
|                               | 480   | 40.0 | 3  | 5          | 42 <sup>3</sup> /8 | (1076.3) | 106         | (48)        | FPNF42G30S         | М    | FPNF42G30W           | М    |
|                               | 240   | 50.0 | 3  | 5          | 51 <sup>7</sup> /8 | (1317.6) | 116         | (53)        | FPNF51R29S         | М    | FPNF51R29W           | М    |
|                               | 480   | 50.0 | 3  | 5          | 51 <sup>7</sup> /8 | (1317.6) | 116         | (53)        | FPNF51R30S         | М    | FPNF51R30W           | М    |

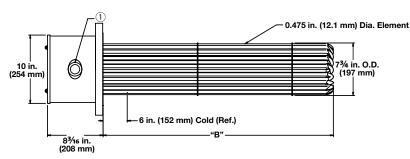
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



# **Application: Medium Weight Oils and Heat Transfer Oils**

- 8 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

# General Purpose and Moisture Resistant



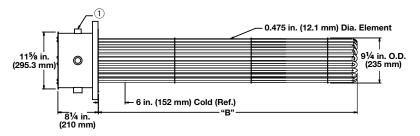
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                              |       |      |    | #     | "B"     | ' Dim.   | Ship | Wt.  | Part               |         | Part                  |          |
|------------------------------|-------|------|----|-------|---------|----------|------|------|--------------------|---------|-----------------------|----------|
| Description                  | Volts | kW   | Ph | Circ. | in.     | (mm)     | lbs  | (kg) | Number             | Del.    | Number                | Del.     |
|                              |       |      |    |       |         |          |      |      | General Purpose En | closure | Moisture-Resistant Er | nclosure |
| 16 W/in² ③                   | 240   | 17.0 | 3  | 1     | 25¾     | (654.0)  | 121  | (55) | FRN725N12S         | М       | FRN725N12W            | М        |
| Steel Flange<br>18-Alloy 800 | 480   | 17.0 | 3  | 1     | 25¾     | (654.0)  | 121  | (55) | FRN725N13S         | М       | FRN725N13W            | М        |
| Elements                     | 240   | 25.0 | 3  | 2     | 35¾     | (908.0)  | 130  | (59) | FRN735N12S         | М       | FRN735N12W            | М        |
| (2.5 W/cm²)                  | 480   | 25.0 | 3  | 1     | 35¾     | (908.0)  | 130  | (59) | FRN735N13S         | М       | FRN735N13W            | М        |
|                              | 240   | 33.0 | 3  | 2     | 441/4   | (1124.0) | 132  | (60) | FRN744E12S         | М       | FRN744E12W            | М        |
|                              | 480   | 33.0 | 3  | 1     | 441/4   | (1124.0) | 132  | (60) | FRN744E13S         | М       | FRN744E13W            | М        |
|                              | 240   | 42.0 | 3  | 3     | 5411/16 | (1389.1) | 140  | (64) | FRN754M12S         | М       | FRN754M12W            | М        |
|                              | 480   | 42.0 | 3  | 2     | 5411/16 | (1389.1) | 140  | (64) | FRN754M13S         | М       | FRN754M13W            | М        |
|                              | 480   | 50.0 | 3  | 2     | 6311/16 | (1617.6) | 145  | (66) | FRN763M13S         | М       | FRN763M13W            | М        |
|                              | 480   | 58.0 | 3  | 2     | 73%     | (1859.0) | 151  | (69) | FRN773D13S         | М       | FRN773D13W            | М        |
|                              | 480   | 67.0 | 3  | 2     | 8211/16 | (2100.3) | 157  | (72) | FRN782M13S         | М       | FRN782M13W            | М        |
| 16 W/in² ③                   | 240   | 23.0 | 3  | 2     | 26¾6    | (665.2)  | 129  | (59) | FRN726D12XS        | М       | FRN726D12XW           | М        |
| Steel Flange<br>24-Alloy 800 | 480   | 23.0 | 3  | 1     | 26¾6    | (665.2)  | 129  | (59) | FRN726D13XS        | М       | FRN726D13XW           | М        |
| Elements                     | 240   | 33.0 | 3  | 2     | 36¾6    | (919.2)  | 142  | (65) | FRN736D12XS        | М       | FRN736D12XW           | М        |
| (2.5 W/cm²)                  | 480   | 33.0 | 3  | 1     | 36¾6    | (919.2)  | 142  | (65) | FRN736D13XS        | М       | FRN736D13XW           | М        |
|                              | 240   | 44.0 | 3  | 4     | 4411/16 | (1135.1) | 147  | (67) | FRN744M12XS        | М       | FRN744M12XW           | М        |
|                              | 480   | 44.0 | 3  | 2     | 4411/16 | (1135.1) | 147  | (67) | FRN744M13XS        | М       | FRN744M13XW           | М        |
|                              | 240   | 56.0 | 3  | 4     | 5411/16 | (1389.1) | 158  | (72) | FRN754M12XS        | М       | FRN754M12XW           | М        |
|                              | 480   | 56.0 | 3  | 2     | 5411/16 | (1389.1) | 158  | (72) | FRN754M13XS        | М       | FRN754M13XW           | М        |
|                              | 480   | 67.0 | 3  | 2     | 6311/16 | (1617.6) | 166  | (76) | FRN763M13XS        | М       | FRN763M13XW           | М        |
|                              | 480   | 77.0 | 3  | 2     | 73%     | (1859.0) | 175  | (80) | FRN773D13XS        | М       | FRN773D13XW           | М        |
|                              | 480   | 89.0 | 3  | 4     | 8211/16 | (2100.3) | 184  | (84) | FRN782M13XS        | М       | FRN782M13XW           | М        |

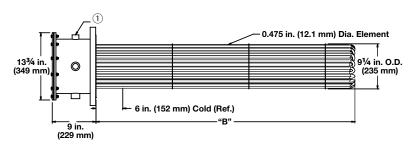
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

- For ANSI flange dimensions, reference chart on page 241
- Wired for 3-phase operation only
- Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters




# **Application: Medium Weight Oils and Heat Transfer Oils**

- 10 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                          |       |      |    | #     | "B"                | Dim.   | Ship | o Wt. | Part               |         | Part                  |          |
|--------------------------|-------|------|----|-------|--------------------|--------|------|-------|--------------------|---------|-----------------------|----------|
| Description              | Volts | kW   | Ph | Circ. | in.                | (mm)   | lbs  | (kg)  | Number             | Del.    | Number                | Del.     |
|                          |       |      |    |       |                    |        | ,    |       | General Purpose En | closure | Moisture-Resistant Er | nclosure |
| 16 W/in <sup>2</sup> 3   | 480   | 63.0 | 3  | 3     | 54 <sup>3</sup> /4 | (1391) | 240  | (109) | FSN754N13S         | М       | FSN754N13W            | М        |
| Steel Flange             | 480   | 75.0 | 3  | 3     | 63 <sup>3</sup> /4 | (1619) | 250  | (114) | FSN763N13S         | М       | FSN763N13W            | М        |
| 27-Alloy 800<br>Elements | 480   | 87.0 | 3  | 3     | 73 <sup>1</sup> /4 | (1861) | 260  | (118) | FSN773E13S         | М       | FSN773E13W            | М        |
| (2.5 W/cm²)              |       |      |    |       |                    |        |      |       |                    |         |                       |          |

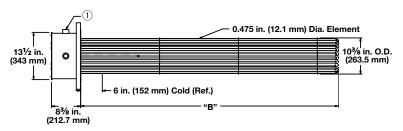
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

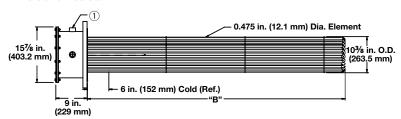
• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only

Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters




# **Application: Medium Weight Oils and Heat Transfer Oils**

- 12 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



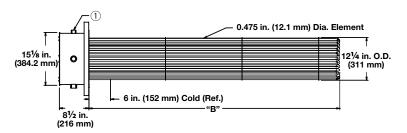
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                  | Volts | kW    | Ph | #<br>Circ. |                    | Dim.<br>(mm) |     | Wt.<br>(kg) | Part<br>Number      | Del.   | Part<br>Number        | Del.     |
|------------------------------|-------|-------|----|------------|--------------------|--------------|-----|-------------|---------------------|--------|-----------------------|----------|
|                              |       |       |    |            |                    |              |     |             | General Purpose Enc | losure | Moisture-Resistant Er | nclosure |
| 16 W/in <sup>2</sup> ③       | 480   | 83.0  | 3  | 3          | 54 <sup>5</sup> /8 | (1387.5)     | 280 | (127)       | FTN754L13S          | М      | FTN754L13W            | М        |
| Steel Flange<br>36-Alloy 800 | 480   | 117.0 | 3  | 3          | 73 <sup>1</sup> /8 | (1857.4)     | 291 | (132)       | FTN773C13S          | М      | FTN773C13W            | М        |
| Elements<br>(2.5 W/cm²)      |       |       |    |            |                    |              |     |             |                     |        |                       |          |

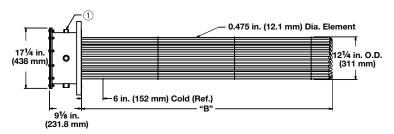
• M - Manufacturing lead times

294

- **Notes:** All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241
- 3 Wired for 3-phase operation only
- Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters




# **Application: Medium Weight Oils and Heat Transfer Oils**

- 14 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

|                              |       |       |    | #     | "B" Dim.                                         |     | Ship | Wt.   | Part               |         | Part                  |          |
|------------------------------|-------|-------|----|-------|--------------------------------------------------|-----|------|-------|--------------------|---------|-----------------------|----------|
| Description                  | Volts | kW    | Ph | Circ. | in. (m                                           | m)  | lbs  | (kg)  | Number             | Del.    | Number                | Del.     |
|                              |       |       |    |       |                                                  |     |      |       | General Purpose En | closure | Moisture-Resistant Er | nclosure |
| 16 Win <sup>2</sup> ③        | 480   | 105.0 | 3  | 3     | 54 <sup>1</sup> / <sub>2</sub> (138              | 34) | 300  | (136) | FWN754J13S         | М       | FWN754J13W            | М        |
| Steel Flange<br>45-Alloy 800 | 480   | 125.0 | 3  | 5     | 63 <sup>1</sup> / <sub>2</sub> (16 <sup>-1</sup> | 13) | 310  | (141) | FWN763J13S         | М       | FWN763J13W            | М        |
| Elements<br>(2.5 W/cm²)      |       |       |    |       |                                                  |     |      |       |                    |         |                       |          |

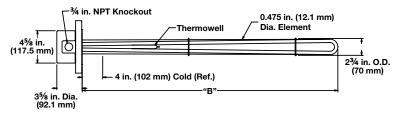
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

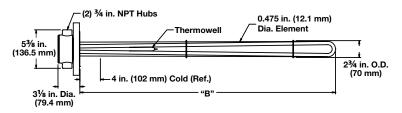
• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters




# Application: Bunker C, Asphalt and #6 Fuel Oil

- 3 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures
- Single circuit

### **General Purpose**



#### **Moisture Resistant**



|                                 |       |     |    | "B"                            | Dim.   | Ship | Wt.  | Part                |         | Part                  |         |
|---------------------------------|-------|-----|----|--------------------------------|--------|------|------|---------------------|---------|-----------------------|---------|
| Description                     | Volts | kW  | Ph | in.                            | (mm)   | lbs  | (kg) | Number              | Del.    | Number                | Del.    |
|                                 |       |     |    |                                |        |      |      | General Purpose End | closure | Moisture-Resistant En | closure |
| 8 W/in² ③                       | 240   | 2.0 | 3  | 33                             | (838)  | 28   | (13) | FMS733A12S          | RS      | FMS733A12W            | RS      |
| Steel Flange                    | 480   | 2.0 | 3  | 33                             | (838)  | 28   | (13) | FMS733A13S          | RS      | FMS733A13W            | RS      |
| 3-Steel Elements<br>(1.3 W/cm²) | 240   | 3.0 | 3  | 48                             | (1219) | 32   | (15) | FMS748A12S          | RS      | FMS748A12W            | RS      |
| (1.5 44/6111)                   | 480   | 3.0 | 3  | 48                             | (1219) | 32   | (15) | FMS748A13S          | RS      | FMS748A13W            | RS      |
|                                 | 240   | 4.0 | 3  | 64 <sup>1</sup> /2             | (1638) | 37   | (17) | FMS764J12S          | RS      | FMS764J12W            | RS      |
|                                 | 480   | 4.0 | 3  | 64 <sup>1</sup> / <sub>2</sub> | (1638) | 37   | (17) | FMS764J13S          | RS      | FMS764J13W            | RS      |
|                                 | 240   | 5.0 | 3  | 77                             | (1956) | 42   | (19) | FMS777A12S          | RS      | FMS777A12W            | RS      |
|                                 | 480   | 5.0 | 3  | 77                             | (1956) | 42   | (19) | FMS777A13S          | RS      | FMS777A13W            | RS      |

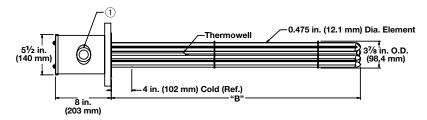


• **RS** - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



# Application: Bunker C, Asphalt and #6 Fuel Oil

- 4 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## **General Purpose and Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                      | Volts | kW   | Ph | #<br>Circ. | "B"<br>in.                     | Dim.<br>(mm) | Ship W | /t.<br>kg) | Part<br>Number     | Del.     | Part<br>Number       | Del.     |
|----------------------------------|-------|------|----|------------|--------------------------------|--------------|--------|------------|--------------------|----------|----------------------|----------|
|                                  |       |      |    |            |                                |              |        |            | General Purpose Er | nclosure | Moisture-Resistant E | nclosure |
| 8 W/in <sup>2</sup> ③            | 240   | 5.0  | 3  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 43 (   | (20)       | FOS740J12S         | RS       | FOS740J12W           | RS       |
| Steel Flange<br>6-Steel Elements | 480   | 5.0  | 3  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 43 (   | (20)       | FOS740J13S         | RS       | FOS740J13W           | RS       |
| (1.3 W/cm²)                      | 240   | 6.0  | 3  | 1          | 48                             | (1219)       | 48 (   | (22)       | FOS748A12S         | RS       | FOS748A12W           | RS       |
| ,                                | 480   | 6.0  | 3  | 1          | 48                             | (1219)       | 48 (   | (22)       | FOS748A13S         | RS       | FOS748A13W           | RS       |
|                                  | 240   | 8.0  | 3  | 1          | 64 <sup>1</sup> /2             | (1638)       | 53 (   | (24)       | FOS764J12S         | RS       | FOS764J12W           | RS       |
|                                  | 480   | 8.0  | 3  | 1          | 64 <sup>1</sup> /2             | (1638)       | 53 (   | (24)       | FOS764J13S         | RS       | FOS764J13W           | RS       |
|                                  | 240   | 10.0 | 3  | 1          | 77                             | (1956)       | 61 (   | (28)       | FOS777A12S         | RS       | FOS777A12W           | RS       |
|                                  | 480   | 10.0 | 3  | 1          | 77                             | (1956)       | 61 (   | (28)       | FOS777A13S         | RS       | FOS777A13W           | RS       |

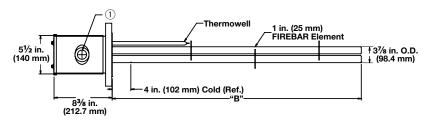


• **RS** - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only


# WATROD and FIREBAR ANSI Flange Immersion Heaters



# Application: Bunker C, Asphalt and #6 Fuel Oil

- 4 inch 150 lb ANSI flange
- FIREBAR elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### General Purpose and Moisture Resistant



 The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                  | Volts | kW    | Ph | #<br>Circ. | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number     | Del.    | Part<br>Number       | Del.     |
|------------------------------|-------|-------|----|------------|--------------------|--------------|-------------|-------------|--------------------|---------|----------------------|----------|
|                              |       |       |    |            |                    |              |             |             | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 8 W/in <sup>2</sup> ③        | 240   | 2.50  | 3  | 1          | 16 <sup>1</sup> /2 | (420)        | 35          | (16)        | FONF16J22S         | RS      | FONF16J22W           | RS       |
| 304 SS Flange<br>6-Alloy 800 | 240   | 3.25  | 3  | 1          | 19 <sup>1</sup> /2 | (495)        | 38          | (17)        | FONF19J22S         | RS      | FONF19J22W           | RS       |
| Elements                     | 240   | 4.25  | 3  | 1          | 24 <sup>1</sup> /2 | (622)        | 41          | (19)        | FONF24J22S         | RS      | FONF24J22W           | RS       |
| (1.3 W/cm²)                  | 480   | 4.25  | 3  | 1          | 24 <sup>1</sup> /2 | (622)        | 41          | (19)        | FONF24J21S         | RS      | FONF24J21W           | RS       |
|                              | 240   | 5.25  | 3  | 1          | 30                 | (762)        | 44          | (20)        | FONF30A22S         | RS      | FONF30A22W           | RS       |
|                              | 480   | 5.25  | 3  | 1          | 30                 | (762)        | 44          | (20)        | FONF30A21S         | RS      | FONF30A21W           | RS       |
|                              | 240   | 6.38  | 3  | 1          | 35                 | (889)        | 46          | (21)        | FONF35A22S         | RS      | FONF35A22W           | RS       |
|                              | 480   | 6.38  | 3  | 1          | 35                 | (889)        | 46          | (21)        | FONF35A21S         | RS      | FONF35A21W           | RS       |
|                              | 240   | 8.50  | 3  | 1          | 45 <sup>1</sup> /2 | (1156)       | 50          | (23)        | FONF45J22S         | RS      | FONF45J22W           | RS       |
|                              | 480   | 8.50  | 3  | 1          | 45 <sup>1</sup> /2 | (1156)       | 50          | (23)        | FONF45J21S         | RS      | FONF45J21W           | RS       |
|                              | 240   | 10.75 | 3  | 1          | 56                 | (1422)       | 54          | (25)        | FONF56A22S         | RS      | FONF56A22W           | RS       |
|                              | 480   | 10.75 | 3  | 1          | 56                 | (1422)       | 54          | (25)        | FONF56A21S         | RS      | FONF56A21W           | RS       |

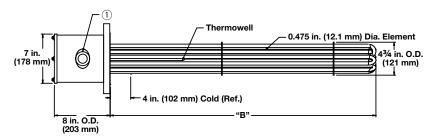


• **RS** - Next day shipment up to 5 pieces

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

Wired for 3-phase operation only


# WATROD and FIREBAR ANSI Flange Immersion Heaters



# Application: Bunker C, Asphalt and #6 Fuel Oil

- 5 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description             | Volts | kW   | Ph | #<br>Circ. | "B"<br>in.                     | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number     | Del.    | Part<br>Number     | Del.      |
|-------------------------|-------|------|----|------------|--------------------------------|--------------|-------------|-------------|--------------------|---------|--------------------|-----------|
|                         |       |      |    |            |                                | . ,          |             | , 0,        | General Purpose En | closure | Moisture-Resistant | Enclosure |
| 8 W/in² ③               | 240   | 5.0  | 3  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 47          | (22)        | FNS740J12S         | RS      | FNS740J12W         | RS        |
| Steel Flange<br>6-Steel | 480   | 5.0  | 3  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 47          | (22)        | FNS740J13S         | RS      | FNS740J13W         | RS        |
| Elements                | 240   | 6.0  | 3  | 1          | 48                             | (1219)       | 52          | (24)        | FNS748A12S         | RS      | FNS748A12W         | RS        |
| (1.3 W/cm²)             | 480   | 6.0  | 3  | 1          | 48                             | (1219)       | 52          | (24)        | FNS748A13S         | RS      | FNS748A13W         | RS        |
|                         | 240   | 8.0  | 3  | 1          | 64 <sup>1</sup> /2             | (1638)       | 57          | (26)        | FNS764J12S         | RS      | FNS764J12W         | RS        |
|                         | 480   | 8.0  | 3  | 1          | 64 <sup>1</sup> /2             | (1638)       | 57          | (26)        | FNS764J13S         | RS      | FNS764J13W         | RS        |
|                         | 240   | 10.0 | 3  | 1          | 77                             | (1956)       | 65          | (28)        | FNS777A12S         | RS      | FNS777A12W         | RS        |
|                         | 480   | 10.0 | 3  | 1          | 77                             | (1956)       | 65          | (28)        | FNS777A13S         | RS      | FNS777A13W         | RS        |
| 8 W/in² ③               | 240   | 7.5  | 3  | 1          | 40 <sup>1</sup> / <sub>2</sub> | (1029)       | 53          | (24)        | FNS740J12XS        | RS      | FNS740J12XW        | RS        |
| Steel Flange<br>9-Steel | 480   | 7.5  | 3  | 1          | 401/2                          | (1029)       | 53          | (24)        | FNS740J13XS        | RS      | FNS740J13XW        | RS        |
| Elements                | 240   | 9.0  | 3  | 1          | 48                             | (1219)       | 60          | (28)        | FNS748A12XS        | RS      | FNS748A12XW        | RS        |
| (1.3 W/cm²)             | 480   | 9.0  | 3  | 1          | 48                             | (1219)       | 60          | (28)        | FNS748A13XS        | RS      | FNS748A13XW        | RS        |
|                         | 240   | 12.0 | 3  | 1          | 64 <sup>1</sup> /2             | (1638)       | 68          | (31)        | FNS764J12XS        | RS      | FNS764J12XW        | RS        |
|                         | 480   | 12.0 | 3  | 1          | 64 <sup>1</sup> /2             | (1638)       | 68          | (31)        | FNS764J13XS        | RS      | FNS764J13XW        | RS        |
|                         | 240   | 15.0 | 3  | 1          | 77                             | (1956)       | 78          | (36)        | FNS777A12XS        | М       | FNS777A12XW        | М         |
|                         | 480   | 15.0 | 3  | 1          | 77                             | (1956)       | 78          | (36)        | FNS777A13XS        | М       | FNS777A13XW        | М         |



 RS - Next day shipment up to 5 pieces

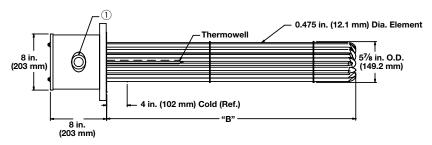
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only

Truck Shipment only


## WATROD and FIREBAR ANSI Flange Immersion Heaters



# Application: Bunker C, Asphalt and #6 Fuel Oil

- 6 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### General Purpose and Moisture Resistant



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                       | Volts | kW   | Ph      | #<br>Circ. | "B'<br>in.         | Dim.     | Ship<br>lbs | Wt.<br>(kg) | Part<br>Number     | Del. | Part<br>Number       | Del. |
|-----------------------------------|-------|------|---------|------------|--------------------|----------|-------------|-------------|--------------------|------|----------------------|------|
| Bescription                       | VOILS | KW   | • • • • | Onc.       |                    | (11111)  | 103         | (Kg)        | General Purpose En |      | Moisture-Resistant E |      |
| 8 W/in² ③                         | 240   | 8.0  | 3       | 1          | 32 <sup>7</sup> /8 | (835.0)  | 85          | (39)        | FPS732R12S         | М    | FPS732R12W           | М    |
| Steel Flange<br>12-Steel Elements | 480   | 8.0  | 3       | 1          | 32 <sup>7</sup> /8 | (835.0)  | 85          | (39)        | FPS732R13S         | М    | FPS732R13W           | М    |
| (1.3 W/cm²)                       | 240   | 10.0 | 3       | 1          | 40 <sup>3</sup> /8 | (1025.5) | 92          | (42)        | FPS740G12S         | М    | FPS740G12W           | М    |
| ,                                 | 480   | 10.0 | 3       | 1          | 40 <sup>3</sup> /8 | (1025.5) | 92          | (42)        | FPS740G13S         | М    | FPS740G13W           | М    |
|                                   | 240   | 12.0 | 3       | 1          | 47 <sup>7</sup> /8 | (1216.0) | 100         | (46)        | FPS747R12S         | М    | FPS747R12W           | М    |
|                                   | 480   | 12.0 | 3       | 1          | 47 <sup>7</sup> /8 | (1216.0) | 100         | (46)        | FPS747R13S         | М    | FPS747R13W           | М    |
|                                   | 240   | 16.5 | 3       | 1          | 64 <sup>3</sup> /8 | (1635.1) | 110         | (50)        | FPS764G12S         | М    | FPS764G12W           | М    |
|                                   | 480   | 16.5 | 3       | 1          | 64 <sup>3</sup> /8 | (1635.1) | 110         | (50)        | FPS764G13S         | М    | FPS764G13W           | М    |
|                                   | 240   | 20.0 | 3       | 2          | 76 <sup>7</sup> /8 | (1952.4) | 118         | (54)        | FPS776R12S         | М    | FPS776R12W           | М    |
|                                   | 480   | 20.0 | 3       | 1          | 76 <sup>7</sup> /8 | (1952.4) | 118         | (54)        | FPS776R13S         | М    | FPS776R13W           | М    |
| 8 W/in² ③                         | 240   | 10.0 | 3       | 1          | 32 <sup>7</sup> /8 | (835.0)  | 90          | (41)        | FPS732R12XS        | М    | FPS732R12XW          | М    |
| Steel Flange<br>15-Steel Elements | 480   | 10.0 | 3       | 1          | 32 <sup>7</sup> /8 | (835.0)  | 90          | (41)        | FPS732R13XS        | М    | FPS732R13XW          | М    |
| (1.3 W/cm²)                       | 240   | 12.5 | 3       | 1          | 40 <sup>3</sup> /8 | (1025.5) | 98          | (45)        | FPS740G12XS        | М    | FPS740G12XW          | М    |
|                                   | 480   | 12.5 | 3       | 1          | 40 <sup>3</sup> /8 | (1025.5) | 98          | (45)        | FPS740G13XS        | М    | FPS740G13XW          | М    |
|                                   | 240   | 15.0 | 3       | 1          | 47 <sup>7</sup> /8 | (1216.0) | 108         | (49)        | FPS747R12XS        | М    | FPS747R12XW          | М    |
|                                   | 480   | 15.0 | 3       | 1          | 47 <sup>7</sup> /8 | (1216.0) | 108         | (49)        | FPS747R13XS        | М    | FPS747R13XW          | М    |
|                                   | 240   | 21.0 | 3       | 5          | 64 <sup>3</sup> /8 | (1635.1) | 120         | (55)        | FPS764G12XS        | М    | FPS764G12XW          | М    |
|                                   | 480   | 21.0 | 3       | 1          | 64 <sup>3</sup> /8 | (1635.1) | 120         | (55)        | FPS764G13XS        | М    | FPS764G13XW          | М    |
|                                   | 240   | 25.0 | 3       | 5          | 76 <sup>7</sup> /8 | (1952.4) | 131         | (60)        | FPS776R12XS        | М    | FPS776R12XW          | М    |
|                                   | 480   | 25.0 | 3       | 1          | 76 <sup>7</sup> /8 | (1952.4) | 131         | (60)        | FPS776R13XS        | М    | FPS776R13XW          | М    |

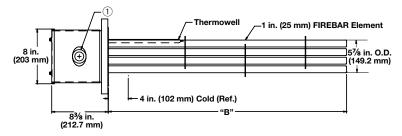
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

③ Wired for 3-phase operation only

Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters



# Application: Bunker C, Asphalt and #6 Fuel Oil

- 6 inch 150 lb ANSI flange
- FIREBAR elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### General Purpose and Moisture Resistant



 The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                   | Volts | kW   | Ph | #<br>Circ. | "B"<br>in.         | Dim.<br>(mm) |     | Wt.<br>(kg) | Part<br>Number     | Del.    | Part<br>Number       | Del.     |
|-------------------------------|-------|------|----|------------|--------------------|--------------|-----|-------------|--------------------|---------|----------------------|----------|
|                               |       |      |    |            |                    |              |     |             | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 8 W/in <sup>2</sup> ③         | 240   | 6.3  | 3  | 5          | 16 <sup>1</sup> /2 | (419)        | 81  | (37)        | FPNF16J22S         | М       | FPNF16J22W           | М        |
| 304 SS Flange<br>15-Alloy 800 | 240   | 8.1  | 3  | 5          | 19 <sup>1</sup> /2 | (495)        | 84  | (38)        | FPNF19J22S         | М       | FPNF19J22W           | М        |
| Elements                      | 240   | 10.6 | 3  | 5          | 24 <sup>1</sup> /2 | (622)        | 87  | (40)        | FPNF24J22S         | М       | FPNF24J22W           | М        |
| (1.3 W/cm²)                   | 480   | 10.6 | 3  | 5          | 24 <sup>1</sup> /2 | (622)        | 87  | (40)        | FPNF24J21S         | М       | FPNF24J21W           | М        |
|                               | 240   | 13.1 | 3  | 5          | 30                 | (762)        | 91  | (42)        | FPNF30A22S         | М       | FPNF30A22W           | М        |
|                               | 480   | 13.1 | 3  | 5          | 30                 | (762)        | 91  | (42)        | FPNF30A21S         | М       | FPNF30A21W           | М        |
|                               | 240   | 16.0 | 3  | 5          | 35                 | (889)        | 95  | (43)        | FPNF35A22S         | М       | FPNF35A22W           | М        |
|                               | 480   | 16.0 | 3  | 5          | 35                 | (889)        | 95  | (43)        | FPNF35A21S         | М       | FPNF35A21W           | М        |
|                               | 240   | 21.3 | 3  | 5          | 45 <sup>1</sup> /2 | (1156)       | 106 | (48)        | FPNF45J22S         | М       | FPNF45J22W           | М        |
|                               | 480   | 21.3 | 3  | 5          | 45 <sup>1</sup> /2 | (1156)       | 106 | (48)        | FPNF45J21S         | М       | FPNF45J21W           | М        |
|                               | 240   | 26.0 | 3  | 5          | 56                 | (1422)       | 116 | (53)        | FPNF56A22S         | М       | FPNF56A22W           | М        |
|                               | 480   | 26.0 | 3  | 5          | 56                 | (1422)       | 116 | (53)        | FPNF56A21S         | М       | FPNF56A21W           | М        |

• M - Manufacturing lead times

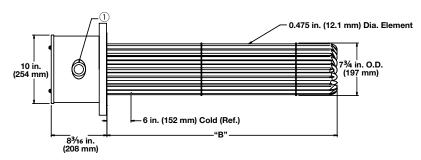
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only

Truck Shipment only

WATLOW<sup>®</sup> \_\_\_\_\_\_ 301


# WATROD and FIREBAR ANSI Flange Immersion Heaters



# Application: Bunker C, Asphalt and #6 Fuel Oil

- 8 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

## General Purpose and Moisture Resistant



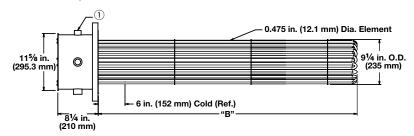
① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                       | Volts | kW   | Ph | #<br>Circ. | "B"<br>in.                       | Dim.<br>(mm) | Ship | Wt.<br>(kg) | Part<br>Number     | Del. | Part<br>Number        | Del. |
|-----------------------------------|-------|------|----|------------|----------------------------------|--------------|------|-------------|--------------------|------|-----------------------|------|
| Description                       | Voits | KVV  |    | Oil C.     |                                  | (11111)      | 103  | (Ng)        | General Purpose En |      | Moisture-Resistant Er |      |
| 8 W/in² ③                         | 240   | 12.5 | 3  | 1          | 431/4                            | (1099.0)     | 132  | (60)        | FRS743E12S         | М    | FRS743E12W            | М    |
| Steel Flange<br>18-Steel Elements | 480   | 12.5 | 3  | 1          | 431/4                            | (1099.0)     | 132  | (60)        | FRS743E13S         | М    | FRS743E13W            | М    |
| (1.3 W/cm²)                       | 240   | 16.5 | 3  | 1          | 51 <sup>11</sup> / <sub>16</sub> | (1312.9)     | 137  | (63)        | FRS751M12S         | М    | FRS751M12W            | М    |
| ,                                 | 480   | 16.5 | 3  | 1          | 51 <sup>11</sup> / <sub>16</sub> | (1312.9)     | 137  | (63)        | FRS751M13S         | М    | FRS751M13W            | М    |
|                                   | 240   | 20.0 | 3  | 2          | 62 <sup>3</sup> /16              | (1579.6)     | 154  | (70)        | FRS762D12S         | М    | FRS762D12W            | М    |
|                                   | 480   | 20.0 | 3  | 1          | 62 <sup>3</sup> /16              | (1579.6)     | 154  | (70)        | FRS762D13S         | М    | FRS762D13W            | М    |
|                                   | 240   | 24.0 | 3  | 2          | 70 <sup>11</sup> /16             | (1795.5)     | 160  | (73)        | FRS770M12S         | М    | FRS770M12W            | М    |
|                                   | 480   | 24.0 | 3  | 1          | 70 <sup>11</sup> /16             | (1795.5)     | 160  | (73)        | FRS770M13S         | М    | FRS770M13W            | М    |
|                                   | 240   | 27.0 | 3  | 2          | 79 <sup>11</sup> / <sub>16</sub> | (2024.1)     | 172  | (78)        | FRS779M12S         | М    | FRS779M12W            | М    |
|                                   | 480   | 27.0 | 3  | 1          | 79 <sup>11</sup> / <sub>16</sub> | (2024.1)     | 172  | (78)        | FRS779M13S         | М    | FRS779M13W            | М    |
| 8 W/in² ③                         | 240   | 17.0 | 3  | 1          | 43 <sup>11</sup> / <sub>16</sub> | (1109.7)     | 147  | (67)        | FRS743M12XS        | М    | FRS743M12XW           | М    |
| Steel Flange<br>24-Steel Elements | 480   | 17.0 | 3  | 1          | 43 <sup>11</sup> / <sub>16</sub> | (1109.7)     | 147  | (67)        | FRS743M13XS        | М    | FRS743M13XW           | М    |
| (1.3 W/cm²)                       | 240   | 22.0 | 3  | 2          | 51 <sup>11</sup> / <sub>16</sub> | (1312.9)     | 154  | (70)        | FRS751M12XS        | М    | FRS751M12XW           | М    |
|                                   | 480   | 22.0 | 3  | 1          | 51 <sup>11</sup> / <sub>16</sub> | (1312.9)     | 154  | (70)        | FRS751M13XS        | М    | FRS751M13XW           | М    |
|                                   | 240   | 27.0 | 3  | 2          | 62 <sup>3</sup> /16              | (1579.6)     | 166  | (76)        | FRS762D12XS        | М    | FRS762D12XW           | М    |
|                                   | 480   | 27.0 | 3  | 1          | 62 <sup>3</sup> /16              | (1579.6)     |      | (76)        | FRS762D13XS        | М    | FRS762D13XW           | М    |
|                                   | 240   | 32.0 | 3  | 2          |                                  | (1795.5)     |      | (80)        | FRS770M12XS        | М    | FRS770M12XW           | М    |
|                                   | 480   | 32.0 | 3  | 1          |                                  | (1795.5)     |      | (80)        | FRS770M13XS        | М    | FRS770M13XW           | М    |
|                                   | 240   | 36.0 | 3  | 2          |                                  | (2024.1)     |      | (82)        | FRS779M12XS        | М    | FRS779M12XW           | М    |
|                                   | 480   | 36.0 | 3  | 1          | 79 <sup>11</sup> /16             | (2024.1)     | 181  | (82)        | FRS779M13XS        | М    | FRS779M13XW           | М    |

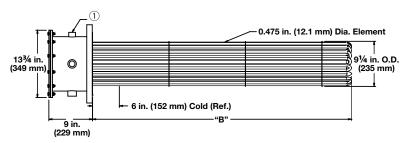
• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

- For ANSI flange dimensions, reference chart on page 241
- Wired for 3-phase operation only
- Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters




# Application: Bunker C, Asphalt and #6 Fuel Oil

- 10 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

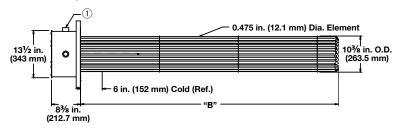
|                                   |       |      |    | #     | "B"                            | Dim.   | Ship | o Wt. | Part               |         | Part                 |          |
|-----------------------------------|-------|------|----|-------|--------------------------------|--------|------|-------|--------------------|---------|----------------------|----------|
| Description                       | Volts | kW   | Ph | Circ. | in.                            | (mm)   | lbs  | (kg)  | Number             | Del.    | Number               | Del.     |
|                                   |       |      |    |       |                                |        |      |       | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 8 W/in² 3                         | 240   | 25.0 | 3  | 3     | 51 <sup>3</sup> / <sub>4</sub> | (1314) | 230  | (105) | FSS751N12S         | М       | FSS751N12W           | М        |
| Steel Flange<br>27-Steel Elements | 480   | 25.0 | 3  | 1     | 51 <sup>3</sup> / <sub>4</sub> | (1314) | 230  | (105) | FSS751N13S         | М       | FSS751N13W           | М        |
| (1.3 W/cm²)                       | 240   | 30.0 | 3  | 3     | 62 <sup>1</sup> / <sub>4</sub> | (1581) | 250  | (114) | FSS762E12S         | М       | FSS762E12W           | М        |
| ,                                 | 480   | 30.0 | 3  | 1     | 62 <sup>1</sup> / <sub>4</sub> | (1581) | 250  | (114) | FSS762E13S         | М       | FSS762E13W           | М        |
|                                   | 240   | 35.0 | 3  | 3     | 703/4                          | (1797) | 258  | (117) | FSS770N12S         | М       | FSS770N12W           | М        |
|                                   | 480   | 35.0 | 3  | 1     | 703/4                          | (1797) | 258  | (117) | FSS770N13S         | М       | FSS770N13W           | М        |
|                                   | 240   | 40.0 | 3  | 3     | 78 <sup>3</sup> / <sub>4</sub> | (2000) | 265  | (121) | FSS778N12S         | М       | FSS778N12W           | М        |
|                                   | 480   | 40.0 | 3  | 1     | 78 <sup>3</sup> / <sub>4</sub> | (2000) | 265  | (121) | FSS778N13S         | М       | FSS778N13W           | М        |

• M - Manufacturing lead times

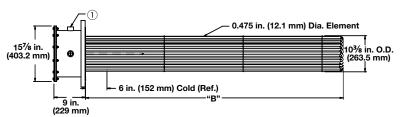
**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only


Truck Shipment only

# WATROD and FIREBAR ANSI Flange Immersion Heaters


# Application: Bunker C, Asphalt and #6 Fuel Oil

- 12 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**

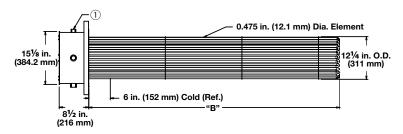


① The number and size of the conduit opening will comply with the National Electrical Code® standards.

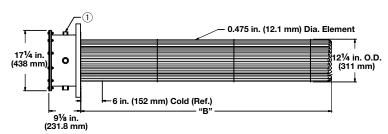
|                                   |       |      |    | #     |                    | ' Dim.   |     | p Wt. | Part               |         | Part                  |          |
|-----------------------------------|-------|------|----|-------|--------------------|----------|-----|-------|--------------------|---------|-----------------------|----------|
| Description                       | Volts | kW   | Ph | Circ. | in.                | (mm)     | lbs | (kg)  | Number             | Del.    | Number                | Del.     |
|                                   |       |      |    |       |                    |          |     |       | General Purpose En | closure | Moisture-Resistant Er | nclosure |
| 8 W/in² ③                         | 240   | 34.0 | 3  | 2     | 51 <sup>5</sup> /8 | (1311.3) | 280 | (127) | FTS751L12S         | М       | FTS751L12W            | М        |
| Steel Flange<br>27-Steel Elements | 480   | 34.0 | 3  | 1     | 51 <sup>5</sup> /8 | (1311.3) | 280 | (127) | FTS751L13S         | М       | FTS751L13W            | М        |
| (1.3 W/cm²)                       | 240   | 40.0 | 3  | 2     | 62 <sup>1</sup> /8 | (1578.0) | 285 | (130) | FTS762C12S         | М       | FTS762C12W            | М        |
|                                   | 480   | 40.0 | 3  | 1     | 62 <sup>1</sup> /8 | (1578.0) | 285 | (130) | FTS762C13S         | М       | FTS762C13W            | М        |
|                                   | 240   | 47.0 | 3  | 3     | 70 <sup>5</sup> /8 | (1793.9) | 290 | (132) | FTS770L12S         | М       | FTS770L12W            | М        |
|                                   | 480   | 47.0 | 3  | 2     | 70 <sup>5</sup> /8 | (1793.9) | 290 | (132) | FTS770L13S         | М       | FTS770L13W            | М        |
|                                   | 240   | 54.0 | 3  | 3     | 78 <sup>5</sup> /8 | (1997.1) | 300 | (136) | FTS778L12S         | М       | FTS778L12W            | М        |
|                                   | 480   | 54.0 | 3  | 2     | 78 <sup>5</sup> /8 | (1997.1) | 300 | (136) | FTS778L13S         | М       | FTS778L13W            | М        |

• M - Manufacturing lead times

- **Notes:** All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe
  - For ANSI flange dimensions, reference chart on page 241
- 3 Wired for 3-phase operation only
- Truck Shipment only


# WATROD and FIREBAR ANSI Flange Immersion Heaters




# Application: Bunker C, Asphalt and #6 Fuel Oil

- 14 inch 150 lb ANSI flange
- WATROD elements
- Without thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



① The number and size of the conduit opening will comply with the National Electrical Code® standards.

| Description                       | Volts | kW   | Ph | #<br>Circ. | "B"<br>in.         | Dim.<br>(mm) | Shi <sub>l</sub><br>Ibs | o Wt.<br>(kg) | Part<br>Number     | Del.    | Part<br>Number        | Del.     |
|-----------------------------------|-------|------|----|------------|--------------------|--------------|-------------------------|---------------|--------------------|---------|-----------------------|----------|
|                                   | ,     |      |    |            |                    |              |                         |               | General Purpose En | closure | Moisture-Resistant Er | nclosure |
| 8 W/in² ③                         | 240   | 42.0 | 3  | 3          | 51 <sup>1</sup> /2 | (1308)       | 300                     | (136)         | FWS751J12S         | М       | FWS751J12W            | М        |
| Steel Flange<br>27-Steel Elements | 480   | 42.0 | 3  | 3          | 51 <sup>1</sup> /2 | (1308)       | 300                     | (136)         | FWS751J13S         | М       | FWS751J13W            | М        |
| (1.3 W/cm²)                       | 240   | 50.0 | 3  | 3          | 62                 | (1575)       | 310                     | (141)         | FWS762A12S         | М       | FWS762A12W            | М        |
| ,                                 | 480   | 50.0 | 3  | 3          | 62                 | (1575)       | 310                     | (141)         | FWS762A13S         | М       | FWS762A13W            | М        |
|                                   | 240   | 60.0 | 3  | 3          | 70 <sup>1</sup> /2 | (1791)       | 318                     | (145)         | FWS770J12S         | М       | FWS770J12W            | М        |
|                                   | 480   | 60.0 | 3  | 3          | 70 <sup>1</sup> /2 | (1791)       | 318                     | (145)         | FWS770J13S         | М       | FWS770J13W            | М        |
|                                   | 240   | 67.0 | 3  | 5          | 78 <sup>1</sup> /2 | (1994)       | 330                     | (150)         | FWS778J12S         | М       | FWS778J12W            | М        |
|                                   | 480   | 67.0 | 3  | 3          | 78 <sup>1</sup> /2 | (1994)       | 330                     | (150)         | FWS778J13S         | М       | FWS778J13W            | М        |

• M - Manufacturing lead times

**Notes:** • All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

• For ANSI flange dimensions, reference chart on page 241

3 Wired for 3-phase operation only

Truck Shipment only

WATLOW<sup>®</sup> \_\_\_\_\_\_ 305

# WATROD and FIREBAR ANSI Flange Immersion Heaters

### **Ordering Information**

#### **Part Number**

Stock ANSI Flange Part Number Optional Terminal Enclosures Optional Process Sensors Sheath Limit Sensors

#### **Stock ANSI Flange Part Number**

**Note:** Catalog part numbers include optional enclosures and process sensors. To order optional enclosures or sensors, substitute the appropriate suffix.

|     | Optional Terminal Enclosures           |
|-----|----------------------------------------|
| S = | General purpose enclosure              |
| W=  | Moisture-resistant enclosure           |
| E = | Explosion-resistant enclosure          |
| C = | Moisture/explosion-resistant enclosure |

**Note:** Catalog listings include either a general purpose enclosure or moisture/explosion-resistant enclosure. Substitute enclosure options are noted.

|     | Optional Process Sensors                   |
|-----|--------------------------------------------|
| 2 = | 30 to 250°F, (-1 to 121°C) SPST            |
| 3 = | 175 to 550°F, (79 to 288°C) SPST           |
| 4 = | 30 to 110°F, (-1 to 43°C) DPST             |
| 5A= | 60 to 250°F, (16 to 121°C) DPST (FIREBAR)  |
| 7A= | 100 to 550°F, (38 to 288°C) DPST (FIREBAR) |
| PJ= | Type J process thermocouple in thermowell  |
| PK= | Type K process thermocouple in thermowell  |
|     |                                            |

**Note:** Thermostat part numbers are shown in the *Thermostat Chart* on page 537.

Example Part Number: FPS732R12 S 2 HJ

|     | Sheath Limit Sensors                                       |
|-----|------------------------------------------------------------|
| HJ= | Type J high-limit thermocouple, horizontal mount           |
| TJ= | Type J high-limit thermocouple, vertical/housing at top    |
| BJ= | Type J high-limit thermocouple, vertical/housing at bottom |
| HK= | Type K high-limit thermocouple, horizontal mount           |
| TK= | Type K high-limit thermocouple, vertical/housing at top    |
| BK= | Type K high-limit thermocouple, vertical/housing at bottom |

**Note:** Heater orientation is critical to accurate sensing of limit conditions. Use the appropriate code to indicate heater mounting orientation.

## WATROD and FIREBAR Flange Immersion Heaters

### Plate Flange Immersion Heaters

Watlow plate flange heaters are easy to install and maintain. These products are designed for heating heat transfer fluids, medium and lightweight oils and water in tanks and pressure vessels. Plate flange heaters are ideal for applications requiring low to medium wattage requirements.

Watlow plate flange heaters are made with WATROD tubular elements that are brazed or welded to the flange. Stock plate flange heaters are supplied with general purpose or moisture-resistant terminal enclosures.

### **Performance Capabilities**

- Watt densities up to 100 W/in<sup>2</sup> (15.5 W/cm<sup>2</sup>)
- Wattages up to 18 kilowatts
- Alloy 800/840 sheath temperatures up to 1600°F (870°C)
- 304 stainless steel sheath temperatures up to 1200°F (650°C)
- Steel sheath temperatures up to 750°F (400°C)

#### **Features and Benefits**

#### Rapid ship program

Minimizes downtime

# Direct replacement for many OEM mold temperature control units

 Provides a single source supplier for many OEM applications

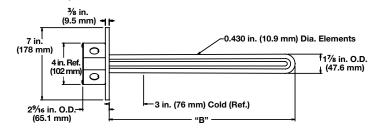
#### ANSI compatible 2 and 21/2 inch flanges

• Provides appropriate heater size-to-application fit

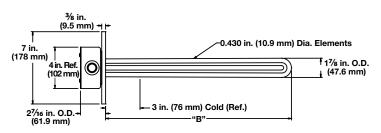
# Standard general purpose or moisture resistant terminal enclosures

- Offers easy access to wiring
- · Limits accidental contact with termination
- Denies access to wiring connection in local environment




## WATROD and FIREBAR Flange Immersion Heaters

### Plate Flange Immersion Heaters


## **Application: Clean Water**

- 2<sup>1</sup>/<sub>2</sub> inch plate flange (bolt pattern matches 2<sup>1</sup>/<sub>2</sub> inch - 150 lb ANSI flange)
- WATROD elements
- Not available with thermowell or thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**

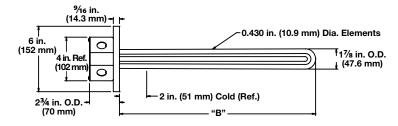


| Description                       | Volts | kW   | Ph | #<br>Circ. | "B"<br>in.         | Dim.<br>(mm) | Ship<br>Ibs | Wt.<br>(kg) | Part<br>Number       | Del.  | Part<br>Number         | Del.   |
|-----------------------------------|-------|------|----|------------|--------------------|--------------|-------------|-------------|----------------------|-------|------------------------|--------|
| -                                 |       |      |    |            |                    |              |             |             | General Purpose Encl | osure | Moisture-Resistant Enc | losure |
| 100 W/in²                         | 240   | 12.0 | 1  | 3          | 18                 | (457)        | 22          | (10)        | FLN18A10S            | М     | FLN18A10W              | М      |
| Steel Flange<br>3-304 SS Elements | 240   | 12.0 | 3  | 1          | 18                 | (457)        | 22          | (10)        | FLN18A3S             | М     | FLN18A3W               | М      |
| (15.5 W/cm²)                      | 480   | 12.0 | 1  | 1          | 18                 | (457)        | 22          | (10)        | FLN18A11S            | М     | FLN18A11W              | М      |
| ,                                 | 480   | 12.0 | 3  | 1          | 18                 | (457)        | 22          | (10)        | FLN18A5S             | М     | FLN18A5W               | М      |
| 80 W/in²                          | 240   | 9.0  | 1  | 1          | 17 <sup>3</sup> /4 | (451)        | 22          | (10)        | FLN17N10S            | М     | FLN17N10W              | М      |
| Steel Flange<br>3-304 SS Elements | 240   | 9.0  | 3  | 1          | 17 <sup>3</sup> /4 | (451)        | 22          | (10)        | FLN17N3S             | RS    | FLN17N3W               | RS     |
| (12.4 W/cm²)                      | 480   | 9.0  | 1  | 1          | 17 <sup>3</sup> /4 | (451)        | 22          | (10)        | FLN17N11S            | М     | FLN17N11W              | М      |
| ,                                 | 480   | 9.0  | 3  | 1          | 17 <sup>3</sup> /4 | (451)        | 22          | (10)        | FLN17N5S             | М     | FLN17N5W               | М      |
|                                   | 240   | 18.0 | 1  | 3          | 30                 | (762)        | 27          | (13)        | FLN30A10S            | М     | FLN30A10W              | М      |
|                                   | 240   | 18.0 | 3  | 1          | 30                 | (762)        | 27          | (13)        | FLN30A3S             | RS    | FLN30A3W               | RS     |
|                                   | 480   | 18.0 | 1  | 1          | 30                 | (762)        | 27          | (13)        | FLN30A11S            | М     | FLN30A11W              | М      |
|                                   | 480   | 18.0 | 3  | 1          | 30                 | (762)        | 27          | (13)        | FLN30A5S             | М     | FLN30A5W               | М      |
| 60 W/in²                          | 240   | 4.5  | 1  | 1          | 12 <sup>1</sup> /2 | (318)        | 21          | (10)        | FLN12J10S            | М     | FLN12J10W              | М      |
| Steel Flange<br>3-Alloy 800       | 240   | 4.5  | 3  | 1          | 12 <sup>1</sup> /2 | (318)        | 21          | (10)        | FLN12J3S             | RS    | FLN12J3W               | RS     |
| Elements                          | 480   | 4.5  | 1  | 1          | 12 <sup>1</sup> /2 | (318)        | 21          | (10)        | FLN12J11S            | М     | FLN12J11W              | М      |
| (9.3 W/cm²)                       | 480   | 4.5  | 3  | 1          | 12 <sup>1</sup> /2 | (318)        | 21          | (10)        | FLN12J5S             | М     | FLN12J5W               | М      |

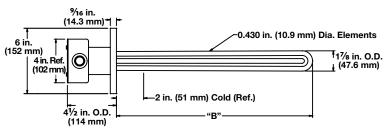


• **RS** - Next day shipment up to 5 pieces

• M - Manufacturing lead times


## **WATROD and FIREBAR Flange Immersion Heaters**

### Plate Flange Immersion Heaters


### **Application: Process Water**

- 2 inch flange (bolt pattern matches 2 inch - 150 lb ANSI flange)
- WATROD elements
- Not available with thermowell or thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



|                             |       |     |    | #     |     | Dim.  |     | o Wt. | Part                |        | Part                   |        |
|-----------------------------|-------|-----|----|-------|-----|-------|-----|-------|---------------------|--------|------------------------|--------|
| Description                 | Volts | kW  | PH | Circ. | in. | (mm)  | lbs | (kg)  | Number              | Del.   | Number                 | Del.   |
|                             |       |     |    |       |     |       |     |       | General Purpose Enc | losure | Moisture-Resistant End | losure |
| 45 W/in²                    | 240   | 4.5 | 1  | 1     | 16  | (406) | 22  | (10)  | FKN16A10S           | М      | FKN16A10W              | М      |
| Steel Flange<br>3-Alloy 800 | 240   | 4.5 | 3  | 1     | 16  | (406) | 22  | (10)  | FKN16A3S            | М      | FKN16A3W               | М      |
| Elements                    | 480   | 4.5 | 1  | 1     | 16  | (406) | 22  | (10)  | FKN16A11S           | М      | FKN16A11W              | М      |
| (7 W/cm²)                   | 480   | 4.5 | 3  | 1     | 16  | (406) | 22  | (10)  | FKN16A5S            | RS     | FKN16A5W               | RS     |
|                             | 240   | 9.0 | 1  | 1     | 29  | (737) | 27  | (13)  | FKN29A10S           | М      | FKN29A10W              | М      |
|                             | 240   | 9.0 | 3  | 1     | 29  | (737) | 27  | (13)  | FKN29A3S            | RS     | FKN29A3W               | RS     |
|                             | 480   | 9.0 | 1  | 1     | 29  | (737) | 27  | (13)  | FKN29A11S           | М      | FKN29A11W              | М      |
|                             | 480   | 9.0 | 3  | 1     | 29  | (737) | 27  | (13)  | FKN29A5S            | RS     | FKN29A5W               | RS     |
| 45 W/in²                    | 240   | 9.0 | 1  | 1     | 28  | (711) | 27  | (13)  | FKN28A10S           | М      | FKN28A10W              | М      |
| Steel Flange<br>3-Alloy 800 | 240   | 9.0 | 3  | 1     | 28  | (711) | 27  | (13)  | FKN28A3S            | М      | FKN28A3W               | М      |
| Elements                    | 480   | 9.0 | 1  | 1     | 28  | (711) | 27  | (13)  | FKN28A11S           | М      | FKN28A11W              | М      |
| (7 W/cm²)                   | 480   | 9.0 | 3  | 1     | 28  | (711) | 27  | (13)  | FKN28A5S            | RS     | FKN28A5W               | RS     |

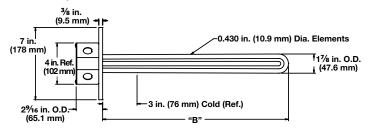


 RS - Next day shipment up to 5 pieces

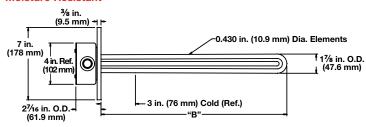
• M - Manufacturing lead times

**Note:** All flange bundles are designed to fit the inside diameter of the equivalent standard schedule pipe

WATLOW<sup>®</sup> \_\_\_\_\_\_ 309


# **WATROD and FIREBAR Flange Immersion Heaters**

### Plate Flange Immersion Heaters


# Application: Forced Air and Caustic Solutions

- 2<sup>1</sup>/<sub>2</sub> inch flange (bolt pattern matches 2<sup>1</sup>/<sub>2</sub> inch - 150 lb ANSI flange)
- WATROD elements
- Not available with thermowell or thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**

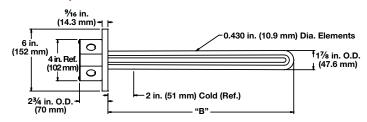


|                             |       |     |    | #     | "B"                | Dim.  | Shi | ip Wt. | Part               |         | Part                  |         |
|-----------------------------|-------|-----|----|-------|--------------------|-------|-----|--------|--------------------|---------|-----------------------|---------|
| Description                 | Volts | kW  | Ph | Circ. | in.                | (mm)  | lbs | (kg)   | Number             | Del.    | Number                | Del.    |
|                             |       |     |    |       |                    |       |     |        | General Purpose En | closure | Moisture-Resistant En | closure |
| 30 W/in²                    | 240   | 3.0 | 3  | 1     | 17 <sup>3</sup> /4 | (451) | 22  | (10)   | FLN17N12S          | RS      | FLN17N12W             | RS      |
| Steel Flange<br>3-Alloy 800 | 480   | 3.0 | 3  | 1     | 17 <sup>3</sup> /4 | (451) | 22  | (10)   | FLN17N13S          | RS      | FLN17N13W             | RS      |
| Elements                    | 240   | 4.0 | 3  | 1     | 18                 | (457) | 22  | (10)   | FLN18A12S          | RS      | FLN18A12W             | RS      |
| (4.7 W/cm²)                 | 480   | 4.0 | 3  | 1     | 18                 | (457) | 22  | (10)   | FLN18A13S          | М       | FLN18A13W             | М       |
|                             | 240   | 6.0 | 3  | 1     | 30                 | (762) | 27  | (13)   | FLN30A12S          | М       | FLN30A12W             | М       |
|                             | 480   | 6.0 | 3  | 1     | 30                 | (762) | 27  | (13)   | FLN30A13S          | М       | FLN30A13W             | М       |

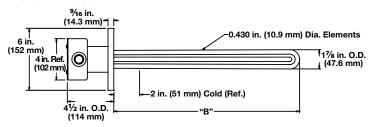


 RS - Next day shipment up to 5 pieces

• M - Manufacturing lead times


## WATROD and FIREBAR Flange Immersion Heaters

### Plate Flange Immersion Heaters


# Application: Lightweight Oils and Ethylene Glycol (100%)

- 2 inch flange (bolt pattern matches 2 inch 150 lb ANSI flange)
- WATROD elements
- Not available with thermowell or thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**

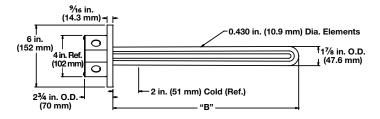


|                                  |       |     |    | #     | "B" | Dim.  | Ship | Wt.  | Part                |        | Part                  |         |
|----------------------------------|-------|-----|----|-------|-----|-------|------|------|---------------------|--------|-----------------------|---------|
| Description                      | Volts | kW  | Ph | Circ. | in. | (mm)  | lbs  | (kg) | Number              | Del.   | Number                | Del.    |
|                                  |       |     |    |       |     |       |      |      | General Purpose End | losure | Moisture-Resistant En | closure |
| 30 W/in <sup>2</sup>             | 240   | 6.0 | 1  | 1     | 29  | (737) | 27   | (13) | FKS29A10S           | RS     | FKS29A10W             | RS      |
| Steel Flange<br>3-Steel Elements | 240   | 6.0 | 3  | 1     | 29  | (737) | 27   | (13) | FKS29A3S            | RS     | FKS29A3W              | RS      |
| (4.7 W/cm²)                      | 480   | 6.0 | 1  | 1     | 29  | (737) | 27   | (13) | FKS29A11S           | RS     | FKS29A11W             | RS      |
| ,                                | 480   | 6.0 | 3  | 1     | 29  | (737) | 27   | (13) | FKS29A5S            | М      | FKS29A5W              | М       |

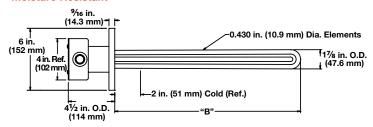


• RS - Next day shipment up to 5 pieces

• M - Manufacturing lead times


# WATROD and FIREBAR Flange Immersion Heaters

### Plate Flange Immersion Heaters


# **Application: Medium Weight Oils and Heat Transfer Oils**

- 2 inch flange (bolt pattern matches 2 inch - 150 lb ANSI flange)
- WATROD elements
- Not available with thermowell or thermostat
- General purpose or moisture-resistant enclosures

#### **General Purpose**



#### **Moisture Resistant**



|                                      |       |     |    | #     | "B" | Dim.  | Ship | Wt.  | Part               |         | Part                 |          |
|--------------------------------------|-------|-----|----|-------|-----|-------|------|------|--------------------|---------|----------------------|----------|
| Description                          | Volts | kW  | Ph | Circ. | in. | (mm)  | lbs  | (kg) | Number             | Del.    | Number               | Del.     |
|                                      |       |     |    |       |     |       |      |      | General Purpose En | closure | Moisture-Resistant E | nclosure |
| 15 W/in²                             | 240   | 3.0 | 3  | 1     | 28  | (711) | 27   | (13) | FKN28A12S          | М       | FKN28A12W            | М        |
| Steel Flange<br>3-Alloy 800 Elements | 480   | 3.0 | 3  | 1     | 28  | (711) | 27   | (13) | FKN28A13S          | М       | FKN28A13W            | М        |
| (2.3 W/cm²)                          |       |     |    |       |     |       |      |      |                    |         |                      |          |
|                                      |       |     |    |       |     |       |      |      |                    |         |                      |          |
| 10 W/in²                             | 240   | 2.0 | 3  | 1     | 29  | (737) | 27   | (13) | FKS29A12S          | М       | FKS29A12W            | М        |
| Steel Flange<br>3-Steel Elements     | 480   | 2.0 | 3  | 1     | 29  | (737) | 27   | (13) | FKS29A13S          | М       | FKS29A13W            | М        |
| (1.6 W/cm²)                          |       |     |    |       |     |       |      |      |                    |         |                      |          |

• M - Manufacturing lead times

## WATROD and FIREBAR Flange Immersion Heaters

### Square Flange Immersion Heaters

Designed for use in boilers and industrial storage tanks, the square flange immersion heater from Watlow offers an energy efficient solution to heating water, oils and degreasing solutions.

Consisting of WATROD or FIREBAR elements brazed, staked or welded to a four- or six-bolt flange, these heaters mount directly to a mating flange that is welded to a tank wall or nozzle.

Installation and maintenance is easy. Heater change-out is also simple-unbolt the flange and replace it with another-without extensive equipment downtime.

### **Performance Capabilities**

- Watt densities up to 100 W/in<sup>2</sup> (15.5 W/cm<sup>2</sup>)
- Wattages up to 24 kilowatts
- Voltages up to 480VAC
- Alloy 800/840 sheath temperatures up to 1600°F (870°C)

#### **Features and Benefits**

### 2<sup>1</sup>/2, 3<sup>1</sup>/8 and 4<sup>1</sup>/2 inch square flanges

• Adapts easily to application needs

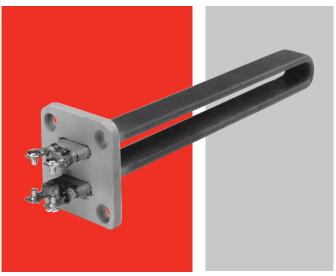
#### Asbestos-free gaskets

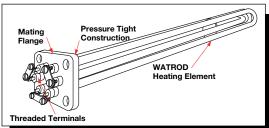
Come wire-tied to each flange. Spare gaskets also available

# Epoxy or silicone resin seals rated to 250°F (120°C) or 390°F (200°C)

Protects elements against moisture and other contaminants

#### WATROD hairpins are repressed (recompacted)


 Helps maintain MgO density, dielectric strength, heat transfer and life


# UL® and CSA component recognition under file numbers E52951 and 31388

Meets industry safety standards

#### **Typical Applications**

- Water
- Boiler equipment
- Vapor degreasers
- Fuel oils
- Heat transfer fluids
- Caustic solutions



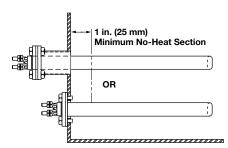


### Flange Materials

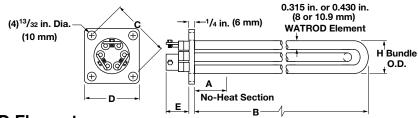
| WATROD  | Steel<br>304 SS |
|---------|-----------------|
| FIREBAR | Steel<br>Brass  |

#### **Available on Request**

- Sheath materials in steel, 304 and 316 stainless steel and titanium
- Flange materials in titanium and 316 stainless steel
- Flange sizes to meet specific application needs
- External finishes such as passivation, belt polishing and glass beading
- Other voltage and wattage ratings
   Contact your Watlow representative for details


## **WATROD** and **FIREBAR** Flange **Immersion Heaters**

### Square Flange Immersion Heaters


### **Application Hints**

- · Determine recommended sheath materials and watt densities by using the Element and Assembly Selection Guide on pages 554 to 555. If wattage is not known, contact your Watlow representative.
- Extend the element's no-heat section completely in the fluid at all times to prevent premature heater failure. See the accompanying illustration for proper placement of the no-heat section.

- Mount WATROD and FIREBAR square flange heaters horizontally and low in the tank, but above sludge level.
- Periodically remove heaters to inspect and clean the elements.
- Keep terminations clean, dry and tight.
- Minimize problems associated with low liquid level conditions by using a low liquid level sensor.



| Heater Dimension | in.               | (mm) |
|------------------|-------------------|------|
| А                | 1 <sup>1</sup> /2 | (38) |
| С                | 2 <sup>1</sup> /2 | (64) |
| D                | 2 <sup>1</sup> /2 | (64) |
| E                | 1                 | (25) |
| Н                | 1 <sup>1</sup> /2 | (38) |



### 2<sup>1</sup>/<sub>2</sub> inch Square Flange—WATROD Element

| 21/2 Inch 5 | quare | e Flange — w | AIROD Eleme | ent         | Immer   | sed Length |          |  |
|-------------|-------|--------------|-------------|-------------|---------|------------|----------|--|
| WATROD      |       | Immersed     |             | Part Number |         |            |          |  |
| Description | kW    | B Dimension  | 240VAC      | 240VAC      | 480VAC  | 480VAC     | Wt.      |  |
|             |       | in. (mm)     | 1-Phase     | 3-Phase     | 1-Phase | 3-Phase    | lbs (kg) |  |

#### **Applications: Clean and Potable Water**

| 100 W/in²    | 8.0 | 11 <sup>3</sup> / <sub>4</sub> (298.0) | FHN11N10 <sup>2</sup> | FHN11N3 <sup>2</sup> | FHN11N11 <sup>2</sup> | FHN11N5 <sup>①</sup> | 18 | (9) |
|--------------|-----|----------------------------------------|-----------------------|----------------------|-----------------------|----------------------|----|-----|
| Steel Flange |     |                                        |                       |                      |                       |                      |    |     |
| 3-Alloy 800  |     |                                        |                       |                      |                       |                      |    |     |
| (15.5 W/cm²) |     |                                        |                       |                      |                       |                      |    |     |

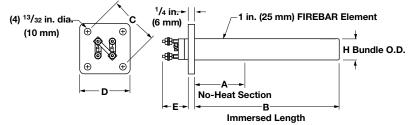
#### Applications: Forced Air and Gases, Caustic Solutions, Degreasing Solutions

| 30 W/in <sup>2</sup> | 3.0  | 18 <sup>1</sup> /2 | (470.0)   | FHN18J10 <sup>①</sup> | FHN18J3 <sup>①</sup> | FHN18J11 <sup>2</sup> | FHN18J5 <sup>©</sup> | 19 | (9) |
|----------------------|------|--------------------|-----------|-----------------------|----------------------|-----------------------|----------------------|----|-----|
| 304 SS Flange        | 3.75 | 23 <sup>1</sup> /1 | 6 (585.8) | FHN23B10 <sup>①</sup> | FHN23B3 <sup>①</sup> | FHN23B11 <sup>2</sup> | FHN23B5 <sup>2</sup> | 20 | (9) |
| 3-Alloy 800          |      |                    |           |                       |                      |                       |                      |    |     |
| (4.7 W/cm²)          |      |                    |           |                       |                      |                       |                      |    |     |
| 25 W/in <sup>2</sup> | 1.5  | 12                 | (305.0)   | FHN12A10 <sup>①</sup> | FHN12A3 <sup>①</sup> | FHN12A11 <sup>2</sup> | FHN12A5 <sup>2</sup> | 18 | (8) |
| 304 SS Flange        |      |                    |           |                       |                      |                       |                      |    |     |
| 3-Alloy 800          |      |                    |           |                       |                      |                       |                      |    |     |
| (3.9 W/cm²)          |      |                    |           |                       |                      |                       |                      |    |     |

#### Applications: Bunker C and #6 Fuel Oils

| • •                  |      |                             |                       |                       |        |
|----------------------|------|-----------------------------|-----------------------|-----------------------|--------|
| 10 W/in <sup>2</sup> | 1.0  | 18 <sup>1</sup> /2 (470.0)  | FHN18J12 <sup>①</sup> | FHN18J13 <sup>©</sup> | 19 (9) |
| 304 SS Flange        | 1.25 | 23 <sup>1</sup> /16 (585.8) | FHN23B12 <sup>①</sup> | FHN23B13 <sup>2</sup> | 20 (9) |
| 3-Alloy 800          |      |                             |                       |                       |        |
| (1.6 W/cm²)          |      |                             |                       |                       |        |
| 8 W/in²              | 0.5  | 12 (305.0)                  | FHN12A12 <sup>①</sup> | FHN12A13 <sup>2</sup> | 18 (8) |
| 304 SS Flange        |      | , ,                         |                       |                       | , ,    |
| 3-Alloy 800          |      |                             |                       |                       |        |
| (1.3 W/cm²)          |      |                             |                       |                       |        |
|                      | 1    |                             | l l                   |                       |        |

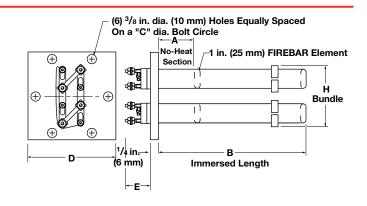
## RAPID SHIP


<sup>• 1</sup> Next day shipment up to 5 pieces

<sup>• 2</sup> Manufacturing lead times

# WATROD and FIREBAR Flange Immersion Heaters

### Square Flange Immersion Heaters


| Heater Dimension | in. (mm)                           |
|------------------|------------------------------------|
| А                | 1 <sup>1</sup> /2 (38)             |
| С                | 21/2 (64)                          |
| D                | 2 <sup>1</sup> / <sub>2</sub> (64) |
| Е                | 1 <sup>3</sup> /4 (44)             |
| Н                | 1 <sup>5</sup> /16 (33)            |



2<sup>1</sup>/<sub>2</sub> inch Square Flange—FIREBAR Element

| FIREBAR      |        | Immersed                             | Part Number              |                          |                         |                          |                         |          |             |
|--------------|--------|--------------------------------------|--------------------------|--------------------------|-------------------------|--------------------------|-------------------------|----------|-------------|
| Description  | kW     | B Dimension in. (mm)                 | 208VAC<br>3-Phase        | 240VAC<br>1-Phase        | 240VAC<br>3-Phase       | 480VAC<br>1-Phase        | 480VAC<br>3-Phase       | W<br>Ibs | /t.<br>(kg) |
| Application  | s: Cle | ean and Po                           | table Water              |                          |                         |                          |                         |          |             |
| 100 W/in²    | 5      | 11 <sup>1</sup> / <sub>2</sub> (292) | FHNFA11J26N <sup>2</sup> | FHNFA11J10N <sup>①</sup> | FHNFA11J3N <sup>①</sup> | FHNFA11J11N <sup>2</sup> | FHNFA11J5N <sup>2</sup> | 5        | (3)         |
| Steel Flange | 8      | 20 <sup>3</sup> /4 (527)             | FHNFA20N26N <sup>2</sup> | FHNFA20N10N <sup>①</sup> | FHNFA20N3N <sup>①</sup> | FHNFA20N11N <sup>2</sup> | FHNFA20N5N <sup>①</sup> | 7        | (4)         |
| 1-Alloy 800  | 10     | 24 <sup>3</sup> /8 (619)             | FHNFA24G26N <sup>2</sup> | FHNFA24G10N <sup>①</sup> | FHNFA24G3N <sup>2</sup> | FHNFA24G11N <sup>2</sup> | FHNFA24G5N <sup>①</sup> | 8        | (4)         |
| (15.5 W/cm²) | 15     | 33 <sup>15</sup> /16(862)            | FHNFA33S26N <sup>2</sup> |                          | FHNFA33S3N <sup>2</sup> | FHNFA33S11N <sup>2</sup> | FHNFA33S5N <sup>①</sup> | 9        | (5)         |
| 80 W/in²     | 16     | 22 <sup>5</sup> /8 (575)             | FHNFB22L26J <sup>2</sup> | FHNFB22L10J <sup>2</sup> | FHNFB22L3J <sup>2</sup> | FHNFB22L11J <sup>2</sup> | FHNFB22L5J <sup>2</sup> | 10       | (5)         |
| Steel Flange |        | ` 1                                  |                          |                          |                         |                          |                         |          | . ,         |
| 1-Alloy 800  |        |                                      |                          |                          |                         |                          |                         |          |             |
| (12.4 W/cm²) |        |                                      |                          |                          |                         |                          |                         |          |             |

| Heater Dimension | in.                 | (mm)    |
|------------------|---------------------|---------|
| А                | 1                   | (25.0)  |
| С                | 3 <sup>13</sup> /16 | (96.8)  |
| D                | 41/2                | (114.0) |
| Е                | 21/4                | (57.0)  |
| Н                | 3 <sup>7</sup> /32  | (81.8)  |



## 4<sup>1</sup>/<sub>2</sub> inch Square Flange—FIREBAR Element

| FIREBAR                                                  |         | Imme               | rsed     |                          | Part Number             |                         | Est. | Ship. |
|----------------------------------------------------------|---------|--------------------|----------|--------------------------|-------------------------|-------------------------|------|-------|
| Description                                              | kW      | B Dim              | ension   | 208VAC                   | 240VAC                  | 480VAC                  | V    | Vt.   |
|                                                          |         | in.                | (mm)     | 3-Phase                  | 3-Phase                 | 3-Phase                 | lbs  | (kg)  |
| Applications:                                            | Clean a | and Potabl         | le Water |                          |                         |                         |      |       |
| 100 W/in²<br>Steel Flange<br>2-Alloy 800<br>(15.5 W/cm²) | 18      | 10 <sup>1</sup> /2 | (267)    | FGNFB10J26N <sup>©</sup> | FGNFB10J3N <sup>2</sup> | FGNFB10J5N <sup>®</sup> | 16   | (8)   |
| 70 W/in²<br>Steel Flange<br>2-Alloy 800<br>(10.9 W/cm²)  | 12      | 10 <sup>1</sup> /2 | (267)    | FGNFB10J26P <sup>①</sup> | FGNFB10J3P <sup>2</sup> | FGNFB10J5P <sup>®</sup> | 16   | (8)   |



<sup>•</sup> ① Next day shipment up to 5 pieces

**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 315

<sup>•</sup> ② Manufacturing lead times



## WATROD and FIREBAR Flange Immersion Heaters

## Extended Capabilities For Bayonet/Pipe Insert Immersion Heaters

Bayonet/Pipe insert immersion heaters permit removing and servicing the heater bundle without draining the liquid being heated.

Heating is accomplished by mounting a flange or screw plug immersion heater inside a pressure-tight bayonet pipe vessel. The pipe vessel then mates to a flange connection on a storage tank's side. Heat transfer between element(s) and tank contents is accomplished by heating the air or heat transfer fluid inside the bayonet pipe for conduction to the tank's contents.

### **Performance Capabilities**

- Wattages up to 100 kilowatts
- Voltages up to 600VAC
- Ratings up to 600 lb pressure class
- Alloy 800 sheath temperatures up to 1400°F (760°C)
- Stainless steel sheath temperatures up to 1200°F (650°C)
- Steel sheath temperatures up to 750°F (400°C)

#### **Features and Benefits**

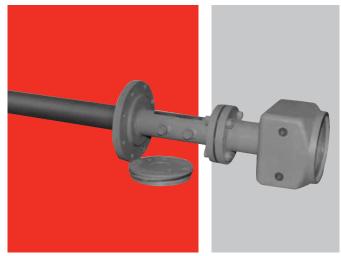
# Low watt density screw plug or flange heaters mounted in the bayonet vessel

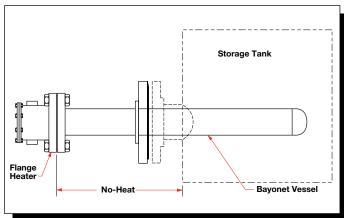
· Provides long life

# Carbon steel, 304 and 316 stainless steel bayonet vessels

· Offers compatibility with a wide range of liquids

### Welded flange on pipe vessel


Ensures pressure seal


#### Heating elements support(s)

 Ensures proper element spacing and maximum heater performance

### **Typical Applications**

- Indirect heating of viscous fluids:
  - Asphalt
  - Tar
  - Molasses
  - Syrup
  - Glue
- Corrosive liquids
- Degreasing fluids







## WATROD and FIREBAR Flange Immersion Heaters

### Extended Capabilities For Bayonet/Pipe Insert Immersion Heaters

### **Options**

Pipe insert heaters can be supplied with a variety of options, including:

- Appropriate gasket materials
- Passivation cleaning on pipe insert
- European screw plug to flange adapters
- CSA certified terminal enclosures
- Stand-off terminal enclosures
- Thermocouple temperature sensors
- Thermostats
- Customer specified materials, sizes and pressure class ratings

For descriptions and ordering information about these options, please refer to *Flange Immersion Heaters*, pages 237 to 306, or *Screw Plug Immersion Heaters*, pages 165 to 234.

### **Flanges**

Flanges to 24 in. (610 mm) nominal pipe size are available in materials compatible with specific application needs. For information on flange materials and ratings, consult your Watlow representative.

#### **Bayonet Vessels**

Bayonet vessels are available up to 14 in. (356 mm) nominal pipe size and 20 feet long. Vessel size is dependent upon the kilowatt requirement and element watt density. For more information, contact your Watlow representative.

### **Application Hints**

- Mount pipe insert heater horizontally
- Locate pipe insert heaters low in the tank, but above the sludge level
- Consider a low liquid level sensor to protect against low liquid level conditions
- Select a watt density that is compatible with the heat transfer media being used
- Insulate the pipe insert heater's exterior to minimize heat loss



Do not insulate the terminal enclosure.

#### Over-the-Side Heaters

### L and O Shaped Immersion Heaters

Over-the-side heaters are ideal for heating water, oils, solvents, salts and acids. Application versatility is enhanced with optional sheath materials, kilowatt ratings, terminal enclosures and mounting methods.

The L and O shaped "installed-from-the-top" heaters slide easily into tanks, with the heated portion immersed along the side or at the bottom. The drum immersion heaters are designed for direct immersion in a standard 55 gallon steel drum. Watlow vertical loop immersion heaters are well-suited for open tank applications.

### L and O Shaped Performance Capabilities

- Alloy 800 sheath element watt densities up to 60 W/in<sup>2</sup> (9.3 W/cm<sup>2</sup>)
- Wattages up to 50 kilowatts
- Voltages up to 600VAC

#### **Features and Benefits**

#### Rugged, light-weight construction

• Resists damage during installation or removal

# 0.475 in. (12 mm) diameter WATROD heating elements

Offers one- or three-phase operation

#### WATROD hairpins are repressed (recompacted)

• Maintains MgO density, dielectric strength, heat transfer and heater life

#### Four inch (100 mm) sludge legs

 Keeps heating elements off the tank's bottom to help avoid being covered with sediment

### RTV riser seal

Prevents moisture from infiltrating electrical areas

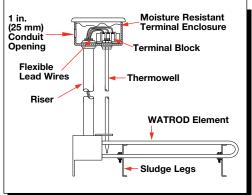
#### Standardized size 1 in. (25 mm) conduit openings

· Facilitates wiring

# SRG insulated flexible lead wires, rated to 390°F (200°C)

Allows factory or field wiring for three- or one-phase operation

# Riser materials are compatible with element sheath materials such as stainless steel with alloy 800 sheath and steel with steel sheath


- Meets varying application needs
- Ensures ease of use

#### Integral thermowells

318

 Provides convenient temperature sensor insertion and replacement without draining the fluid being heated





#### Moisture resistant

Standardizes enclosures

#### UL® and CSA component recognition

 480 and 600VAC maximum under file numbers E52951 and 31388 respectively

#### **Typical Applications**

- Water heating
- water neating
- Freeze protection
- · Viscous oils
- Storage tanks
- Degreasing tanks
- Solvents
- Salts
- Caustic solutions
- Paraffin

#### **Over-the-Side Heaters**

# L and O Shaped Immersion Heaters Options

#### **Terminal Enclosures**

Moisture resistant terminal enclosures, without thermostats, are standard on all Watlow L and O shaped over-the-side heaters. Optional terminal enclosures meet application requirements with:

- Corrosion resistant, available with or without a single- or double-pole thermostat.
- Explosion/moisture resistant Class 1, Div. I and II, Groups B, C and D. Available with or without a single- or double- pole thermostat.

#### **Thermostats**

Optional single- and double-pole thermostats are also available separately.

For details on thermostats, see *Thermostats*, pages 534 to 537.

### Wattages and Voltages

Watlow routinely supplies over-the-side heaters with 240 to 480VAC as well as wattages from 3 to 18 kilowatts.

### **Multiple Elements**

Over-the-side immersion heaters are configured with three WATROD heating elements.

To achieve a specific kilowatt rating, Watlow can configure units with up to six heating elements.

To order, specify multiple elements, the number of elements, volts, watts, phase and maximum bundle height and width.

#### Riser

A stainless steel or steel riser is supplied to keep terminal enclosures out of the heated solution. Stock heights are 39<sup>5</sup>/<sub>16</sub> or 51<sup>5</sup>/<sub>16</sub> in. (1000 or 1320 mm). Upon request, riser height up to 60 ft (18.3 m) can be provided.

To order, specify **riser material** and **height**.

#### **Right Angle Riser**

Riser may be right angle formed to move the terminal enclosure away from over the tank.

To order, specify right angle riser and dimensions.

### **Sludge Legs**

Four inch (100 mm) sludge legs are supplied on all stock units to keep elements above sediments. Shorter or longer sludge legs are available upon request.

To order, specify sludge legs and height.

#### **Sheath Material**

Stock O and L shaped over-the-side heaters come with alloy 800 or steel sheaths.

To order, specify the **sheath material**.



#### Caution

Explosion-resistant terminal enclosures are intended to provide explosion containment in the electrical termination/wiring enclosure only. No portion of the assembly outside of this enclosure is covered under this rating. Rating effectiveness may be compromised by abuse or misapplication.

### **Thermocouples**

ASTM Type J or K thermocouples offer more accurate sensing of process and/or sheath temperatures. A thermocouple may be inserted into the thermowell or attached to the heater's sheath.

Thermocouples are supplied with 120 in. (3050 mm) leads (longer lead lengths available). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the *Thermocouple Types* chart.

Thermocouples require an appropriate temperature and power controller. These must be purchased separately. Watlow offers a wide variety of temperature and power controllers to meet virtually all applications. Temperature controllers can be configured to accept process variable inputs, too. Contact your Watlow representative for details.

To order, specify **Type J** or **K** thermocouple, **lead length**, and indicate if it is for measuring **process** temperature or as a **high-limit** sensing device.

#### **Thermocouple Types**

| ASTM | Conductor Cha  | racteristics   |           | nmended<br>ature Range |
|------|----------------|----------------|-----------|------------------------|
| Туре | Positive       | Negative       | °F        | (°C) ①                 |
| J    | Iron           | Constantan     | 0 to 1000 | (-20 to 540)           |
|      | (Magnetic)     | (Non-magnetic) |           |                        |
| K    | Chromel®       | Alumel®        | 0 to 2000 | (-20 to 1100)          |
|      | (Non-magnetic) | (Magnetic)     |           |                        |

① Type J and Type K thermocouples are rated 32 to 1382°F and 32 to 2282°F (0-750°C and 0-1250°C), respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.



#### **Over-the-Side Heaters**

# Extended Capabilities For L and O Shaped Immersion Heaters

### **Options**

### **Wattages and Voltages**

Watlow routinely supplies over-the-side heaters with 240 to 480VAC as well as wattages from 3 to 18 kilowatts. If required, Watlow can configure heaters with voltages and wattages outside these parameters.

For more information about this option, contact your Watlow representative.

#### **Sheath Material**

Stock O and L shaped over-the-side heaters come with alloy 800 sheaths. 304 or 316 stainless steel and titanium sheaths are available upon request.

For more information about this option, contact your Watlow representative.

### **Multiple Elements**

Over-the-side immersion heaters are configured with three WATROD heating elements.

To achieve a specific kilowatt rating, Watlow can configure units with up to 36 heating elements.

To order, specify multiple elements, the number of elements, volts, watts, phase and maximum bundle height and width.

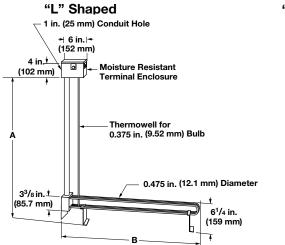
#### **Passivation**

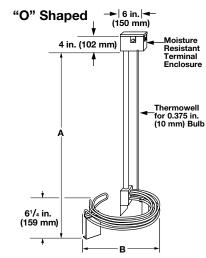
During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode, produce rust spots and/or contaminate the process.

For critical applications, passivation will remove free iron from the sheath and other wetted surfaces.

To order, specify **passivation**.

#### Man Hole Cover


A man hole cover seals the tank and provides heater mounting. Man hole covers are pre-assembled to the riser. Standard man hole covers are made from steel with other materials available upon request.


To order, specify man hole construction, diameter and material.

### **Over-the-Side Heaters**

L and O Shaped Immersion Heaters

**Ordering Information** 





### "L" Shaped

| <u> </u>                                                                                     |    |                                 |          |                    |          |           |                          |            |     |      |  |
|----------------------------------------------------------------------------------------------|----|---------------------------------|----------|--------------------|----------|-----------|--------------------------|------------|-----|------|--|
| WATROD                                                                                       |    |                                 | A        |                    | В        | Part      |                          | Est. Ship. |     |      |  |
| Description                                                                                  | kW | Dimension                       |          | Dimension          |          | 240VAC    | 480VAC                   |            | Wt. |      |  |
|                                                                                              |    | in.                             | (mm)     | in.                | (mm)     | 3-Phase   | 3-Phase                  | Del.       | lbs | (kg) |  |
| Applications: Process Water, Mild Caustic Solutions (2% Max), Clean Water                    |    |                                 |          |                    |          |           |                          |            |     |      |  |
| 48 W/in <sup>2</sup>                                                                         | 3  | 39 <sup>5</sup> /16             | (998.5)  | 14 <sup>5</sup> /8 | (371.5)  | OLN714L3W | OLN714L13W <sup>1)</sup> | М          | 30  | (14) |  |
| Alloy 800                                                                                    | 6  | 39 <sup>5</sup> /16             | (998.5)  | 22 <sup>5</sup> /8 | (574.7)  | OLN722L3W | OLN722L5W                | М          | 40  | (19) |  |
| (7.5 W/cm <sup>2</sup> )                                                                     | 9  | 39 <sup>5</sup> /16             | (998.5)  | 30 <sup>1</sup> /8 | (765.2)  | OLN730C3W | OLN730C5W                | М          | 45  | (21) |  |
|                                                                                              | 12 | 51 <sup>5</sup> /16             | (1303.3) | 37 <sup>5</sup> /8 | (955.7)  | OLN737L3W | OLN737L5W                | М          | 50  | (23) |  |
|                                                                                              | 15 | 51 <sup>5</sup> /16             | (1303.3) | 45 <sup>1</sup> /8 | (1146.2) | OLN745C3W | OLN745C5W                | М          | 65  | (30) |  |
|                                                                                              | 18 | 51 <sup>5</sup> /16             | (1303.3) | 52 <sup>5</sup> /8 | (1336.7) | OLN752L3W | OLN752L5W                | М          | 75  | (34) |  |
| Applications: Citric and Phosphoric Acid Solutions, Caustic Solutions, Water Based Solutions |    |                                 |          |                    |          |           |                          |            |     |      |  |
| 23 W/in <sup>2</sup>                                                                         | 3  | 39 <sup>5</sup> /16             | (998.5)  | 22 <sup>5</sup> /8 | (574.7)  | OLNA22L3W | OLNA22L5W                | М          | 40  | (19) |  |
| Alloy 800                                                                                    | 6  | 51 <sup>5</sup> /16             | (1303.3) | 37 <sup>5</sup> /8 | (955.7)  | OLNA37L3W | OLNA37L5W                | М          | 50  | (23) |  |
| (3.6 W/cm²)                                                                                  | 9  | 51 <sup>5</sup> / <sub>16</sub> | (1303.3) | 52 <sup>5</sup> /8 | (1336.7) | OLNA52L3W | OLNA52L5W                | М          | 75  | (34) |  |

### "O" Shaped

| WATROD A                                                                  |       | 4                   |          | В                              | Part     |                 | Est. Ship.              |         |        |       |
|---------------------------------------------------------------------------|-------|---------------------|----------|--------------------------------|----------|-----------------|-------------------------|---------|--------|-------|
| Description                                                               | kW    | Dimension           |          | Dimension                      |          | 240VAC          | 480VAC                  |         | Wt.    |       |
|                                                                           |       | in.                 | (mm)     | in.                            | (mm)     | 3-Phase         | 3-Phase                 | Del.    | lbs    | (kg)  |
| Applications: Process Water, Mild Caustic Solutions (2% Max), Clean Water |       |                     |          |                                |          |                 |                         |         |        |       |
| 48 W/in²                                                                  | 3     | 39 <sup>5</sup> /16 | (998.5)  | 10 <sup>3</sup> /4             | (273)    | ORN710N3W       | ORN710N13W <sup>①</sup> | М       | 30     | (14)  |
| Alloy 800                                                                 | 6     | 39 <sup>5</sup> /16 | (998.5)  | 13 <sup>1</sup> /2             | (343)    | ORN713J3W       | ORN713J5W               | М       | 40     | (19)  |
| (7.5 W/cm²)                                                               | 9     | 39 <sup>5</sup> /16 | (998.5)  | 16                             | (406)    | ORN716A3W       | ORN716A5W               | М       | 45     | (21)  |
|                                                                           | 12    | 51 <sup>5</sup> /16 | (1303.3) | 18 <sup>1</sup> /2             | (470)    | ORN718J3W       | ORN718J5W               | М       | 50     | (23)  |
|                                                                           | 15    | 51 <sup>5</sup> /16 | (1303.3) | 21 <sup>1</sup> /2             | (546)    | ORN721E3W       | ORN721E5W               | М       | 65     | (30)  |
|                                                                           | 18    | 51 <sup>5</sup> /16 | (1303.3) | 23 <sup>1</sup> / <sub>2</sub> | (597)    | ORN723J3W       | ORN723J5W               | М       | 75     | (34)  |
| <b>Application</b>                                                        | s: Ci | tric and            | d Phosp  | horic A                        | cid Solu | utions, Caustic | Solutions, Wate         | er Base | d Solu | tions |
| 23 W/in <sup>2</sup>                                                      | 3     | 39 <sup>5</sup> /16 | (998.5)  | 13 <sup>1</sup> /2             | (343)    | ORNA13J3W       | ORNA13J5W               | М       | 40     | (19)  |
| Alloy 800                                                                 | 6     | 51 <sup>5</sup> /16 | (1303.3) | 18 <sup>1</sup> /2             | (470)    | ORNA18J3W       | ORNA18J5W               | М       | 50     | (23)  |
| (3.6 W/cm <sup>2</sup> )                                                  | 9     | 51 <sup>5</sup> /16 | (1303.3) | 23 <sup>1</sup> /2             | (597)    | ORNA23J3W       | ORNA23J5W               | М       | 75     | (34)  |

<sup>•</sup> M - Manufacturing lead times

WATLOW<sup>®</sup> \_\_\_\_\_\_ 321

Truck Shipment only

① Must be operated 3-phase only.

### **Over-the-Side Heaters**

## L and O Shaped Immersion Heaters

### **Ordering Information**

#### **Part Number**

Stock Over-the-Side Part Number Optional Terminal Enclosures Optional Process Sensors Sheath Limit Sensors

#### Stock Over-the-Side Part Number

**Note:** Catalog part numbers include optional enclosures and process sensors. To order optional enclosures or sensors, substitute the appropriate suffix.

| Optional Terminal Enclosures |                                        |  |  |  |  |  |  |  |
|------------------------------|----------------------------------------|--|--|--|--|--|--|--|
| W=                           | Moisture-resistant enclosure           |  |  |  |  |  |  |  |
| C =                          | Moisture/explosion-resistant enclosure |  |  |  |  |  |  |  |
|                              |                                        |  |  |  |  |  |  |  |

**Note:** Catalog listings include moisture resistant enclosure. Substitute enclosure options are noted.

| Optional Process Sensors                                        |                                           |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
| 2A=                                                             | 30 to 250°F, (-1 to 121°C) SPST           |  |  |  |  |  |  |  |  |
| 3A=                                                             | 175 to 550°F, (79 to 288°C) SPST          |  |  |  |  |  |  |  |  |
| 5A=                                                             | 60 to 250°F, (16 to 121°C) DPST           |  |  |  |  |  |  |  |  |
| 7A=                                                             | 100 to 550°F, (38 to 288°C) DPST          |  |  |  |  |  |  |  |  |
| PJ=                                                             | Type J process thermocouple in thermowell |  |  |  |  |  |  |  |  |
| PK=                                                             | Type K process thermocouple in thermowell |  |  |  |  |  |  |  |  |
| Note: Thermostat part numbers are shown in the Thermostat Chart |                                           |  |  |  |  |  |  |  |  |

**Note:** Thermostat part numbers are shown in the *Thermostat Chart* on page 537.

|     | Sheath Limit Sensors                                    |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------|--|--|--|--|--|--|--|
| TJ= | Type J high-limit thermocouple, vertical/housing at top |  |  |  |  |  |  |  |
| TK= | Type K high-limit thermocouple, vertical/housing at top |  |  |  |  |  |  |  |

**Note:** Heater orientation is critical to accurate sensing of limit conditions. Use the appropriate code to indicate heater mounting orientation.

Example Part Number: OLN714L3 W 2A TK

### FIREROD® Immersion Heaters

FIREROD® immersion heaters are ideal to replace large screw-plug immersion heaters. Packaging up to 300 W/in² (46.5 W/cm²) in a compact unit, these heaters are versatile when designed into a heating system.

FIREROD immersion heaters are complete with a stainless steel <sup>3</sup>/<sub>4</sub> inch National Pipe Thread Taper (NPT) double-threaded fitting which allows conduit boxes to be added. They are also sealed at the lead end with a silicone rubber seal.

Solid copper leads with silicone rubber sleeves are provided for unrestricted wiring. These heaters are recommended for immersion in water of 90+ percent water soluble solutions.

### **Performance Capabilities**

- Maximum operating temperature in water up to 212°F (100°C) at atmospheric pressure
- Maximum watt density up to 300 W/in<sup>2</sup> (46.5 W/cm<sup>2</sup>)
- Maximum voltage up to 480VAC

#### **Features and Benefits**

# Nickel-chromium resistance wire precisely centered in the unit

• Ensures even, efficient distribution of heat to the sheath

# Magnesium oxide (MgO) insulation compacted to the proper density

 Results in high dielectric strength and contributes to faster heat-up

#### Alloy 800 sheath

• Resists water corrosion

#### Metallurgically-bonded conductor pins

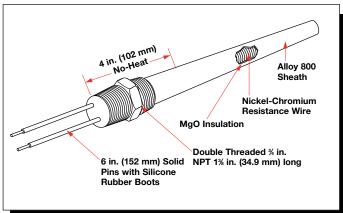
 Overlap the resistance wire inside of the core to ensure trouble-free electrical continuity

#### Lead end with silicone rubber seal

• Protects the heater against moisture contamination

#### Stainless steel fittings

• Offer availability for use in corrosive applications


#### Horizontal through the wall tank mounting

Provides faster set-up

#### 240 and 480VAC voltage

Allows wiring flexibility for heater use in particular applications





### **Typical Applications**

- · Plastic reclamation
- Food preparation
- Lab equipment

**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 323

### **FIREROD Immersion Heaters**

### Applications and Technical Data

The small size and large capacity of FIREROD immersion heaters are ideal for use in cramped quarters. When heating liquids of low viscosity, FIREROD heaters have high watt density to pack more heat into tight spots. For water heating applications, a rating of 150 to 300 W/in² is recommended. Laboratory tests show that under certain conditions, ratings as high as 700 W/in² are safe. For longer life at high watt densities, the FIREROD heater:

- Should not be contained in the main body of the liquid or in a restricted space
- Should be covered with liquid at all times
- Should not be allowed to cycle on and off too frequently
- Should not form scale build up

When heating viscous liquids, such as oils, watt densities must be kept low to prevent carbonization at the heater sheath. FIREROD cartridges offer advantages for heating viscous materials where long life and high quality outweigh usual economic considerations.

As in all immersion applications, scale build-up on the sheath and sludge on the bottom of the tank must be carefully controlled to ensure long heater life.

Equipped with smaller threaded fittings than conventional immersion heaters, FIREROD heaters leave space for more units in the same location. Replacement of single FIREROD units in multiheater assemblies is fast and easy to avoid discarding the complete assembly.

Moisture resistant seals are available for protection against damp atmospheres.

Threaded fittings are furnished in either stainless steel or available in brass as an extended offering. FIREROD heaters are designed with alloy 800 sheaths, however, other sheath materials can be provided on made-to-order FIREROD units.

Fittings and sheath material should be appropriate for the specific liquid material being heated.

#### **Sheath Material Compositions**

| Sheath           |          | Chemical Composition |    |       |      |     |                |     |       |   |       |                |    |          |   |   |
|------------------|----------|----------------------|----|-------|------|-----|----------------|-----|-------|---|-------|----------------|----|----------|---|---|
| Material         | Al       | С                    | Со | Cr    | Cu   | Fe  | Mn             | Мо  | Ni    | Р | S     | Si             | Та | Ti       | V | W |
| Nickel Alloys    |          |                      |    |       |      |     |                |     |       |   |       |                |    |          |   |   |
| Alloy 800        | 0.15-0.6 | 0.1                  |    | 19-23 | 0.75 | Bal | 1.5            |     | 30-35 |   | 0.015 | 1.0            |    | 0.15-0.6 |   |   |
| Stainless Steels |          |                      |    |       |      |     |                |     |       |   |       |                |    |          |   |   |
| 304              |          | 0.08 ①               |    | 18-20 |      | Bal | 2 <sup>①</sup> |     | 8-12  |   |       | 1 <sup>①</sup> |    |          |   |   |
| 316              |          | 0.08 ①               |    | 16-18 |      | Bal | 2 <sup>①</sup> | 2-3 | 10-14 |   |       | 1 <sup>①</sup> |    |          |   |   |

① Maximum

## **Immersion Heaters**

## **FIREROD Immersion Heaters**

## **Heater Part Numbers With Stainless Steel Fittings**

| Diameter | Overal                         | l Length |       |        | Watt              | Density              | Approx | Net Wt. |          |             |
|----------|--------------------------------|----------|-------|--------|-------------------|----------------------|--------|---------|----------|-------------|
| in.      | in.                            | (mm)     | Volts | Watts  | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs    | (kg)    | Delivery | Part Number |
| 5/8      | 6 <sup>1</sup> /4              | (159)    | 120   | 500    | 127               | (19.7)               | 0.58   | (0.26)  | RS       | L6EX12B     |
|          | 6 <sup>1</sup> /4              | (159)    | 240   | 500    | 127               | (19.7)               | 0.58   | (0.26)  | RS       | L6EX13B     |
|          | 6 <sup>1</sup> / <sub>4</sub>  | (159)    | 120   | 750    | 191               | (29.6)               | 0.58   | (0.26)  | RS       | L6EX14B     |
|          | 6 <sup>1</sup> /4              | (159)    | 240   | 750    | 191               | (29.6)               | 0.58   | (0.26)  | RS       | L6EX15B     |
|          | 6 <sup>1</sup> /4              | (159)    | 120   | 1,000  | 254               | (39.4)               | 0.58   | (0.26)  | RS       | L6EX16B     |
|          | 6 <sup>1</sup> / <sub>4</sub>  | (159)    | 240   | 1,000  | 254               | (39.4)               | 0.58   | (0.26)  | RS       | L6EX17B     |
|          | 6 <sup>3</sup> /4              | (172)    | 240   | 1,500  | 300               | (46.5)               | 0.60   | (0.27)  | RS       | L6NX7B      |
|          | 63/4                           | (172)    | 480   | 1,500  | 300               | (46.5)               | 0.60   | (0.27)  | М        | L6NX8B      |
|          | 73/4                           | (197)    | 240   | 2,000  | 291               | (45.1)               | 0.66   | (0.30)  | RS       | L7NX5B      |
|          | 73/4                           | (197)    | 480   | 2,000  | 291               | (45.1)               | 0.66   | (0.30)  | М        | L7NX6B      |
|          | 8 <sup>1</sup> / <sub>2</sub>  | (216)    | 240   | 2,500  | 300               | (46.5)               | 0.68   | (0.31)  | RS       | L8JX16B     |
|          | 8 <sup>1</sup> / <sub>2</sub>  | (216)    | 480   | 2,500  | 300               | (46.5)               | 0.68   | (0.31)  | М        | L8JX17B     |
|          | 91/4                           | (235)    | 240   | 3,000  | 300               | (46.5)               | 0.72   | (0.33)  | RS       | L9EX11B     |
|          | 91/4                           | (235)    | 480   | 3,000  | 300               | (46.5)               | 0.72   | (0.33)  | RS       | L9EX12B     |
|          | 11                             | (279)    | 240   | 4,000  | 300               | (46.5)               | 0.80   | (0.36)  | RS       | L11AX59B    |
|          | 11                             | (279)    | 480   | 4,000  | 300               | (46.5)               | 0.80   | (0.36)  | RS       | L11AX60B    |
|          | 12 <sup>3</sup> /4             | (324)    | 240   | 5,000  | 300               | (46.5)               | 0.89   | (0.41)  | RS       | L12NX4B     |
|          | 12 <sup>3</sup> /4             | (324)    | 480   | 5,000  | 300               | (46.5)               | 0.89   | (0.41)  | RS       | L12NX5B     |
|          | 14 <sup>1</sup> /2             | (368)    | 240   | 6,000  | 300               | (46.5)               | 0.95   | (0.43)  | RS       | L14JX8B     |
|          | 14 <sup>1</sup> /2             | (368)    | 480   | 6,000  | 300               | (46.5)               | 0.95   | (0.43)  | М        | L14JX9B     |
|          | 18                             | (457)    | 240   | 8,000  | 295               | (45.7)               | 1.14   | (0.52)  | М        | L18AX43B    |
|          | 18                             | (457)    | 480   | 8,000  | 295               | (45.7)               | 1.14   | (0.52)  | М        | L18AX44B    |
|          | 21 <sup>1</sup> /4             | (540)    | 240   | 10,000 | 300               | (46.5)               | 1.30   | (0.59)  | М        | L21EX1B     |
|          | 21 <sup>1</sup> / <sub>4</sub> | (540)    | 480   | 10,000 | 300               | (46.5)               | 1.30   | (0.59)  | М        | L21EX2B     |
|          | 24 <sup>3</sup> /4             | (629)    | 480   | 12,000 | 300               | (46.5)               | 1.50   | (0.68)  | М        | L24NX1B     |
|          | 293/4                          | (756)    | 480   | 15,000 | 300               | (46.5)               | 1.80   | (0.82)  | М        | L29NX5B     |
|          | 35                             | (889)    | 480   | 18,000 | 300               | (46.5)               | 2.00   | (0.91)  | М        | L35AX5B     |



## **Immersion Heaters**



## **FIREROD Immersion Heaters**

## **Heater Part Numbers With Brass Fittings**

| Diameter | Overal                         | Length |       |        | Watt              | Density              | Approx. | Net Wt. |          |             |
|----------|--------------------------------|--------|-------|--------|-------------------|----------------------|---------|---------|----------|-------------|
| in.      | in.                            | (mm)   | Volts | Watts  | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs     | (kg)    | Delivery | Part Number |
| 5/8      | 6 <sup>1</sup> /4              | (159)  | 120   | 500    | 127               | (19.7)               | 0.58    | (0.26)  | М        | L6EX12A     |
|          | 6 <sup>1</sup> /4              | (159)  | 240   | 500    | 127               | (19.7)               | 0.58    | (0.26)  | М        | L6EX13A     |
|          | 6 <sup>1</sup> /4              | (159)  | 120   | 750    | 191               | (29.6)               | 0.58    | (0.26)  | М        | L6EX14A     |
|          | 6 <sup>1</sup> /4              | (159)  | 240   | 750    | 191               | (29.6)               | 0.58    | (0.26)  | М        | L6EX15A     |
|          | 6 <sup>1</sup> /4              | (159)  | 120   | 1,000  | 254               | (39.4)               | 0.58    | (0.26)  | М        | L6EX16A     |
|          | 6 <sup>1</sup> /4              | (159)  | 240   | 1,000  | 254               | (39.4)               | 0.58    | (0.26)  | М        | L6EX17A     |
|          | 63/4                           | (172)  | 240   | 1,500  | 300               | (46.5)               | 0.60    | (0.27)  | М        | L6NX7A      |
|          | 63/4                           | (172)  | 480   | 1,500  | 300               | (46.5)               | 0.60    | (0.27)  | М        | L6NX8A      |
|          | 7 <sup>3</sup> /4              | (197)  | 240   | 2,000  | 291               | (45.1)               | 0.66    | (0.30)  | М        | L7NX5A      |
|          | 73/4                           | (197)  | 480   | 2,000  | 291               | (45.1)               | 0.66    | (0.30)  | М        | L7NX6A      |
|          | 8 <sup>1</sup> / <sub>2</sub>  | (216)  | 240   | 2,500  | 300               | (46.5)               | 0.68    | (0.31)  | М        | L8JX16A     |
|          | 81/2                           | (216)  | 480   | 2,500  | 300               | (46.5)               | 0.68    | (0.31)  | М        | L8JX17A     |
|          | 91/4                           | (235)  | 240   | 3,000  | 300               | (46.5)               | 0.72    | (0.33)  | М        | L9EX11A     |
|          | 91/4                           | (235)  | 480   | 3,000  | 300               | (46.5)               | 0.72    | (0.33)  | М        | L9EX12A     |
|          | 11                             | (279)  | 240   | 4,000  | 300               | (46.5)               | 0.80    | (0.36)  | М        | L11AX59A    |
|          | 11                             | (279)  | 480   | 4,000  | 300               | (46.5)               | 0.80    | (0.36)  | М        | L11AX60A    |
|          | 12 <sup>3</sup> /4             | (324)  | 240   | 5,000  | 300               | (46.5)               | 0.89    | (0.41)  | М        | L12NX4A     |
|          | 12 <sup>3</sup> /4             | (324)  | 480   | 5,000  | 300               | (46.5)               | 0.89    | (0.41)  | М        | L12NX5A     |
|          | 14 <sup>1</sup> /2             | (368)  | 240   | 6,000  | 300               | (46.5)               | 0.95    | (0.43)  | М        | L14JX8A     |
|          | 14 <sup>1</sup> / <sub>2</sub> | (368)  | 480   | 6,000  | 300               | (46.5)               | 0.95    | (0.43)  | М        | L14JX9A     |
|          | 18                             | (457)  | 240   | 8,000  | 295               | (45.7)               | 1.14    | (0.52)  | М        | L18AX43A    |
|          | 18                             | (457)  | 480   | 8,000  | 295               | (45.7)               | 1.14    | (0.52)  | М        | L18AX44A    |
|          | 21 <sup>1</sup> /4             | (540)  | 240   | 10,000 | 300               | (46.5)               | 1.30    | (0.59)  | М        | L21EX1A     |
|          | 21 <sup>1</sup> /4             | (540)  | 480   | 10,000 | 300               | (46.5)               | 1.30    | (0.59)  | М        | L21EX2A     |
|          | 243/4                          | (629)  | 480   | 12,000 | 300               | (46.5)               | 1.50    | (0.68)  | М        | L24NX1A     |
|          | 29 <sup>3</sup> /4             | (756)  | 480   | 15,000 | 300               | (46.5)               | 1.80    | (0.82)  | М        | L29NX5A     |
|          | 35                             | (889)  | 480   | 18,000 | 300               | (46.5)               | 2.00    | (0.91)  | М        | L35AX5A     |

<sup>•</sup> M - Manufacturing lead times

| Circulation Heaters  | Sheath Materials     |      | perating<br>ratures<br>°C |     | al Max.<br>ensities<br>W/cm² | Page |  |
|----------------------|----------------------|------|---------------------------|-----|------------------------------|------|--|
| STARFLOW™            | 316L stainless steel | 1000 | 537                       | 30  | 4.6                          | 329  |  |
| WATROD™ and FIREBAR® | Alloy 800/840        | 1600 | 870                       | 120 | 18.6                         |      |  |
|                      | Stainless steel      | 1200 | 650                       | 120 | 18.6                         | 004  |  |
|                      | Steel                | 750  | 400                       | 120 | 18.6                         | 331  |  |
|                      | Alloy 800            | 350  | 175                       | 120 | 18.6                         |      |  |
| Booster Heaters      | Alloy 800            | 350  | 175                       | 60  | 9.3                          | 277  |  |
|                      | Steel                | 750  | 400                       | 23  | 3.6                          | 377  |  |
| Engine Preheaters    | Alloy 800            | 1600 | 870                       | 90  | 13.9                         | 379  |  |



WATLOW® \_\_\_\_\_\_ 327



## **STARFLOW™** Heaters

The STARFLOW™ circulation heater is engineered to heat a flowing gas stream to 1000°F (537°C). The 316L stainless steel chamber houses a small diameter sheathed element, which allows for quick response to both heat-up and cool down cycles.

Watlow's starwound, coiled cable heater provides extremely efficient and reliable heating by maximizing the contact area of the gas or fluid with the element. Because the element is sheathed, the unit can operate in gas streams requiring a clean environment as well as atmospheres containing contaminants and moisture. This provides superior performance compared to units with internally exposed or open element wires.

## **Performance Capabilities**

- Temperatures up to 1000°F (537°C), 316L stainless steel sheath
- Maximum watt densities up to 30 W/in<sup>2</sup> (4.7 W/cm<sup>2</sup>)
- Maximum voltage up to 240V

#### **Features and Benefits**

#### Small diameter heater

• Allows for quick response time

#### Internal starwound element

· Provides fast, efficient heating

#### **Sheathed element**

• Provides the ability to heat in clean or impure streams

## Flexibility in configurations

• Allows for adaptability to any process

#### 316L stainless steel

• Provides a rugged and corrosion resistant construction

#### Electropolishing available on all wetted surface

• Reduces particulate contamination

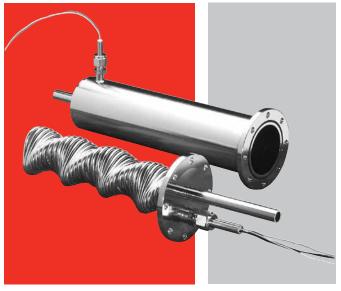
**Note:** Contact your Watlow representative for ultra-high purity applications

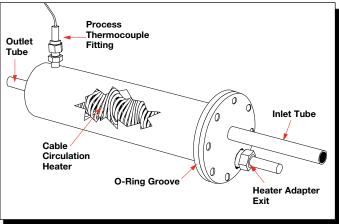
#### Low pressure loss

• Minimizes flow restriction

Note: Not suitable for use as a pressure vessel

#### Type J or K thermocouples


• Provide precise control and high-limit safety

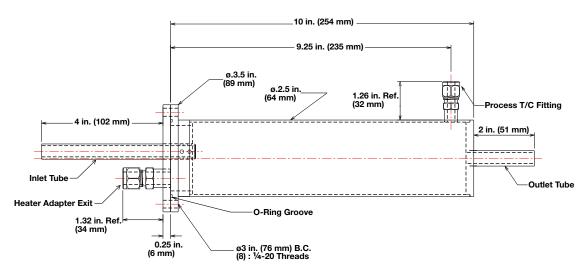

## Replaceable heater and thermocouple

· Reduces replacement cost

## Shipment from stock

· Reduces downtime






## **Typical Applications**

- Semiconductor processing
- Curing and drying
- Electronics
- Heat shrinking
- Thermoforming/sealing

WATLOW<sup>®</sup> \_\_\_\_\_\_ 329

## **STARFLOW Heaters**



## **Ordering Information**

## **Part Number**

| 1 | 2 | 3 4 Type of Inlet | 5 6 Type of Outlet | 7 8 9 10  Heater  Wattage | 11<br>Internal T/C<br>Calibration<br>(Heater) | 12<br>Surface Finish<br>of Assembly<br>and Heater | (B) Process T/C Calibration (Assembly) | ①4<br>O-Ring<br>Material |
|---|---|-------------------|--------------------|---------------------------|-----------------------------------------------|---------------------------------------------------|----------------------------------------|--------------------------|
| С | Н |                   |                    |                           |                                               |                                                   |                                        |                          |

| 3 4  | Type of Inlet                                    |  |  |  |
|------|--------------------------------------------------|--|--|--|
|      | <sup>1</sup> / <sub>4</sub> in. (6 mm) O.D. tube |  |  |  |
| JT = | JT = 1/2 in. (13 mm) O.D. tube                   |  |  |  |
|      |                                                  |  |  |  |

| 5 6  | Type of Outlet                                    |
|------|---------------------------------------------------|
|      | <sup>1</sup> / <sub>4</sub> in. (6 mm) O.D. tube  |
| JT = | <sup>1</sup> / <sub>2</sub> in. (13 mm) O.D. tube |

| 789    | 10           | Heater Wattage |
|--------|--------------|----------------|
| 0375 = | 120V, 375 W  |                |
| 0500 = | 120V, 500 W  |                |
| 0750 = | 120V, 750 W  |                |
| 1500 = | 240V, 1500 W |                |
| 2000 = | 240V, 2000 W |                |
| 3000 = | 240V, 3000 W |                |
|        |              |                |

| 11  | Internal Thermocouple Calibration (Heater) |
|-----|--------------------------------------------|
| J = | Type J                                     |
| K = | Type K                                     |



Next day shipment

| 12  | Surface Finish of Assembly and Heater |
|-----|---------------------------------------|
| X = | Unfinished                            |
| E = | Electropolished                       |

| 13  | Process Thermocouple Calibration (Assembly) |
|-----|---------------------------------------------|
| J = | Type J                                      |
| K=  | Type K                                      |

| 14  | O-Ring Material                           |  |  |  |
|-----|-------------------------------------------|--|--|--|
| A = | FKM (FPM) 500°F (260°C)                   |  |  |  |
| M = | Alloy X750 1300°F (704°C)                 |  |  |  |
| T = | PTFE encapsulated FKM (FPM) 392°F (200°C) |  |  |  |

# WATROD™ and FIREBAR® Circulation Heaters

Circulation heaters provide a ready-made means to install electric heating with a minimal amount of time and labor. This is accomplished by combining heating elements, vessel, insulation, terminal enclosure, mounting brackets and inlet and outlet connections into a complete assembly.

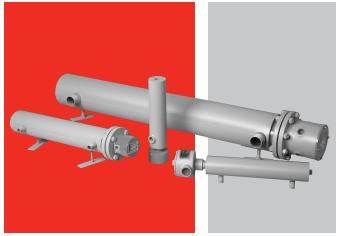
Made from NPT screw plug or ANSI flange heater assemblies mated with a pressure vessel (tank), circulation heaters are designed to heat forced-circulation air, gases or liquids. Ideal for either in-line or side-arm operations, these assemblies direct fluids past FIREBAR® or WATROD™ heating elements, to deliver fast response and even heat distribution.

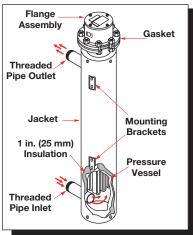
Watlow® meets virtually all your circulation heater assembly needs with made-to-order units. These units can be made from a wide range of heating element sheath materials, wattages, vessel sizes and materials, pressure ratings, terminal enclosures and controls.

## **Performance Capabilities**

- Watt densities up to 120 W/in<sup>2</sup> (18.6 W/cm<sup>2</sup>)
- Wattages up to three megawatts
- UL® and CSA component recognition up to 690VAC
- Ratings up to ANSI Class 600 pressure class
- Alloy 800/840 sheath temperatures up to 1600°F (870°C)
- Passivated 316 stainless steel sheath temperatures up to 1200°F (650°C)
- Steel sheath temperatures up to 750°F (400°C)

#### **Features and Benefits**


## Catalog screw plug and flange part numbers


 Provides a wide selection of WATROD and FIREBAR elements to meet specific application requirements

| Туре            | Sizes (in.)                          |
|-----------------|--------------------------------------|
| NPT Screw Plugs | 1 <sup>1</sup> /4, 2 <sup>1</sup> /2 |
| ANSI flanges    | 3, 4, 5, 6, 8, 10, 12, 14            |

# ANSI B16.5 Class 150 on 4 or 6 inch FIREBAR element flanges and 3 to 14 inch WATROD element flanges

• Meets recognized agency standards





## FIREBAR assemblies pack more wattage in a smaller heater bundle

 Replaces larger flanges with round tubular elements, with a smaller package

## Compacted MgO insulation filled elements

• Maximizes dielectric strength, heat transfer and life

# 1 inch (25 mm) thermal insulation rated to 750°F (400°C)

Reduces heat loss from the vessel

#### Heavy-gauge steel jacket (shroud)

 Protects thermal insulation and heating vessel and comes with protective primer coating

WATLOW® \_\_\_\_\_\_ 331

# WATROD and FIREBAR Circulation Heaters

#### Features and Benefits (Continued)

## All catalog units rated to ANSI pressure Class 150

 Provides pressure vessels (tanks) that are either carbon, 304 or 316 stainless steel

# Standard offering includes units rated for up to and including ANSI pressure class 600 (application review required)

- Provides pressure vessels (tanks) available in carbon steel, 304 or 316 stainless steel materials
- Includes schedule 40, standard and 80 pipe used in the pressure vessel construction

## Catalog units provided with NPT or ANSI Class 150 nozzle connection

 Makes installation easy. Inlet and outlet nozzle connections are threaded MNPT on 8 in. (203 mm) and smaller tanks. Class 150 flanged connections on 10 in. (254 mm) and larger tanks

## Mounting lugs are welded onto the tank wall of all $2^{1/2}$ in. (64 mm) NPT and larger units

· Provides mounting support

## General purpose, moisture resistant, enclosures available

Offers easy access to terminal wiring

## **Options**

## **Terminal Enclosures**

General purpose terminal enclosures, without thermostats, are supplied on all Watlow circulation heaters. Moisture and explosion resistant ratings are available to meet specific application needs. For screw plug terminal enclosures, refer to page 171. For flange terminal enclosures, refer to page 243.

#### **Stand-off Terminal Enclosures**

Stand-off terminal enclosures help protect terminal enclosures against excessive temperatures. For details, refer to page 239.

#### ASME Pressure Vessel Code Welding

Flange or screw plug assemblies can be provided with an ASME Section VIII, Div. I pressure vessel stamp upon request.

#### **Branch Circuits**

Branch circuits are designed for 48 amperes per circuit maximum. Contact your Watlow representative for circuit requirements other than those listed in the stock charts.

## Flange mounting holes

Straddles centerline to comply with industry standards

## UL® and CSA component recognition under file numbers E52951 and 31388 respectively

Meets industry safety standards

## Typical Applications

#### Water:

- Deionized
- Demineralized
- Clean
- Potable
- Process
- Industrial water rinse tanks
- Hydraulic oil, crude, asphalt
- Lubricating oils at API specified watt densities
- Heat transfer oil
- Paraffin
- · Caustic cleaners
- Nitrogen, hydrogen and other air/gas systems
- Superheating steam

#### **Certified Enclosures**

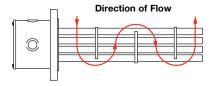
CSA, ATEX or IECEx certified enclosures protect wiring in hazardous gas environments. These terminal enclosures, covered under CSA file number 61707, ATEX certificate # SIRA 10ATEX 1155X or IECEx certificate # IECEx CSA 09.0010 are available on WATROD flange heaters. For additional information, see page 567 and 568 or contact your Watlow representative.

For products that will be installed in hazardous locations, please provide the following information:

- Operating conditions
- Minimum and maximum ambient temperatures for the installation location
- Mounting orientation

Watlow must understand this information so that an appropriate design can be provided.

#### **Thermostats**


To provide process temperature control, Watlow offers optional single- and double-pole thermostats. Thermostats are typically mounted in the terminal enclosure. Optional side mounting on vessel also available.

See Screw Plug Immersion Heaters, page 167 and Flange Immersion Heaters, on page 239 for details.

# WATROD and FIREBAR Circulation Heaters

**Options** (Continued)

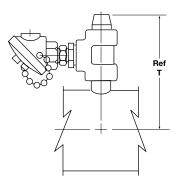
#### **Baffles**



Baffles mounted on the heating element bundle enhance and/or modify liquid or gas flow for better heat transfer.

For critical sheath temperature and low flow conditions, baffles may be required.

Contact your Watlow representative for details.


## **Thermocouples**

To sense process or element sheath temperature, ASTM Type J or K thermocouples are available.

See Screw Plug Immersion Heaters, page 168 and Flange Immersion Heaters, on page 239 for details.

## **Process Thermocouple in Nozzle**

(Must specify which nozzle)



| Ref.<br>Tank Size             | Ref.<br>Nozzle Size               | Dimension<br>"A"    |
|-------------------------------|-----------------------------------|---------------------|
| 1 <sup>1</sup> /4             | <sup>3</sup> /4 NPT               | 8 <sup>3</sup> /16  |
| 2 <sup>1</sup> / <sub>2</sub> | 1 NPT                             | 8 <sup>3</sup> /16  |
| 3                             | 1 NPT                             | 8 <sup>3</sup> /16  |
| 4                             | 1 <sup>1</sup> / <sub>2</sub> NPT | 10 <sup>3</sup> /8  |
| 5                             | 2 NPT                             | 11 <sup>1</sup> /16 |
| 6                             | 2 <sup>1</sup> / <sub>2</sub> NPT | 13 <sup>3</sup> /8  |
| 8                             | 2 <sup>1</sup> / <sub>2</sub> NPT | 14 <sup>3</sup> /8  |

For 10 in. (254 mm) and larger tanks contact your Watlow representative for dimension.

#### **Sheath Materials**

The following sheath materials are available on WATROD and FIREBAR heating elements:

#### **Standard Sheath Materials**

| WATROD  | Alloy 800/840<br>316 SS<br>Steel |
|---------|----------------------------------|
| FIREBAR | Alloy 800, 304 SS                |

#### **Made-to-Order Sheath Materials**

| WATROD | 304 SS<br>Alloy 600        |
|--------|----------------------------|
|        | Titanium<br>Hastelloy C276 |

## Wattages and Voltages

Watlow routinely supplies circulation heaters with 120 to 690VAC as well as wattages from 500 watts to one megawatt. If required, Watlow will configure circulation heaters with voltages and wattages outside these parameters.

For more information on special voltage and wattage configurations, contact your Watlow representative.

WATLOW<sup>®</sup> \_\_\_\_\_\_ 333

# WATROD and FIREBAR Circulation Heaters

**Options** (Continued)

#### **Pressure Vessels**

All catalog pressure vessel (tank) materials consist of standard schedule and 150# class forged fittings and are made from one of the following materials:

- Carbon steel
- 316 stainless steel

All catalog pressure vessels (tanks) are steel unless otherwise noted.

316 stainless steel pressure vessels (tanks) are passivated on all wetted surfaces. Available from Assembly Stock on 2<sup>1</sup>/<sub>2</sub> inch NPT and 4 or 6 inch ANSI flange circulation heaters.

## **Passivated Finish**

For critical applications, passivation will remove free iron from all wetted surfaces.

Contact your Watlow representative for details.

#### Gaskets

Rubber, asbestos-free and spiral wound gaskets are available for all heater flange, and inlet and outlet flange sizes.

Watlow recommends ordering spares in case replacement becomes necessary.

To order, specify **gasket type, flange size/rating** and **process operating temperature**.

For details on gasket materials and temperature ratings, see page 240.

#### **Inlet and Outlet Nozzle Connections**

All inlet and outlet materials are compatible with the pressure vessel material and pressure class rating.

Vessel sizes from 1<sup>1</sup>/<sub>4</sub> to 8 inches are typically configured with MNPT (Male National Pipe Thread) nozzles. Optional NPT and flange sizes can be supplied to mate with existing piping.

10 inch and larger vessels are supplied with Class 150 inlet and outlet flanges. Optional Class 300 or Class 600 can be provided to mate with existing piping.

To order, specify **type, size** and **pressure class** rating for both inlet and outlet nozzle/flange connections.

## **Protective Steel Jacket (Shroud)**

To protect circulation heaters from weather or wash-down conditions, partially welded (standard) outer protective steel jackets are available. Standard steel, or made-to-order 304 or 316 stainless steel or aluminum can be supplied. Jacket diameter is dependent upon thermal insulation thickness.

To order, specify **protective steel jacket, material type** and **weatherproof**, if desired.

# WATROD and FIREBAR Circulation Heaters

## **Technical Data**

## **Maximum Velocities**

The rate at which a gas or liquid flows through inlet and outlet pipes is critical to maintaining the desired output temperature. Pressure drop through the circulation heater must be considered to properly size blowers or pumps. The *Maximum Velocity to Avoid Excessive Pressure Drop* chart gives recommended maximum velocities, in feet per second and meters per second of gas or liquid being heated and nominal pipe size.

#### **Maximum Velocity to Avoid Excessive Pressure Drop**

|        | Nominal Pipe Size | Maximum | Velocity |
|--------|-------------------|---------|----------|
| Fluid  | in.               | ft/sec  | (m/sec)  |
| Gases  | All               | 200     | (61.0)   |
| Liquid | 4 and smaller     | 10      | (3.0)    |
| Liquid | 6-8               | 15      | (5.0)    |
| Liquid | 10-12             | 19      | (6.0)    |
| Liquid | 14-16             | 21      | (6.4)    |
| Liquid | 18-20             | 23      | (7.0)    |
| Liquid | 24                | 24      | (7.3)    |

## **Vessel Orientation Guidelines**

Correctly orienting the heating vessel assures lower terminal enclosure temperatures and element immersion. Detailed instructions on vessel orientation are contained in the *Installation and Maintenance Instructions* that accompanies all circulation heaters.

The following are guidelines for vessel orientation in liquid and gas heating applications.

#### Liquids

Orient circulation heater:

- · Horizontally with inlet and outlet pipes pointing up
- Vertically with the terminal enclosure up and the inlet pipe on the bottom

These orientations ensure the heating elements will be immersed at all times and help prevent premature failure.

#### Air or Gases

Orient circulation heater:

- Horizontally with the inlet nozzle closest to the terminal enclosure
- Vertically with terminal enclosure at the bottom of the tank. Use the nozzle nearest the bottom as the inlet connection

If installation constraints do not allow mounting in accordance with these guidelines, contact your Watlow representative.

## **Application Hints**

- Select the recommended heating element sheath material and watt density for the substance being heated. Use the Supplemental Applications Chart on pages 555 to 558. If unable to determine the correct heating element type and material, contact your Watlow representative.
- Assure selecting proper vessel by considering the pressure or flow rate, process temperature and corrosiveness of the media being heated. If assistance with vessel selection is required, contact your Watlow representative.
- For maintenance/replacement procedures, retain an area twice the circulation heater's overall length to permit easy removal and inspection of screw plug or flange heater assemblies.
- Choose a FIREBAR assembly when you require:
  - A smaller package
  - More kilowatts or lower watt density in an equally sized WATROD circulation tank
- Minimize problems associated with low flow or low liquid level conditions with a low liquid level sensor and/or sheath high-limit control.
- Ensure wiring integrity by making sure terminal enclosure temperature does not exceed 400°F (205°C).
- Size power feeder wires in accordance with national electrical code guidelines and other applicable codes.
- Protect against electrical shock by properly grounding the unit per NEC requirements.
- One or more circulation heaters may be connected in series to achieve the desired total kilowatt or temperature output.

WATLOW<sup>®</sup> 335



# WATROD and FIREBAR Circulation Heaters

## **Performance Capabilities**

• Up to 3000psi design pressure

#### **Features and Benefits**

## Offering includes units rated above ANSI pressure class 600

 Pressure vessel tanks are available in "H" series stainless steel, Titanium, alloy 800, alloy 600, Chrome Moly, alloy 400, Duplex and 321 stainless steel

## **Options**

## **Exotic Sheath Materials**

Contact your Watlow representative for details and availability.

#### **Pressure Vessels**

Made-to-order units can be made in a variety of materials, flange sizes and pressure classes.

To order, specify pressure vessel (tank) size, material and pressure class.

Ratings to ANSI class 2500 pressure class are available for high-pressure applications.

## **High-Temperature Thermal Insulation**

To further minimize heat loss, the pressure vessel's standard one inch thermal insulation wrap may be replaced with thicker or higher temperature insulation. For more information, contact your Watlow representative.

To order, specify insulation thickness, standard or high temperature insulation and temperature rating.

Vessels may be supplied with a primer coating without insulation.

To order, specify **no insulation**.

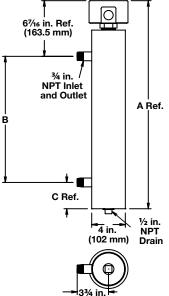
## **Support Saddles**

To mate with an existing installation, customized support saddle(s) and/or mounting lugs are available.

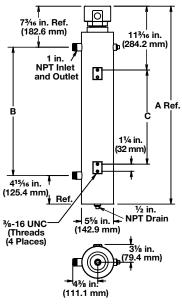
To order, specify **mounting lugs** or **support saddles** and supply a dimensional drawing.

## **WATROD** and **FIREBAR Circulation Heaters**

# **71**° (R°


## **Application: Clean Water** §

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


| Description                           | Volts   | kW     | Ph   | #<br>Circ. | Part<br>Number | Del. |     | Wt.<br>(kg) | "A"<br>in.                     | Dim.<br>(mm) | "B<br>in.           | " Dim.<br>(mm)        | "C"<br>in.         | Dim.<br>(mm) | 1 <sup>1</sup> /4 inch N                       | PT Scr                    | ew P             | lug                      |
|---------------------------------------|---------|--------|------|------------|----------------|------|-----|-------------|--------------------------------|--------------|---------------------|-----------------------|--------------------|--------------|------------------------------------------------|---------------------------|------------------|--------------------------|
| 1 <sup>1</sup> / <sub>4</sub> inch NP |         |        |      |            | rumber         | Doi: | 100 | (ivg)       | ••••                           | (11111)      |                     | (11111)               | ļ                  | ()           | Ţ                                              |                           |                  | ן וו                     |
| 60 W/in² 4                            | 120/240 | 3.0    | 1    | 1          | CBEN15A6S      | RS   | 23  | (11)        | 245/s                          | (625.5)      | 15                  | (381)                 | 31/8               | (79.4)       | 6 <sup>7</sup> ⁄16 in.<br>(163.5 n             |                           |                  | 气                        |
| Steel Tank                            | 240     | 4.0    | 1    | 1          | CBEN19A10S     | RS   | 29  |             |                                | (625.5)      | 15                  | (381)                 |                    | (79.4)       | ` ↓                                            | _                         |                  |                          |
| 2-Alloy 800<br>Elements               | 240     | 5.0    | 1    | 1          | CBEN23J10S     | RS   | 29  | . ,         |                                | (828.7)      | 23                  | (584)                 |                    | (79.4)       | 1                                              |                           | 1                |                          |
| (9.3 W/cm²)                           | 240     | 6.0    | 1    | 1          | CBEN27J10S     | RS   | 31  | . ,         |                                | (828.7)      | 23                  | (584)                 |                    | (79.4)       |                                                | 4 in. /<br>T Inlet        |                  |                          |
| ,                                     | 2.0     | 0.0    |      | •          | 02211210100    |      | 0.  | ()          | 02 70                          | (02011)      |                     | (66.)                 | 0 70               | (, 0, 1)     |                                                | Outlet                    |                  |                          |
| 1 <sup>1</sup> /4 inch NP             | T Screw | Plua ( | FIRE | BAR)       |                |      |     |             |                                |              |                     |                       |                    |              |                                                |                           |                  |                          |
| 90 W/in²                              | 240     | 1.5    | 1    | 1          | CBDNF7R10S     | М    | 26  | (12)        | 24 <sup>5</sup> /8             | (625.5)      | 15                  | (381)                 | 31/8               | (79.4)       | Ī                                              |                           |                  |                          |
| Steel Tank                            | 480     | 1.5    | 1    | 1          | CBDNF7R11S     | М    | 26  | . ,         |                                | (625.5)      | 15                  | (381)                 |                    | (79.4)       |                                                |                           |                  |                          |
| 1-Alloy 800<br>Element                | 240     | 3.0    | 1    | 1          | CBDNF11G10S    | М    | 26  | . ,         |                                | (625.5)      | 15                  | , ,                   | -                  | (79.4)       |                                                |                           |                  |                          |
| (14 W/cm²)                            | 480     | 3.0    | 1    | 1          | CBDNF11G11S    | М    | 26  | . ,         |                                | (625.5)      | 15                  | (381)                 |                    | (79.4)       | <del>1</del>                                   | ∸ਵ                        | 1                |                          |
|                                       | 240     | 5.0    | 3    | 1          | CBDNF16G3S     | М    | 26  |             |                                | (625.5)      |                     | (381)                 |                    | (79.4)       | C                                              | Ref.                      |                  |                          |
|                                       | 480     | 5.0    | 3    | 1          | CBDNF16G5S     | М    | 26  | (12)        | 24 <sup>5</sup> /8             | (625.5)      | 15                  | (381)                 |                    | (79.4)       |                                                | 1                         |                  | $\overline{\lambda}^{-}$ |
|                                       | 240     | 6.5    | 3    | 1          | CBDNF19G3S     | М    | 30  |             |                                | (828.7)      | 23                  | (584)                 |                    | (79.4)       |                                                | (                         | ີ 4 in<br>(102 r |                          |
|                                       | 480     | 6.5    | 3    | 1          | CBDNF19G5S     | М    | 30  | . ,         |                                | (828.7)      |                     | (584)                 |                    | (79.4)       |                                                |                           |                  | N.                       |
|                                       | 240     | 8.5    | 3    | 1          | CBDNF24L3S     | М    | 31  |             |                                | (828.7)      | 23                  | (584)                 |                    | (79.4)       |                                                |                           | (C)              | ))                       |
|                                       | 480     | 8.5    | 3    | 1          | CBDNF24L5S     | М    | 31  | (14)        | 32 <sup>5</sup> /8             | (828.7)      | 23                  | (584)                 |                    | (79.4)       |                                                | 33,                       | 4 in.            | <b>!</b>                 |
|                                       | 240     | 10.5   | 3    | 1          | CBDNF29R3S     | М    | 43  | (20)        | 42 <sup>5</sup> /8             | (1082.7)     | 32                  | (813)                 | 4 <sup>3</sup> /8( | (111.1)      |                                                |                           | mm)              |                          |
|                                       | 480     | 10.5   | 3    | 1          | CBDNF29R5S     | М    | 43  | (20)        | 42 <sup>5</sup> /8             | (1082.7)     | 32                  | (813)                 |                    | (111.1)      |                                                |                           |                  |                          |
|                                       | 240     | 12.7   | 3    | 1          | CBDNF34R3S     | М    | 44  | (20)        | 42 <sup>5</sup> /8             | (1082.7)     | 32                  | (813)                 | 4 <sup>3</sup> /8( | (111.1)      | 2 <sup>1</sup> / <sub>2</sub> inch N           | PT Scr                    | ew F             | lug                      |
|                                       | 480     | 12.7   | 3    | 1          | CBDNF34R5S     | М    | 44  | (20)        | 42 <sup>5</sup> /8             | (1082.7)     | 32                  | (813)                 |                    | (111.1)      | <u>,                                      </u> | —                         | <del>_</del>     |                          |
|                                       | 240     | 17.0   | 3    | 1          | CBDNF45G3S     | М    | 69  | (32)        | 63 <sup>5</sup> /8             | (1616.1)     | 53                  | (1346)                | 4 <sup>3</sup> /8( | (111.1)      | 73/16 in. R                                    |                           | 메                |                          |
|                                       | 480     | 17.0   | 3    | 1          | CBDNF45G5S     | М    | 69  | (32)        | 63 <sup>5</sup> /8             | (1616.1)     | 53                  | (1346)                | 4 <sup>3</sup> /8( | (111.1)      | (182.6 mı<br>↓                                 | ") <u>_</u>               |                  | 11<br>284 <sub>0</sub> ( |
|                                       | 480     | 21.5   | 3    | 1          | CBDNF55R5S     | М    | 71  | (33)        | 63 <sup>5</sup> /8             | (1616.1)     | 53                  | (1346)                | 4 <sup>3</sup> /8( | (111.1)      | 1 ir                                           | _ <b>_</b>                | Ì                | JI (= 0                  |
|                                       |         |        |      |            |                |      |     |             |                                |              |                     |                       |                    |              | NPT I<br>and O                                 | nlet                      |                  |                          |
| 2 <sup>1</sup> /2 inch NP             | T Screw | Plug ( | WAT  | ROD)       |                |      |     |             |                                |              |                     |                       |                    |              |                                                |                           |                  |                          |
| 60 W/in²                              | 240     | 6.0    | 3    | 1          | CBLN714L3S     | RS   | 24  | (11)        | 34 <sup>3</sup> / <sub>4</sub> | 4 (881)      | ) 22 <sup>1</sup>   | /2 (572)              | 16 <sup>1</sup> /2 | 2 (419)      | <br>  B                                        |                           |                  |                          |
| Steel Tank<br>3-Alloy 800             | 480     | 6.0    | 3    | 1          | CBLN714L5S     | RS   | 24  |             |                                |              |                     | /2 (572)              |                    | 2 (419)      |                                                |                           |                  |                          |
| Elements                              | 240     | 7.5    | 3    | 1          | CBLN717L3S     | RS   | 24  | (11)        | 34 <sup>3</sup> /4             | 4 (881)      | ) 22 <sup>1</sup>   | /2 (572)              | 16 <sup>1</sup> /2 | 2 (419)      |                                                |                           |                  | 1¼ iı<br>(32 m           |
| (9.3 W/cm²)                           | 480     | 7.5    | 3    | 1          | CBLN717L5S     | RS   | 24  | (11)        | 34 <sup>3</sup> /4             | 4 (881)      | ) 22 <sup>1</sup>   | /2 (572)              | 16 <sup>1</sup> /2 | 2 (419)      |                                                |                           | <b>.</b>         | (32111                   |
|                                       | 240     | 9.0    | 3    | 1          | CBLN720L3S     | RS   | 26  | (12)        | 34 <sup>3</sup> /4             | 4 (881)      | ) 22 <sup>1</sup>   | /2 (572)              | 16 <sup>1</sup> /2 | 2 (419)      | 4 <sup>15</sup> / <sub>16</sub> in.            | <b>-</b>                  | ٢                | <del></del>              |
|                                       | 480     | 9.0    | 3    | 1          | CBLN720L5S     | RS   | 26  | (12)        | 34 <sup>3</sup> /4             | 4 (881)      | ) 22 <sup>1</sup>   | /2 (572)              | 16 <sup>1</sup> /2 | 2 (419)      | (125 / mm)                                     | Ref.                      |                  |                          |
|                                       | 240     | 12.0   | 3    | 1          | CBLN726C3S     | RS   | 27  |             |                                |              |                     | ′ <sub>2</sub> (1129) | i .                |              | <u> </u>                                       | 7 I                       | <b>T</b>         | 1                        |
|                                       | 480     | 12.0   | 3    | 1          | CBLN726C5S     | RS   | 27  | (13)        | 44 <sup>3</sup> /4             | 4(1135)      | ) 32 <sup>1</sup> / | ′ <sub>2</sub> (1129) | 26 <sup>1</sup> /2 | 2 (673)      | 3/8-16 UNC Threads                             | ∕ <del>=</del> 55<br>(142 | % in.<br>.9 mn   | — NP<br>ו)               |
|                                       | 240     | 15.0   | 3    | 1          | CBLN731L3S     | RS   | 29  |             |                                |              |                     | <sup>'</sup> 2 (1129) | i                  |              | (4 Places)                                     |                           | _                | 31                       |
|                                       | 480     | 15.0   | 3    | 1          | CBLN731L5S     | RS   | 29  | (14)        | 443/4                          | 4(1135)      | ) 32 <sup>1</sup> / | <sup>'</sup> 2 (1129) | 26 <sup>1</sup> /2 | 2 (673)      |                                                |                           | $\bigcirc$       | <del>(79</del> .         |
|                                       | 240     | 18.0   | 3    | 1          | CBLN737C3S     | RS   | 30  | (14)        | 57 <sup>1</sup> / <sub>4</sub> | 4(1453)      | 45                  | (1143)                | 39                 | (991)        |                                                | 43% i                     | **               | '                        |
|                                       | 480     | 18.0   | 3    | 1          | CBLN737C5S     | RS   | 30  | (14)        | 57 <sup>1</sup> / <sub>4</sub> | 4(1453)      | 45                  | (1143)                | 39                 | (991)        |                                                | (111.1                    |                  |                          |

(5) When steel vessel materials are used in this application, some rust may be present in the process media

Wired for higher voltage



## 1/2 inch NPT Screw Plug





• RS - Next day shipment up to 5 pieces

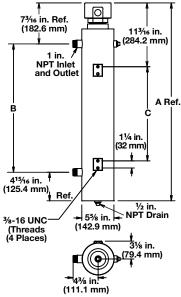
<sup>•</sup> M - Manufacturing lead times

# WATROD and FIREBAR Circulation Heaters

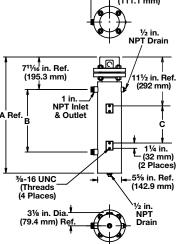


## **Application: Clean Water** <sup>®</sup>

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


|                                       |       |        |       | #     | Part         |      | Shi | o Wt. | "A"                            | Dim.   | "B"                            | Dim.   | "C"                            | Dim.  | 2        |
|---------------------------------------|-------|--------|-------|-------|--------------|------|-----|-------|--------------------------------|--------|--------------------------------|--------|--------------------------------|-------|----------|
| Description                           | Volts | kW     | Ph    | Circ. | Number       | Del. | lbs | (kg)  | in.                            | (mm)   | in.                            | (mm)   | in.                            | (mm)  |          |
| 2 <sup>1</sup> / <sub>2</sub> inch NF | T Scr | ew Pl  | ug (F | IREB  | AR)          |      |     |       |                                |        |                                |        |                                |       |          |
| 90 W/in² ®                            | 240   | 15.0   | 3     | 1     | CBLNF15C3S   | М    | 22  | (10)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419) |          |
| Steel Tank<br>3-Alloy 800             | 480   | 15.0   | 3     | 1     | CBLNF15C5S   | М    | 22  | (10)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419) |          |
| Elements                              | 240   | 20.0   | 3     | 1     | CBLNF18C3S   | М    | 23  | (11)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419) |          |
| (14 W/cm²)                            | 480   | 20.0   | 3     | 1     | CBLNF18C5S 3 | М    | 23  | (11)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419) |          |
|                                       | 480   | 25.0   | 3     | 1     | CBLNF23C5S   | М    | 31  | (14)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419) |          |
|                                       | 480   | 32.0   | 3     | 1     | CBLNF28L5S   | М    | 34  | (16)  | 44 <sup>3</sup> /4             | (1135) | 32 <sup>1</sup> /2             | (1129) | 26 <sup>1</sup> /2             | (673) |          |
|                                       | 480   | 38.0   | 3     | 1     | CBLNF33L5S   | М    | 35  | (16)  | 44 <sup>3</sup> /4             | (1135) | 32 <sup>1</sup> /2             | (1129) | 26 <sup>1</sup> /2             | (673) |          |
|                                       |       |        |       |       |              |      |     |       |                                |        |                                |        |                                |       |          |
| 3 inch - 150                          | lb AN | SI Fla | nge ( | (WAT  | ROD)         |      |     |       |                                |        |                                |        |                                |       | ١.       |
| 60 W/in <sup>2</sup>                  | 120   | 6.0    | 1     | 1     | CFMN715J10S  | RS   | 66  | (30)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> / <sub>2</sub> | (573)  | 16 <sup>1</sup> /2             | (419) | (1       |
| Steel Tank<br>3-Alloy 800             | 240   | 6.0    | 3     | 1     | CFMN715J3S   | RS   | 66  | (30)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> /2             | (573)  | 16 <sup>1</sup> /2             | (419) | (        |
| Elements                              | 480   | 6.0    | 1     | 1     | CFMN715J11S  | RS   | 66  | (30)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> / <sub>2</sub> | (573)  | 16 <sup>1</sup> /2             | (419) | 3/       |
| (9.3 W/cm <sup>2</sup> )              | 480   | 6.0    | 3     | 1     | CFMN715J5S   | RS   | 66  | (30)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> / <sub>2</sub> | (573)  | 16 <sup>1</sup> /2             | (419) | (        |
|                                       | 120   | 9.0    | 1     | 1     | CFMN721J10S  | RS   | 70  | (32)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> / <sub>2</sub> | (573)  | 16 <sup>1</sup> /2             | (419) |          |
|                                       | 240   | 9.0    | 3     | 1     | CFMN721J3S   | RS   | 70  | (32)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> / <sub>2</sub> | (573)  | 16 <sup>1</sup> /2             | (419) |          |
|                                       | 480   | 9.0    | 1     | 1     | CFMN721J11S  | RS   | 70  | (32)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> / <sub>2</sub> | (573)  | 16 <sup>1</sup> /2             | (419) |          |
|                                       | 480   | 9.0    | 3     | 1     | CFMN721J5S   | RS   | 70  | (32)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> / <sub>2</sub> | (573)  | 16 <sup>1</sup> /2             | (419) | 3        |
|                                       | 240   | 12.0   | 3     | 1     | CFMN727A3S   | М    | 80  | (37)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> /2             | (673) | 3        |
|                                       | 480   | 12.0   | 1     | 1     | CFMN727A11S  | М    | 80  | (37)  | 45 <sup>1</sup> / <sub>4</sub> | (1148) | 321/2                          | (826)  | 26 <sup>1</sup> / <sub>2</sub> | (673) |          |
|                                       | 480   | 12.0   | 3     | 1     | CFMN727A5S   | М    | 80  | (37)  | 45 <sup>1</sup> / <sub>4</sub> | (1148) | 321/2                          | (826)  | 26 <sup>1</sup> / <sub>2</sub> | (673) |          |
|                                       | 240   | 15.0   | 3     | 1     | CFMN732J3S   | М    | 96  | (44)  | 45 <sup>1</sup> / <sub>4</sub> | (1148) | 321/2                          | (826)  | 26 <sup>1</sup> / <sub>2</sub> | (673) |          |
|                                       | 480   | 15.0   | 1     | 1     | CFMN732J11S  | М    | 96  | (44)  | 45 <sup>1</sup> / <sub>4</sub> | (1148) | 321/2                          | (826)  | 26 <sup>1</sup> / <sub>2</sub> | (673) | 7        |
|                                       | 480   | 15.0   | 3     | 1     | CFMN732J5S   | М    | 96  | (44)  | 45 <sup>1</sup> / <sub>4</sub> | (1148) | 321/2                          | (826)  | 26 <sup>1</sup> /2             | (673) |          |
|                                       | 240   | 18.0   | 3     | 1     | CFMN738A3S   | М    | 98  | (45)  | 57 <sup>3</sup> /4             | (1465) | 45                             | (1143) | 39                             | (991) |          |
|                                       | 480   | 18.0   | 1     | 1     | CFMN738A11S  | М    | 98  | (45)  | 57 <sup>3</sup> /4             | (1465) | 45                             | (1143) | 39                             | (991) |          |
|                                       | 480   | 18.0   | 3     | 1     | CFMN738A5S   | М    | 98  | (45)  | 57 <sup>3</sup> /4             | (1465) | 45                             | (1143) | 39                             | (991) | <b>^</b> |

## RAPID SHIP


- **RS** Next day shipment up to 5 pieces
- M Manufacturing lead times

- Wired for 3-phase operation only
- When steel vessel materials are used in this application, some rust may be present in the process media
- ® Can be wired for 1-phase operation
  - Truck Shipment only

## 2<sup>1</sup>/<sub>2</sub> inch NPT Screw Plug

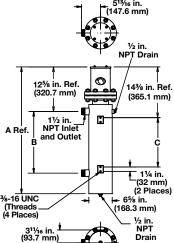


## 3 inch - 150 lb ANSI Flange



## **WATROD** and **FIREBAR Circulation Heaters**




## **Application: Clean Water** ®

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                           |       |        |     | #     | Part        |      | Ship | Wt.   | "A"                            | Dim.   | "B"                            | Dim.   | "C"                            | Dim.   | 4 ir        | nch - 150                                         | lb A          | NSI F                                            | Flange                  |
|---------------------------|-------|--------|-----|-------|-------------|------|------|-------|--------------------------------|--------|--------------------------------|--------|--------------------------------|--------|-------------|---------------------------------------------------|---------------|--------------------------------------------------|-------------------------|
| Description               | Volts | kW     | Ph  | Circ. | Number      | Del. | lbs  | (kg)  | in.                            | (mm)   | in.                            | (mm)   | in.                            | (mm)   |             |                                                   |               | jes-,                                            | 5 <sup>13</sup> ⁄16 in. |
| 4 inch - 150              | lb AN | SI Fla | nge | (WA1  | TROD)       |      |      |       |                                |        |                                |        |                                |        |             |                                                   |               | (                                                | 147.6 mm                |
| 60 W/in²                  | 240   | 12.0   | 1   | 2     | CFON715J10S | М    | 124  | (57)  | 39                             | (989)  | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |             |                                                   |               |                                                  | A                       |
| Steel Tank<br>6-Alloy 800 | 240   | 12.0   | 3   | 1     | CFON715J3S  | М    | 124  | (57)  | 39                             | (989)  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |             |                                                   |               | ¥                                                | フ ½ in.<br>NPT Dr       |
| Elements                  | 480   | 12.0   | 1   | 1     | CFON715J11S | М    | 124  | (57)  | 39                             | (989)  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  | -           |                                                   |               | _                                                | ,—/—                    |
| (9.3 W/cm <sup>2</sup> )  | 480   | 12.0   | 3   | 1     | CFON715J5S  | М    | 124  | (57)  | 39                             | (989)  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |             | 12% in.                                           | Ref.          | 0                                                | 143/8                   |
|                           | 240   | 18.0   | 1   | 2     | CFON721J10S | М    | 127  | (58)  | 39                             | (989)  |                                | (521)  |                                | (432)  |             | (320.7 ı                                          |               | <u> </u>                                         | <b>二</b> / /365         |
|                           | 240   | 18.0   | 3   | 1     | CFON721J3S  | М    | 127  | (58)  | 39                             | (989)  | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |             | 11/2                                              | <del></del> ¶ |                                                  | <u> </u>                |
|                           | 480   | 18.0   | 1   | 1     | CFON721J11S | М    | 127  | (58)  | 39                             | (989)  |                                | (521)  |                                | (432)  | ΑR          |                                                   | Inlet         | <b>"</b>                                         |                         |
|                           | 480   | 18.0   | 3   | 1     | CFON721J5S  | М    | 127  | (58)  | 39                             | (989)  |                                | (521)  |                                | (432)  |             | Band                                              | ullet         |                                                  |                         |
|                           | 240   | 24.0   | 1   | 2     | CFON727A10S | М    | 160  | (73)  | 49 <sup>1</sup> / <sub>2</sub> | (1256) | 31                             |        | 27 <sup>1</sup> / <sub>2</sub> | , ,    |             |                                                   |               | <br>                                             | <u> </u>                |
|                           | 240   | 24.0   | 3   | 2     | CFON727A3S  | М    | 160  | (73)  | 491/2                          | (1256) | 31                             | , ,    | 271/2                          | . ,    |             |                                                   |               | - <b>M</b> -                                     | L 11                    |
|                           | 480   | 24.0   | 1   | 1     | CFON727A11S | М    | 160  | (73)  | 491/2                          | (1256) | 31                             |        | 271/2                          | (699)  | -<br>3⁄8-16 | UNC                                               | /             | <del>                                     </del> | ሷ (2.F<br>1—165% in.    |
|                           | 480   | 24.0   | 3   | 1     | CFON727A5S  | М    | 160  | (73)  | 49 <sup>1</sup> / <sub>2</sub> | (1256) | 31                             | , ,    | 27 <sup>1</sup> / <sub>2</sub> | , ,    |             | reads/<br>laces)                                  |               | `                                                | (168.3 m                |
|                           | 240   | 30.0   | 3   | 2     | CFON732J3S  | М    | 163  | (74)  | 49 <sup>1</sup> / <sub>2</sub> | , ,    |                                |        | 27 <sup>1</sup> / <sub>2</sub> | (699)  |             | 3 <sup>1</sup> / <sub>16</sub> in. 4<br>(93.7 mm) |               |                                                  | NF<br>Dra               |
|                           | 480   | 30.0   | 1   | 2     | CFON732J11S | М    | 163  | (74)  | 49 <sup>1</sup> / <sub>2</sub> | (1256) | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  |             | Ţ                                                 | -             |                                                  | <b>*</b>                |
|                           | 480   | 30.0   | 3   | 1     | CFON732J5S  | М    | 163  | (74)  | 49 <sup>1</sup> / <sub>2</sub> | (1256) | 31                             |        | 27 <sup>1</sup> / <sub>2</sub> | (699)  |             |                                                   |               | Ψ                                                |                         |
|                           | 240   | 36.0   | 3   | 2     | CFON738A3S  | М    | 229  | (104) | 70 <sup>1</sup> / <sub>2</sub> | (1789) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |             |                                                   |               |                                                  |                         |
|                           | 480   | 36.0   | 1   | 2     | CFON738A11S | М    |      | (104) |                                | (1789) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |             |                                                   |               |                                                  |                         |
|                           | 480   | 36.0   | 3   | 1     | CFON738A5S  | М    | 229  | (104) | 70 <sup>1</sup> / <sub>2</sub> | (1789) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |             |                                                   |               |                                                  |                         |
|                           | 480   | 50.0   | 3   | 2     | CFON751A5S  | М    | 234  | (107) | 70 <sup>1</sup> / <sub>2</sub> | (1789) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |             |                                                   |               |                                                  |                         |
|                           | 480   | 60.0   | 3   | 2     | CFON760J5S  | М    | 297  | (135) | 91 <sup>1</sup> /2             | (2326) | 73                             | (1854) | 66                             | (1676) |             |                                                   |               |                                                  |                         |

 $\bullet~\mbox{\bf M}$  - Manufacturing lead times

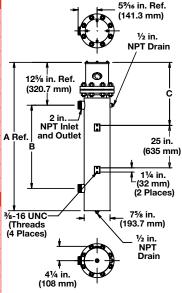
Truck Shipment only



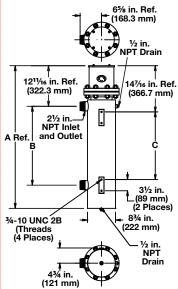
⑤ When steel vessel materials are used in this application, some rust may be present in the process media

# WATROD and FIREBAR Circulation Heaters

# **71**° (P°


## **Application: Clean Water** <sup>®</sup>

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


|                          |       |         |     | #     | Part             |     | Shi | o Wt. | "A"                            | Dim.     | "B"                            | Dim.        | "C"                            | Dim.           |
|--------------------------|-------|---------|-----|-------|------------------|-----|-----|-------|--------------------------------|----------|--------------------------------|-------------|--------------------------------|----------------|
| Description              |       |         |     | Circ. |                  | Del | lbs | (kg)  | in.                            | (mm)     |                                | (mm)        |                                | (mm)           |
| 5 inch - 150             | lb Al | NSI Fla | nge | (WA   | TROD)            |     |     |       | ,                              |          |                                |             |                                |                |
| 60 W/in <sup>2</sup>     | 240   | 24.0    | 1   | 3     | CFNN727A10S      | М   | 140 | (64)  | 491/4                          | (1249.0) | 30                             |             |                                | (378.8)        |
| Steel Tank               | 240   | 24.0    | 3   | 2     | CFNN727A3S       | М   | 140 | (64)  | 49 <sup>1</sup> / <sub>4</sub> | (1249.0) | 30                             | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
| 6-Alloy 800              | 480   | 24.0    | 1   | 3     | CFNN727A11S      | М   | 140 | (64)  | 49 <sup>1</sup> / <sub>4</sub> | (1249.0) | 30                             | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
| Elements                 | 480   | 24.0    | 3   | 1     | CFNN727A5S       | М   | 140 | (64)  | 49 <sup>1</sup> / <sub>4</sub> | (1249.0) | 30                             | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
| (9.3 W/cm²)              | 240   | 30.0    | 3   | 2     | CFNN732J3S       | М   | 142 | (65)  | 49 <sup>1</sup> / <sub>4</sub> | (1249.0) | 30                             | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
|                          | 480   | 30.0    | 1   | 2     | CFNN732J11S      | М   | 142 | (65)  | 49 <sup>1</sup> / <sub>4</sub> | (1249.0) | 30                             | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
|                          | 480   | 30.0    | 3   | 1     | CFNN732J5S       | М   | 142 | (65)  | 49 <sup>1</sup> / <sub>4</sub> | (1249.0) | 30                             | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
|                          | 240   | 36.0    | 3   | 2     | CFNN738A3S       | М   | 160 | (73)  | 56 <sup>1</sup> /4             | (1427.0) | 37                             | (940)       | 18 <sup>5</sup> /8             | (473.1)        |
|                          | 480   | 36.0    | 1   | 2     | CFNN738A11S      | М   | 160 | (73)  | 56 <sup>1</sup> / <sub>4</sub> | (1427.0) | 37                             | (940)       | 18 <sup>5</sup> /8             | (473.1)        |
|                          | 480   | 36.0    | 3   | 1     | CFNN738A5S       | М   | 160 | (73)  | 56 <sup>1</sup> / <sub>4</sub> | (1427.0) | 37                             | (940)       | 18 <sup>5</sup> /8             | (473.1)        |
|                          | 480   | 50.0    | 3   | 2     | CFNN751A5S       | М   | 180 | (82)  | 67 <sup>3</sup> / <sub>4</sub> | (1719.0) | 48 <sup>1</sup> / <sub>2</sub> | (1232)      | 25                             | (633.0)        |
|                          | 480   | 60.0    | 3   | 2     | CFNN760J5S       | М   | 190 | (87)  |                                | (2060.6) |                                |             |                                | (784.2)        |
|                          |       |         |     |       |                  |     |     |       |                                | ,        |                                | · · · · · · |                                | ,              |
| 5 inch - 150             | lb Al | NSI Fla | nge | (WA   | TROD)            |     |     |       |                                |          |                                |             |                                |                |
| 60 W/in <sup>2</sup>     | 240   | 36.0    | 3   | 3     | CFNN727A3XS      | М   | 145 | (66)  | 49 <sup>1</sup> / <sub>4</sub> | (1249.0) | 30                             | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
| Steel Tank               | 480   | 36.0    | 1   | 3     | CFNN727A11XS     | М   | 145 | (66)  | 49 <sup>1</sup> / <sub>4</sub> | (1249.0) | 30                             | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
| 9-Alloy 800              | 480   | 36.0    | 3   | 1     | CFNN727A5XS      | М   | 145 | (66)  |                                | (1249.0) |                                | (762)       | 14 <sup>7</sup> /8             | (378.8)        |
| Elements                 | 240   | 45.0    | 3   | 3     | CFNN732J3XS      | М   | 147 | (67)  |                                | (1249.0) |                                |             |                                | (378.8)        |
| (9.3 W/cm²)              | 480   | 45.0    | 1   | 3     | CFNN732J11XS     | М   | 147 | (67)  |                                | (1249.0) |                                | . ,         |                                | (378.8)        |
|                          | 480   | 45.0    | 3   | 3     | CFNN732J5XS      | М   | 147 | (67)  |                                | (1249.0) |                                |             |                                | (378.8)        |
|                          | 240   | 54.0    | 3   | 3     | CFNN738A3XS      | М   | 166 |       |                                | (1427.0) |                                | _ , ,       |                                | (473.1)        |
|                          | 480   | 54.0    | 1   | 3     | CFNN738A11XS     | М   | 166 |       |                                | (1427.0) |                                | (940)       |                                | (473.1)        |
|                          | 480   | 54.0    | 3   | 3     | CFNN738A5XS      | М   | 166 | . ,   |                                | (1427.0) |                                | (940)       |                                | (473.1)        |
|                          | 480   | 75.0    | 3   | 3     | CFNN751A5XS      | М   | 188 | (86)  |                                | (1719.0) |                                | /           |                                | (633.0)        |
|                          | 480   | 90.0    | 3   | 3     | CFNN760J5XS      | М   | 200 | . ,   |                                | (2060.6) |                                |             |                                | ٠ /            |
|                          | 100   | 00.0    |     |       | OT HILL GOOD, TO |     | 200 | (01)  | 0170                           | (2000.0) | 0170                           | (1012)      | 00 70                          | (101.2)        |
| 6 inch - 150             | lh ΔI | NSI FIS | nac | /W/A  | TROD)            |     |     |       |                                |          |                                |             |                                |                |
| 60 W/in²                 | 240   | 24.0    | 1   | 3     | CFPN715G10S      | М   | 212 | (97)  | ∆∩1/2                          | (1027)   | 201/2                          | (521)       | 17                             | (432)          |
| Steel Tank               | 240   | 24.0    | 3   | 2     | CFPN715G3S       | M   | 212 | (97)  | 401/2                          | (1027)   | 201/2                          | /           |                                | (432)          |
| 12-Alloy 800             |       | 24.0    | 1   | 2     | CFPN715G11S      | M   | 212 | (97)  | 40 <sup>1</sup> / <sub>2</sub> | (1027)   | 20 <sup>1</sup> / <sub>2</sub> | (521)       |                                | (432)          |
| Elements                 | 480   | 24.0    | 3   | 1     | CFPN715G5S       | M   | 212 | (97)  | 40 /2<br>40 <sup>1</sup> /2    | (1027)   | 20 <sup>1</sup> / <sub>2</sub> | (521)       |                                | (432)          |
| (9.3 W/cm <sup>2</sup> ) | 240   | 36.0    | 1   | 4     | CFPN721G10S      | M   | 217 | (99)  | 40 /2<br>40 <sup>1</sup> /2    | (1027)   | 201/2                          | (521)       |                                | (432)          |
|                          | 240   | 36.0    | 3   | 2     | CFPN721G103      | M   | 217 | (99)  |                                | (1027)   | 201/2                          | (521)       |                                | (432)          |
|                          | 480   | 36.0    | 1   | 2     | CFPN721G11S      | M   | 217 | (99)  | 40 /2<br>40 <sup>1</sup> /2    | (1027)   | 201/2                          | (521)       |                                | (432)          |
|                          | 480   | 36.0    | 3   | 1     | CFPN721G113      | M   | 217 | (99)  | 40 <sup>1</sup> / <sub>2</sub> |          | 20 <sup>1</sup> / <sub>2</sub> | (521)       |                                |                |
|                          | 240   | 48.0    | 3   | 4     | CFPN721G3S       | M   | 222 | (101) |                                | (1027)   | 31                             |             | 27 <sup>1</sup> /2             | (432)<br>(699) |
|                          | 480   | 48.0    | 1   | 3     | CFPN726R3S       |     | 222 | (101) |                                | (1294)   | 31                             |             |                                | _ , ,          |
|                          |       |         |     |       |                  | M   |     |       |                                | (1294)   |                                |             | 27 <sup>1</sup> / <sub>2</sub> | (699)          |
|                          | 480   | 48.0    | 3   | 2     | CFPN726R5S       | M   | 222 | (101) | 51                             | (1294)   | 31                             |             | 271/2                          | (699)          |
|                          | 240   | 60.0    | 3   | 4     | CFPN732G3S       | M   | 288 | (131) |                                | (1294)   | 31                             | _ ' /       | 27 <sup>1</sup> / <sub>2</sub> | (699)          |
|                          | 480   | 60.0    | 1   | 3     | CFPN732G11S      | M   | 288 | , ,   |                                | (1294)   | 31                             | _ ,         | 27 <sup>1</sup> /2             | (699)          |
|                          | 480   | 60.0    | 3   | 2     | CFPN732G5S       | M   | 288 | . ,   |                                | (1294)   | 31                             |             | 271/2                          | (699)          |
|                          | 240   | 72.0    | 3   | 4     | CFPN737R3S       | M   | 290 | . ,   | 72                             | (1827)   | 52                             | . ,         | 481/2                          | (1232)         |
|                          | 480   | 72.0    | 3   | 2     | CFPN737R5S       | М   | 290 | , ,   |                                | (1827)   | 52                             |             | 48 <sup>1</sup> / <sub>2</sub> | (1232)         |
|                          | 480   | 100.0   | 3   | 4     | CFPN750R5S       | М   | 298 | , ,   | 72                             | (1827)   | 52                             |             | 48 <sup>1</sup> / <sub>2</sub> |                |
|                          | 480   | 120.0   | 3   | 4     | CFPN760G5S       | М   | 360 | (164) | 93                             | (2361)   | 73                             | (1854)      | 66                             | (1676)         |

• M - Manufacturing lead times

## 5 inch - 150 lb ANSI Flange



#### 6 inch - 150 lb ANSI Flange



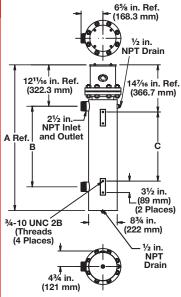
When steel vessel materials are used in this application, some rust may be present in the process media

Truck Shipment only

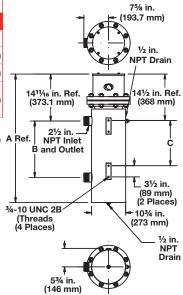
# WATROD and FIREBAR Circulation Heaters



## **Application: Clean Water** §


- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| Description                | Volts | kW      | Ph  | #<br>Circ. | Part<br>Number | Del | Ship<br>Ibs | Wt.<br>(kg) | "A" Dim.<br>in. (mm                  |                       | Dim.<br>(mm) | "C"                            | Dim.<br>(mm) | ١   |
|----------------------------|-------|---------|-----|------------|----------------|-----|-------------|-------------|--------------------------------------|-----------------------|--------------|--------------------------------|--------------|-----|
| 6 inch - 150               | lb AN | SI Fla  | nge | (WA        | TROD)          | •   | •           |             |                                      |                       |              | •                              |              |     |
| 60 W/in <sup>2</sup>       | 240   | 30.0    | 1   | 3          | CFPN715G10XS   | М   | 215         | (98)        | 40 <sup>1</sup> / <sub>2</sub> (1027 | ') 20 <sup>1</sup> /2 | (521)        | 17                             | (432)        |     |
| Steel Tank<br>15-Alloy 800 | 240   | 30.0    | 3   | 5          | CFPN715G3XS    | М   | 215         | (98)        | 40 <sup>1</sup> / <sub>2</sub> (1027 | ') 20 <sup>1</sup> /2 | (521)        | 17                             | (432)        | ١.  |
| Elements                   | 480   | 30.0    | 1   | 3          | CFPN715G11XS   | М   | 215         | (98)        | 40 <sup>1</sup> / <sub>2</sub> (1027 | ') 20 <sup>1</sup> /2 | (521)        | 17                             | (432)        |     |
| (9.3 W/cm <sup>2</sup> )   | 480   | 30.0    | 3   | 1          | CFPN715G5XS    | М   | 215         | (98)        | 40 <sup>1</sup> / <sub>2</sub> (1027 | ') 20 <sup>1</sup> /2 | (521)        | 17                             | (432)        |     |
|                            | 240   | 45.0    | 1   | 5          | CFPN721G10XS   | М   | 223         | (102)       | 40 <sup>1</sup> / <sub>2</sub> (1027 | ') 20 <sup>1</sup> /2 | (521)        | 17                             | (432)        |     |
|                            | 240   | 45.0    | 3   | 5          | CFPN721G3XS    | М   | 223         | (102)       | 40 <sup>1</sup> / <sub>2</sub> (1027 | ') 20 <sup>1</sup> /2 | (521)        | 17                             | (432)        |     |
|                            | 480   | 45.0    | 1   | 3          | CFPN721G11XS   | М   | 223         | (102)       | 40 <sup>1</sup> / <sub>2</sub> (1027 | ') 20 <sup>1</sup> /2 | (521)        | 17                             | (432)        | Α   |
|                            | 480   | 45.0    | 3   | 5          | CFPN721G5XS    | М   | 223         | (102)       | 40 <sup>1</sup> / <sub>2</sub> (1027 | ') 20 <sup>1</sup> /2 | (521)        | 17                             | (432)        |     |
|                            | 240   | 60.0    | 3   | 5          | CFPN726R3XS    | М   | 226         | (103)       | 51 (1294                             | 31                    | (787)        | 27 <sup>1</sup> /2             | (699)        |     |
|                            | 480   | 60.0    | 1   | 3          | CFPN726R11XS   | М   | 226         | (103)       | 51 (1294                             | 31                    | (787)        | 27 <sup>1</sup> /2             | (699)        |     |
|                            | 480   | 60.0    | 3   | 5          | CFPN726R5XS    | М   | 226         | (103)       | 51 (1294                             | 31                    | (787)        | 27 <sup>1</sup> / <sub>2</sub> | (699)        | -   |
|                            | 240   | 75.0    | 3   | 5          | CFPN732G3XS    | М   | 288         | (131)       | 51 (1294                             | 31                    | (787)        | 27 <sup>1</sup> / <sub>2</sub> | (699)        | 3/2 |
|                            | 480   | 75.0    | 1   | 5          | CFPN732G11XS   | М   | 288         | (131)       | 51 (1294                             | 31                    | (787)        | 27 <sup>1</sup> /2             | (699)        |     |
|                            | 480   | 75.0    | 3   | 5          | CFPN732G5XS    | М   | 288         | (131)       | 51 (1294                             | 31                    | (787)        | 27 <sup>1</sup> /2             | (699)        |     |
|                            | 240   | 90.0    | 3   | 5          | CFPN737R3XS    | М   | 296         | (134)       | 72 (1827                             | ') 52                 | (1321)       | 48 <sup>1</sup> / <sub>2</sub> | (1232)       |     |
|                            | 480   | 90.0    | 3   | 5          | CFPN737R5XS    | М   | 296         | (134)       | 72 (1827                             | ') 52                 | (1321)       | 48 <sup>1</sup> / <sub>2</sub> | (1232)       |     |
|                            | 480   | 125.0   | 3   | 5          | CFPN750R5XS    | М   | 306         | (139)       | 72 (1827                             | ') 52                 | (1321)       | 48 <sup>1</sup> / <sub>2</sub> | (1232)       | 8   |
|                            | 480   | 150.0   | 3   | 5          | CFPN760G5XS    | М   | 370         | (168)       | 93 (2361                             | ) 73                  | (1854)       | 66                             | (1676)       |     |
|                            |       |         |     |            |                |     |             |             |                                      |                       |              |                                |              |     |
| 8 inch - 150               | lb AN | ISI Fla | nge | (WA        | TROD)          |     |             |             |                                      |                       |              |                                |              |     |
| 60 W/in²                   | 240   | 50.0    | 3   | 3          | CFRN721N3S     | М   | 340         | (155)       | 47 <sup>1</sup> /4 (1199.            | 0) 24 <sup>3</sup> /4 | (627.0)      | 21 <sup>1</sup> / <sub>4</sub> | (538.0)      |     |
| Steel Tank<br>18-Allov 800 | 480   | 50.0    | 1   | 3          | CFRN721N11S    | М   | 340         | (155)       | 47 <sup>1</sup> /4 (1199.            | 0) 24 <sup>3</sup> /4 | (627.0)      | 21 <sup>1</sup> / <sub>4</sub> | (538.0)      | -   |
| Elements<br>(7.5 W/cm²)    | 480   | 50.0    | 3   | 2          | CFRN721N5S     | М   | 340         | (155)       | 47 <sup>1</sup> /4 (1199.            | 0) 24 <sup>3</sup> /4 | (627.0)      | 21 <sup>1</sup> /4             | (538.0)      |     |


• M - Manufacturing lead times

- (§) When steel vessel materials are used in this application, some rust may be present in the A Ref. process media
  - Truck Shipment only

6 inch - 150 lb ANSI Flange



8 inch - 150 lb ANSI Flange

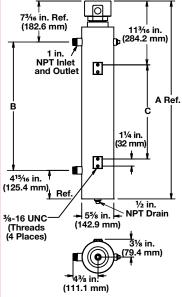


## **WATROD** and **FIREBAR Circulation Heaters**

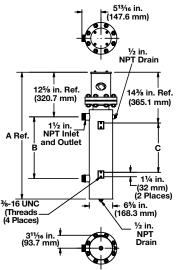


## **Application: Deionized or Demineralized Water**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


|                                       |       |         |       | #     | Part        |      | Ship | Wt.   | "A"                            | Dim.   | "B"                            | Dim.   | "C"                            | Dim.   | 2 <sup>1</sup> / <sub>2</sub> inch NPT Screw P    |
|---------------------------------------|-------|---------|-------|-------|-------------|------|------|-------|--------------------------------|--------|--------------------------------|--------|--------------------------------|--------|---------------------------------------------------|
| Description                           | Volts | kW      | Ph    | Circ. | Number      | Del. | lbs  | (kg)  | in.                            | (mm)   | in.                            | (mm)   | in.                            | (mm)   |                                                   |
| 2 <sup>1</sup> / <sub>2</sub> inch NF | T Scr | ew Plu  | ıg (V | VATR  | ROD)        |      |      |       |                                |        |                                |        |                                |        | 7 <sup>3</sup> / <sub>16</sub> in. Ref.           |
| 60 W/in²                              | 240   | 6.0     | 3     | 1     | CBLR714L3S  | RS   | 24   | (11)  | 343/4                          | (881)  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)  | (182.6 mm)                                        |
| 316 SS<br>Tank                        | 480   | 6.0     | 3     | 1     | CBLR714L5S  | RS   | 24   | (11)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)  | 1 in. 9                                           |
| 3-316 SS                              | 240   | 7.5     | 3     | 1     | CBLR717L3S  | RS   | 24   | (11)  | 343/4                          | (881)  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)  | NPT Inlet and Outlet                              |
| Elements                              | 480   | 7.5     | 3     | 1     | CBLR717L5S  | RS   | 24   | (11)  | 343/4                          | (881)  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)  | and Odder (6)                                     |
| (9.3 W/cm²)<br>Passivated             | 240   | 9.0     | 3     | 1     | CBLR720L3S  | RS   | 26   | (12)  | 343/4                          | (881)  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)  |                                                   |
| rassivateu                            | 480   | 9.0     | 3     | 1     | CBLR720L5S  | RS   | 26   | (12)  | 343/4                          | (881)  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)  | B                                                 |
|                                       | 240   | 12.0    | 3     | 1     | CBLR726C3S  | RS   | 27   | (13)  | 443/4                          | (1135) | 32 <sup>1</sup> / <sub>2</sub> | (1129) | 26 <sup>1</sup> / <sub>2</sub> | (673)  |                                                   |
|                                       | 480   | 12.0    | 3     | 1     | CBLR726C5S  | RS   | 27   | (13)  | 443/4                          | (1135) | 32 <sup>1</sup> / <sub>2</sub> | (1129) | 26 <sup>1</sup> / <sub>2</sub> | (673)  | (6                                                |
|                                       | 240   | 15.0    | 3     | 1     | CBLR731L3S  | RS   | 29   | (14)  | 443/4                          | (1135) | 32 <sup>1</sup> / <sub>2</sub> | (1129) | 26 <sup>1</sup> / <sub>2</sub> | (673)  | ▎▁▁▁▃▄▎₢▀▀                                        |
|                                       | 480   | 15.0    | 3     | 1     | CBLR731L5S  | RS   | 29   | (14)  | 443/4                          | (1135) | 321/2                          | (1129) | 26 <sup>1</sup> / <sub>2</sub> | (673)  | 4 <sup>15</sup> / <sub>16</sub> in.<br>(125.4 mm) |
|                                       | 240   | 18.0    | 3     | 1     | CBLR737C3S  | RS   | 30   | (14)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                             | (991)  | Ref.                                              |
|                                       | 480   | 18.0    | 3     | 1     | CBLR737C5S  | RS   | 30   | (14)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                             | (991)  |                                                   |
|                                       |       |         |       |       |             |      |      |       |                                |        |                                |        |                                |        | (Threads (142.9 mm)<br>(4 Places)                 |
| 4 inch - 150                          | lb AN | SI Flai | nge   | (WAT  | TROD)       |      |      |       |                                |        |                                |        |                                |        |                                                   |
| 60 W/in²                              | 240   | 12.0    | 1     | 2     | CFOR716A10S | М    | 124  | (57)  | 39                             | (989)  | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |                                                   |
| 316 SS<br>Tank                        | 240   | 12.0    | 3     | 1     | CFOR716A3S  | М    | 124  | (57)  | 39                             | (989)  | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | 43% in. (111.1 mm)                                |
| 6-316 SS                              | 480   | 12.0    | 1     | 1     | CFOR716A11S | М    | 124  | (57)  | 39                             | (989)  | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |                                                   |
| Elements                              | 480   | 12.0    | 3     | 1     | CFOR716A5S  | М    | 124  | (57)  | 39                             | (989)  | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | 4 inch - 150 lb ANSI Fla                          |
| (9.3 W/cm²)<br>Passivated             | 240   | 18.0    | 1     | 2     | CFOR722A10S | М    | 127  | (58)  | 39                             | (989)  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  | <del> </del>   <del>-</del> 5                     |
| Lassivatea                            | 240   | 18.0    | 3     | 1     | CFOR722A3S  | М    | 127  | (58)  | 39                             | (989)  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  | (1)4                                              |
|                                       | 480   | 18.0    | 1     | 1     | CFOR722A11S | М    | 127  | (58)  | 39                             | (989)  | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |                                                   |
|                                       | 480   | 18.0    | 3     | 1     | CFOR722A5S  | М    | 127  | (58)  | 39                             | (989)  | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | φ.                                                |
|                                       | 240   | 24.0    | 1     | 2     | CFOR727J10S | М    | 160  | (73)  | 49 <sup>1</sup> /2             | (1256) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  | 1                                                 |
|                                       | 240   | 24.0    | 3     | 2     | CFOR727J3S  | М    | 160  | (73)  | 49 <sup>1</sup> /2             | (1256) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  | 125% in. Ref. (320.7 mm)                          |
|                                       | 480   | 24.0    | 1     | 1     | CFOR727J11S | М    | 160  | (73)  | 49 <sup>1</sup> /2             | (1256) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  |                                                   |
|                                       | 480   | 24.0    | 3     | 1     | CFOR727J5S  | М    | 160  | (73)  | 49 <sup>1</sup> /2             | (1256) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  | 1½ in                                             |
|                                       | 240   | 30.0    | 3     | 2     | CFOR733A3S  | М    | 163  | (74)  | 49 <sup>1</sup> /2             | (1256) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  | B and Outlet                                      |
|                                       | 480   | 30.0    | 1     | 2     | CFOR733A11S | М    | 163  | (74)  | 49 <sup>1</sup> /2             | (1256) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  |                                                   |
|                                       | 480   | 30.0    | 3     | 1     | CFOR733A5S  | М    | 163  | (74)  | 49 <sup>1</sup> / <sub>2</sub> | (1256) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  |                                                   |
|                                       | 240   | 36.0    | 3     | 2     | CFOR738J3S  | М    | 229  | (104) | 701/2                          | (1789) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | 36-16 UNC                                         |
|                                       | 480   | 36.0    | 1     | 2     | CFOR738J11S | М    | 229  | (104) | 70 <sup>1</sup> / <sub>2</sub> | (1789) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | (Threads (4 Places)                               |
|                                       | 480   | 36.0    | 3     | 1     | CFOR738J5S  | М    | 229  | (104) | 70 <sup>1</sup> / <sub>2</sub> | (1789) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | 311/16 in.                                        |
|                                       | 480   | 50.0    | 3     | 2     | CFOR751J5S  | М    | 234  | (107) | 70 <sup>1</sup> / <sub>2</sub> | (1789) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | (93.7 mm)                                         |
|                                       | 480   | 60.0    | 3     | 2     | CFOR761A5S  | М    | 297  | (135) | 91 <sup>1</sup> /2             | (2326) | 73                             | (1854) | 66                             | (1676) |                                                   |

Truck Shipment only




• RS - Next day shipment up to 5 pieces





lange



<sup>•</sup> M - Manufacturing lead times

## **WATROD** and **FIREBAR Circulation Heaters**



65% in. Ref. (168.3 mm)

⅓ in. NPT Drain

147/16 in. Ref. (366.7 mm)

3½ in. ∟(89 mm) (2 Places) ⊷ 8¾ in. (222 mm)

½ in. NPT Drain

## **Application: Deionized or Demineralized Water**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                          |       |         |      | #     | Part         |      | Shir | Wt.   | "A"                            | Dim.   | "R"                            | Dim.   | "C"                            | Dim.   | 6 i | nch           | - 18 | 50 lb                                        | ANS          | i Fi     | ange         |
|--------------------------|-------|---------|------|-------|--------------|------|------|-------|--------------------------------|--------|--------------------------------|--------|--------------------------------|--------|-----|---------------|------|----------------------------------------------|--------------|----------|--------------|
| Description              | Volts | kW      | Ph   | Circ. |              | Del. |      | (kg)  |                                | (mm)   |                                | (mm)   |                                | (mm)   |     |               |      |                                              |              | 6        | 5∕s in. R    |
| 6 inch - 150             | b ANS | SI Flan |      | •     | •            |      |      | ,     |                                | , ,    |                                | `      |                                | , ,    |     |               |      | -                                            | 1 🕳          | (1       | 68.3 m       |
| 60 W/in <sup>2</sup>     | 240   | 24.0    | 1    | 3     | CFPR715N10S  | М    | 212  | (97)  | 401/2                          | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |     |               |      | -                                            |              | 13       | )<br>1⁄2 in  |
| 316 SS Tank              | 240   | 24.0    | 3    | 2     | CFPR715N3S   | М    | 212  | (97)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |     |               |      |                                              | 6            | 13/2     | NPT D        |
| 12-316 SS<br>Elements    | 480   | 24.0    | 1    | 2     | CFPR715N11S  | М    | 212  | (97)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  | Ŧ   | _             | 1    |                                              | - <u> </u>   | <u> </u> | +-           |
| (9.3 W/cm²)              | 480   | 24.0    | 3    | 1     | CFPR715N5S   | М    | 212  | (97)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |     |               |      | n. Ref.<br>mm)                               | <u>مم</u>    |          | 147/16       |
| Passivated               | 240   | 36.0    | 1    | 4     | CFPR721N10S  | М    | 217  | (99)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |     |               | Ĭ.   | ,                                            | <b>1</b>     | 0.0      | (366         |
|                          | 240   | 36.0    | 3    | 2     | CFPR721N3S   | М    | 217  | (99)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |     | Î             | 21   | ⁄2 in                                        | <i>]</i>   [ |          |              |
|                          | 480   | 36.0    | 1    | 2     | CFPR721N11S  | М    | 217  | (99)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | AR  | ef.           |      | T Inle                                       | τ            | _        |              |
|                          | 480   | 36.0    | 3    | 1     | CFPR721N5S   | М    | 217  | (99)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |     | В             |      |                                              |              |          |              |
|                          | 240   | 48.0    | 3    | 4     | CFPR727E3S   | М    | 222  | (101) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  |     |               |      |                                              |              |          |              |
|                          | 480   | 48.0    | 1    | 3     | CFPR727E11S  | М    | 222  | (101) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  |     | _             |      |                                              |              | rı—      |              |
|                          | 480   | 48.0    | 3    | 2     | CFPR727E5S   | М    | 222  | (101) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  |     |               |      |                                              | <b>-</b>     | <u>-</u> | 31<br>(89    |
|                          | 240   | 60.0    | 3    | 4     | CFPR732N3S   | М    | 226  | (103) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  | 2/  | 40.11         |      | _                                            | -            | eg       | (2.F<br>83%i |
|                          | 480   | 60.0    | 1    | 3     | CFPR732N11S  | М    | 226  | (103) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  | (   | 10 UI<br>Thre | ads  | 2B                                           | =            | /        | (222 n       |
|                          | 480   | 60.0    | 3    | 2     | CFPR732N5S   | М    | 226  | (103) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  | (4  | 1 Pla         | ces) | <u>.                                    </u> |              | <b>—</b> | 1/2          |
|                          | 240   | 72.0    | 3    | 4     | CFPR738E3S   | М    | 290  | (132) | 72                             | (1827) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |     |               |      |                                              |              |          | 1            |
|                          | 480   | 72.0    | 3    | 2     | CFPR738E5S   | М    | 290  | (132) | 72                             | (1827) | 52                             | (1321) | 48 <sup>1</sup> /2             | (1232) |     |               |      | ¼ in.                                        | , <b>V</b>   | فمعط     | ,            |
|                          | 480   | 100.0   | 3    | 4     | CFPR751E5S   | М    | 298  | (136) | 72                             | (1827) | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |     |               | (12  | 1 mm                                         | ,            | 1        |              |
|                          | 480   | 120.0   | 3    | 4     | CFPR760N5S   | М    | 360  | (164) | 93                             | (2361) | 73                             | (1854) | 66                             | (1676) |     |               |      |                                              |              |          |              |
|                          |       |         |      |       |              |      |      |       |                                |        |                                |        |                                |        |     |               |      |                                              |              |          |              |
| 6 inch - 150             | b ANS | SI Flan | ge ( | WAT   | ROD)         |      |      |       |                                |        |                                |        |                                |        |     |               |      |                                              |              |          |              |
| 60 W/in²                 | 240   | 30.0    | 1    | 3     | CFPR715N10XS | М    | 215  | (98)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |     |               |      |                                              |              |          |              |
| 316 SS Tank<br>15-316 SS | 240   | 30.0    | 3    | 5     | CFPR715N3XS  | М    | 215  | (98)  | 40 <sup>1</sup> /2             | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |     |               |      |                                              |              |          |              |
| Elements                 | 480   | 30.0    | 1    | 3     | CFPR715N11XS | М    | 215  | (98)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |     |               |      |                                              |              |          |              |
| (9.3 W/cm <sup>2</sup> ) | 480   | 30.0    | 3    | 1     | CFPR715N5XS  | М    | 215  | (98)  | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |     |               |      |                                              |              |          |              |
| Passivated               | 240   | 45.0    | 1    | 5     | CFPR721N10XS | М    | 223  | (102) | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |     |               |      |                                              |              |          |              |
|                          | 240   | 45.0    | 3    | 5     | CFPR721N3XS  | М    | 223  | (102) |                                | (1027) |                                | (521)  | 17                             | (432)  |     |               |      |                                              |              |          |              |
|                          | 480   | 45.0    | 1    | 3     | CFPR721N11XS | М    | 223  | (102) | 401/2                          | (1027) | 20 <sup>1</sup> / <sub>2</sub> | (521)  | 17                             | (432)  |     |               |      |                                              |              |          |              |
|                          | 480   | 45.0    | 3    | 5     | CFPR721N5XS  | М    | 223  | (102) | 40 <sup>1</sup> / <sub>2</sub> | (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |     |               |      |                                              |              |          |              |
|                          | 240   | 60.0    | 3    | 5     | CFPR727E3XS  | М    | 226  | (103) | 51                             | (1294) | 31                             | (787)  |                                | (699)  |     |               |      |                                              |              |          |              |
|                          | 480   | 60.0    | 1    | 3     | CFPR727E11XS | М    | 226  | (103) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  |     |               |      |                                              |              |          |              |
|                          | 480   | 60.0    | 3    | 5     | CFPR727E5XS  | М    | 226  | (103) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  |     |               |      |                                              |              |          |              |
|                          | 240   | 75.0    | 3    | 5     | CFPR732N3XS  | М    | 288  | (131) | 51                             | (1294) | 31                             | (787)  |                                | (699)  |     |               |      |                                              |              |          |              |
|                          | 480   | 75.0    | 1    | 5     | CFPR732N11XS | М    | 288  | (131) | 51                             | (1294) | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  |     |               |      |                                              |              |          |              |
|                          | 480   | 75.0    | 3    | 5     | CFPR732N5XS  | М    |      | (131) |                                | (1294) |                                | (787)  |                                | (699)  |     |               |      |                                              |              |          |              |
|                          | 240   | 90.0    | 3    | 5     | CFPR738E3XS  | М    | _    | (135) |                                | (1827) |                                | (1321) |                                | (1232) |     |               |      |                                              |              |          |              |
|                          | 480   | 90.0    | 3    | 5     | CFPR738E5XS  | М    |      | (135) |                                | (1827) | 52                             |        | 481/2                          | (1232) |     |               |      |                                              |              |          |              |
|                          | 480   | 125.0   | 3    | 5     | CFPR751E5XS  | М    |      | (139) |                                | (1827) |                                | (1321) |                                | (1232) |     |               |      |                                              |              |          |              |
|                          | 480   | 150.0   | 3    | 5     | CFPR760N5XS  | М    | 370  | (168) | 93                             | (2361) | 73                             | (1854) | 66                             | (1676) |     |               |      |                                              |              |          |              |

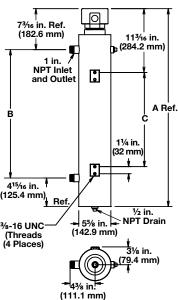
• M - Manufacturing lead times

Truck Shipment only

# WATROD and FIREBAR Circulation Heaters

# **71**®

## **Application: Process Water** <sup>®</sup>


- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                                         |       |       |      | #     | Part        |         | Ship | Wt.  | "A"                            | Dim.      | "B"                            | Dim.   | "C"                            | Dim.    | 1 |
|-----------------------------------------|-------|-------|------|-------|-------------|---------|------|------|--------------------------------|-----------|--------------------------------|--------|--------------------------------|---------|---|
| Description                             |       |       |      | Circ. | Number      | Del.    | lbs  | (kg) | in.                            | (mm)      | in.                            | (mm)   | in.                            | (mm)    | l |
| 1 <sup>1</sup> / <sub>4</sub> inch NP   | T Scr | ew Pl | ug ( | FIRE  | BAR)        |         |      |      |                                |           |                                |        |                                |         |   |
| 45 W/in² ®                              | 240   | 2.0   | 3    | 1     | CBDNF13A27S | М       | 25   | (12) | 24 <sup>5</sup> /8             | (625.5)   | 15                             | (381)  | 3 <sup>1</sup> /8              | (79.4)  |   |
| Steel Tank<br>1-Alloy 800               | 240   | 2.5   | 3    | 1     | CBDNF15J27S | М       | 26   | (12) | 24 <sup>5</sup> /8             | (625.5)   | 15                             | (381)  | 3 <sup>1</sup> /8              | (79.4)  |   |
| Element                                 | 240   | 3.0   | 3    | 1     | CBDNF18A27S | М       | 30   | (14) | 32 <sup>5</sup> /8             | (828.7)   | 23                             | (584)  | 3 <sup>1</sup> /8              | (79.4)  |   |
| (7 W/cm²)                               | 240   | 4.0   | 3    | 1     | CBDNF22J27S | М       | 31   | (14) | 32 <sup>5</sup> /8             | (828.7)   | 23                             | (584)  | 31/8                           | (79.4)  |   |
|                                         | 480   | 4.0   | 3    | 1     | CBDNF22J28S | М       | 31   | (14) | 32 <sup>5</sup> /8             | (828.7)   | 23                             | (584)  | 31/8                           | (79.4)  |   |
|                                         | 240   | 5.0   | 3    | 1     | CBDNF27J27S | М       | 43   | (20) | 42 <sup>5</sup> /8             | (1082.7)  | 32                             | (813)  | 4 <sup>3</sup> /8              | (111.1) | ĺ |
|                                         | 480   | 5.0   | 3    | 1     | CBDNF27J28S | М       | 43   | (20) | 42 <sup>5</sup> /8             | (1082.7)  | 32                             | (813)  | 4 <sup>3</sup> /8              | (111.1) | ĺ |
|                                         | 240   | 6.0   | 3    | 1     | CBDNF32J27S | М       | 44   | (20) | 42 <sup>5</sup> /8             | (1082.7)  | 32                             | (813)  | 4 <sup>3</sup> /8              | (111.1) | ĺ |
|                                         | 480   | 6.0   | 3    | 1     | CBDNF32J28S | М       | 44   | (20) | 42 <sup>5</sup> /8             | (1082.7)  | 32                             | (813)  | 4 <sup>3</sup> /8              | (111.1) | ĺ |
|                                         | 240   | 8.0   | 3    | 1     | CBDNF42A27S | М       | 69   | (32) | 63 <sup>5</sup> /8             | (1616.1)  | 53                             | (1346) | 4 <sup>3</sup> /8              | (111.1) | ĺ |
|                                         | 480   | 8.0   | 3    | 1     | CBDNF42A28S | М       | 69   | (32) | 63 <sup>5</sup> /8             | (1616.1)  | 53                             | (1346) | 4 <sup>3</sup> /8              | (111.1) |   |
|                                         | 240   | 10.0  | 3    | 1     | CBDNF51J27S | М       | 71   | (33) | 63 <sup>5</sup> /8             | (1616.1)  | 53                             | (1346) | 4 <sup>3</sup> /8              | (111.1) | ĺ |
|                                         | 480   | 10.0  | 3    | 1     | CBDNF51J28S | М       | 71   | (33) | 63 <sup>5</sup> /8             | (1616.1)  | 53                             | (1346) | 4 <sup>3</sup> /8              | (111.1) |   |
|                                         |       |       |      |       |             |         |      |      |                                |           |                                |        |                                |         | ĺ |
| 2 <sup>1</sup> / <sub>2</sub> inch NP   | T Scr | ew Pl | ug ( | WATI  | ROD)        |         |      |      |                                |           |                                |        |                                |         | ١ |
| 48 W/in² ®                              | 240   | 6.0   | 3    | 1     | CBLN717G3S  | RS      | 24   | (11) | 34 <sup>3</sup> / <sub>4</sub> | (881)     | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
| Steel Tank                              | 480   | 6.0   | 3    | 1     | CBLN717G5S  | RS      | 24   | (11) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
| 3-Alloy 800<br>Elements                 | 240   | 7.5   | 3    | 1     | CBLN719R3S  | RS      | 26   | (12) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
| (7.5 W/cm²)                             | 480   | 7.5   | 3    | 1     | CBLN719R5S  | RS      | 26   | (12) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
| (************************************** | 240   | 9.0   | 3    | 1     | CBLN724R3S  | RS      | 27   | (13) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
|                                         | 480   | 9.0   | 3    | 1     | CBLN724R5S  | RS      | 27   | (13) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419)   | 1 |
|                                         | 240   | 12.0  | 3    | 1     | CBLN732G3S  | RS      | 29   | (14) | 44 <sup>3</sup> /4             | (1135)    | 32 <sup>1</sup> / <sub>2</sub> | (1129) | 26 <sup>1</sup> /2             | (673)   | 1 |
|                                         | 480   | 12.0  | 3    | 1     | CBLN732G5S  | RS      | 29   | (14) | 443/4                          | (1135)    | 32 <sup>1</sup> / <sub>2</sub> | (1129) | 26 <sup>1</sup> /2             | (673)   | 1 |
|                                         | 240   | 15.0  | 3    | 1     | CBLN739R3S  | RS      | 31   | (14) | 57 <sup>1</sup> /4             | (1453)    | 45                             | (1143) | 39                             | (991)   | 1 |
|                                         | 480   | 15.0  | 3    | 1     | CBLN739R5S  | RS      | 31   | (14) | 57 <sup>1</sup> /4             | (1453)    | 45                             | (1143) | 39                             | (991)   | 1 |
|                                         | 240   | 18.0  | 3    | 1     | CBLN747G3S  | RS      | 32   | (15) | 57 <sup>1</sup> /4             | (1453)    | 45                             | (1143) | 39                             | (991)   |   |
|                                         | 480   | 18.0  | 3    | 1     | CBLN747G5S  | RS      | 32   | (15) | 57 <sup>1</sup> /4             | (1453)    | 45                             | (1143) | 39                             | (991)   |   |
|                                         |       |       |      |       |             |         |      |      |                                |           |                                |        |                                |         | ĺ |
| 2 <sup>1</sup> / <sub>2</sub> inch NP   | T Scr | ew Pl | ug ( | FIRE  | BAR)        |         |      |      |                                |           |                                |        |                                |         | 1 |
| 45 W/in² ®                              | 240   | 6.0   | 3    | 1     | CBLNF12A27S | М       | 21   | (10) | 34 <sup>3</sup> / <sub>4</sub> | (881)     | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
| Steel Tank                              | 240   | 7.5   | 3    | 1     | CBLNF14J27S | М       | 22   | (10) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2             | (419)   | 1 |
| 3-Alloy 800<br>Elements                 | 240   | 9.0   | 3    | 1     | CBLNF17A27S | М       | 23   | (11) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
| (7 W/cm²)                               | 240   | 12.0  | 3    | 1     | CBLNF21J27S | М       | 31   | (14) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
| ( 11, 111,                              | 480   | 12.0  | 3    | 1     | CBLNF21J28S | М       | 31   | (14) | 34 <sup>3</sup> /4             | (881)     | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2             | (419)   |   |
|                                         | 240   | 15.0  | 3    | 1     | CBLNF26J27S | М       | 34   | (16) | 44 <sup>3</sup> / <sub>4</sub> | (1135)    | $32^{1/2}$                     | (1129) | 26 <sup>1</sup> / <sub>2</sub> | (673)   |   |
|                                         | 480   | 15.0  | 3    | 1     | CBLNF26J28S | М       | 34   | (16) |                                | (1135)    | 32 <sup>1</sup> / <sub>2</sub> | (1129) |                                | (673)   | 1 |
|                                         | 240   | 18.0  | 3    | 1     | CBLNF31J27S | М       | 35   | (16) | 44 <sup>3</sup> / <sub>4</sub> | (1135)    | 32 <sup>1</sup> / <sub>2</sub> | (1129) |                                | (673)   | l |
|                                         | 480   | 18.0  | 3    | 1     | CBLNF31J28S | M       | 35   | (16) | 443/4                          | (1135)    | $32^{1/2}$                     | (1129) | 26 <sup>1</sup> / <sub>2</sub> | (673)   | 1 |
|                                         | 480   | 24.0  | 3    | 1     | CBLNF41A28S | M       | 44   | (20) |                                | (1453)    | 45                             | (1143) | 39                             | (991)   | 1 |
|                                         | 480   | 30.0  | 3    | 1     | CBLNF50J28S | M       | 52   | (24) |                                |           | -                              | (1308) |                                |         | 1 |
|                                         | 100   | 00.0  |      |       |             | . • • • | 02   | , ,  |                                | teel vess |                                |        |                                |         | 1 |

# 11/4 inch NPT Screw Plug 67/16 in. Ref. (163.5 mm) 3/4 in. NPT Inlet and Outlet A Ref. C Ref. 4 in. NPT Drain

## 2<sup>1</sup>/<sub>2</sub> inch NPT Screw Plug

(95 mm)



## RAPID SHIP

- RS Next day shipment M Manufacturing lead times up to 5 pieces
- When steel vessel materials are used in this application, some rust may be present in the process media
- ® Can be wired for 1-phase operation



# WATROD and FIREBAR Circulation Heaters



## **Application: Process Water** ®

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                      |                                                                           |                                                                                      |                                                               | #                                                             | Part                                                                                                                                                       |                                           | Shir                                                                      | Wt.                                                                                              | «Δ»                                                                                                                                                                                                                                                                | Dim.                                                                                                   | "B"                                                                                                                                                                                                  | Dim.                                                                                                                            | "C"                                                                                                                                                                                                                                                                                                  | Dim.                                                                                               | 3 inch - 150 lb ANSI Flange                                                                 |
|----------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Description          | Valte                                                                     | kW                                                                                   | Ph                                                            | Circ.                                                         | Number                                                                                                                                                     | Del.                                      | lbs                                                                       | (kg)                                                                                             |                                                                                                                                                                                                                                                                    | (mm)                                                                                                   |                                                                                                                                                                                                      | (mm)                                                                                                                            |                                                                                                                                                                                                                                                                                                      | (mm)                                                                                               | 42/ :                                                                                       |
| 3 inch - 150         |                                                                           |                                                                                      |                                                               |                                                               |                                                                                                                                                            | DCI.                                      | 100                                                                       | (1497)                                                                                           |                                                                                                                                                                                                                                                                    | (11111)                                                                                                |                                                                                                                                                                                                      | ()                                                                                                                              |                                                                                                                                                                                                                                                                                                      | ()                                                                                                 | 4¾ in.<br>→  (111.1 mm)                                                                     |
| 48 W/in²             | 240                                                                       | 6.0                                                                                  | 1                                                             | 1                                                             | CFMN718A10S                                                                                                                                                | RS                                        | 68                                                                        | (31)                                                                                             | 35 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                     | (894)                                                                                                  | 22 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                       | (573)                                                                                                                           | 16 <sup>1</sup> /2                                                                                                                                                                                                                                                                                   | (419)                                                                                              | 9                                                                                           |
| Steel Tank           | 240                                                                       | 6.0                                                                                  | 3                                                             | 1                                                             | CFMN718A3S                                                                                                                                                 | RS                                        | 68                                                                        |                                                                                                  | 35 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                     | (894)                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                 | 16 <sup>1</sup> /2                                                                                                                                                                                                                                                                                   | (419)                                                                                              | <del>(</del> ; )                                                                            |
| 3-Alloy 800          | 480                                                                       | 6.0                                                                                  | 1                                                             | 1                                                             | CFMN718A11S                                                                                                                                                | RS                                        | 68                                                                        |                                                                                                  | 351/4                                                                                                                                                                                                                                                              | /                                                                                                      | 22 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                       |                                                                                                                                 | 16 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (419)                                                                                              | ½ in.<br>NPT Drain                                                                          |
| Elements             | 480                                                                       | 6.0                                                                                  | 3                                                             | 1                                                             | CFMN718A5S                                                                                                                                                 | RS                                        | 68                                                                        | (31)                                                                                             | 35 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                     | (894)                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                 | 16 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (419)                                                                                              |                                                                                             |
| (7.5 W/cm²)          | 240                                                                       | 7.5                                                                                  | 1                                                             | 1                                                             | CFMN720J10S                                                                                                                                                | RS                                        | 70                                                                        | (32)                                                                                             | 35 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                     |                                                                                                        | 22 <sup>1</sup> /2                                                                                                                                                                                   |                                                                                                                                 | 16 <sup>1</sup> /2                                                                                                                                                                                                                                                                                   | (419)                                                                                              | 711/16 in. Ref.                                                                             |
| (1.10 11, 0111 )     | 240                                                                       | 7.5                                                                                  | 3                                                             | 1                                                             | CFMN720J3S                                                                                                                                                 | RS                                        | 70                                                                        | (32)                                                                                             |                                                                                                                                                                                                                                                                    |                                                                                                        | 22 <sup>1</sup> /2                                                                                                                                                                                   |                                                                                                                                 | 16 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (419)                                                                                              | (195.3 mm) 41½ in. R                                                                        |
|                      | 480                                                                       | 7.5                                                                                  | 1                                                             | 1                                                             | CFMN720J11S                                                                                                                                                | RS                                        | 70                                                                        | (32)                                                                                             |                                                                                                                                                                                                                                                                    |                                                                                                        | 22 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                       |                                                                                                                                 | 16 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (419)                                                                                              | (292 mm                                                                                     |
|                      | 480                                                                       | 7.5                                                                                  | 3                                                             | 1                                                             | CFMN720J5S                                                                                                                                                 | RS                                        | 70                                                                        | (32)                                                                                             | 351/4                                                                                                                                                                                                                                                              |                                                                                                        | 22 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                       |                                                                                                                                 | 16 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (419)                                                                                              | 1 in/                                                                                       |
|                      | 240                                                                       | 9.0                                                                                  | 1                                                             | 1                                                             | CFMN725J10S                                                                                                                                                | М                                         | 78                                                                        | ` '                                                                                              | 45 <sup>1</sup> /4                                                                                                                                                                                                                                                 | (1148)                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                 | 26 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (673)                                                                                              | A Ref.   & Outlet   III   C                                                                 |
|                      | 240                                                                       | 9.0                                                                                  | 3                                                             | 1                                                             | CFMN725J3S                                                                                                                                                 | M                                         | 78                                                                        | (36)                                                                                             | 45 /4                                                                                                                                                                                                                                                              | (1148)                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                 | 26 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (673)                                                                                              |                                                                                             |
|                      | 480                                                                       | 9.0                                                                                  | 1                                                             | 1                                                             | CFMN725J11S                                                                                                                                                | M                                         | 78                                                                        | (36)                                                                                             | 45 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                     | (1148)                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                 | 26 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (673)                                                                                              | 1½ in.                                                                                      |
|                      | 480                                                                       | 9.0                                                                                  | 3                                                             | 1                                                             |                                                                                                                                                            | M                                         | 78                                                                        | . ,                                                                                              | 45 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                     | (1148)                                                                                                 |                                                                                                                                                                                                      | ()                                                                                                                              | 26 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | . ,                                                                                                |                                                                                             |
|                      |                                                                           |                                                                                      |                                                               |                                                               | CFMN725J5S                                                                                                                                                 |                                           |                                                                           | (36)                                                                                             |                                                                                                                                                                                                                                                                    | ,                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                      | (673)                                                                                              | (2 Place                                                                                    |
|                      | 240<br>480                                                                | 12.0                                                                                 | 3                                                             | 1                                                             | CFMN733A3S                                                                                                                                                 | M                                         | 96                                                                        | (44)                                                                                             | 451/4                                                                                                                                                                                                                                                              | (1148)                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                 | 26 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (673)                                                                                              | 3%-16 UNC                                                                                   |
|                      | 480                                                                       | 12.0<br>12.0                                                                         | 3                                                             | 1                                                             | CFMN733A11S                                                                                                                                                | M<br>M                                    | 96<br>96                                                                  | (44)<br>(44)                                                                                     | 45 <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                     | (1148)<br>(1148)                                                                                       |                                                                                                                                                                                                      | 826)                                                                                                                            | 26 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                       | (673)                                                                                              | (4 Places)                                                                                  |
|                      |                                                                           |                                                                                      |                                                               |                                                               | CFMN733A5S                                                                                                                                                 |                                           |                                                                           | \ /                                                                                              |                                                                                                                                                                                                                                                                    | . ,                                                                                                    |                                                                                                                                                                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                      | (673)                                                                                              | 3½ in. Dia. NPT                                                                             |
|                      | 240                                                                       | 15.0                                                                                 | 3                                                             | 1                                                             | CFMN740J3S                                                                                                                                                 | M                                         | 100                                                                       |                                                                                                  | 57 <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                     | (1465)                                                                                                 |                                                                                                                                                                                                      | (1143)                                                                                                                          |                                                                                                                                                                                                                                                                                                      | (991)                                                                                              | (79.4 mm) Ref. Drain                                                                        |
|                      | 480                                                                       | 15.0                                                                                 | 1                                                             | 1                                                             | CFMN740J11S                                                                                                                                                | M                                         | 100                                                                       | \ /                                                                                              | 57 <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                     | (1465)                                                                                                 |                                                                                                                                                                                                      | (1143)                                                                                                                          |                                                                                                                                                                                                                                                                                                      | (991)                                                                                              | ' 🕶                                                                                         |
|                      | 480                                                                       | 15.0                                                                                 | 3                                                             | 1                                                             | CFMN740J5S                                                                                                                                                 | M                                         | 100                                                                       |                                                                                                  | 573/4                                                                                                                                                                                                                                                              | (1465)                                                                                                 |                                                                                                                                                                                                      | (1143)                                                                                                                          |                                                                                                                                                                                                                                                                                                      | (991)                                                                                              | Т                                                                                           |
|                      | 240                                                                       | 18.0                                                                                 | 3                                                             | 1                                                             | CFMN748A3S                                                                                                                                                 | M                                         | 107                                                                       | _ ` /                                                                                            | 573/4                                                                                                                                                                                                                                                              | (1465)                                                                                                 |                                                                                                                                                                                                      | (1143)                                                                                                                          |                                                                                                                                                                                                                                                                                                      | (991)                                                                                              |                                                                                             |
|                      | 480                                                                       | 18.0                                                                                 | 1                                                             | 1                                                             | CFMN748A11S                                                                                                                                                | M                                         | 107                                                                       | . /                                                                                              | 573/4                                                                                                                                                                                                                                                              | (1465)                                                                                                 |                                                                                                                                                                                                      | (1143)                                                                                                                          |                                                                                                                                                                                                                                                                                                      | (991)                                                                                              |                                                                                             |
|                      | 480                                                                       | 18.0                                                                                 | 3                                                             | 1                                                             | CFMN748A5S                                                                                                                                                 | M                                         | 107                                                                       | (49)                                                                                             | 57 <sup>3</sup> /4                                                                                                                                                                                                                                                 | (1465)                                                                                                 | 45                                                                                                                                                                                                   | (1143)                                                                                                                          | 39                                                                                                                                                                                                                                                                                                   | (991)                                                                                              |                                                                                             |
| 4 inch - 150         | II AN                                                                     | CI Elei                                                                              |                                                               | /\A/ A T                                                      | POD)                                                                                                                                                       |                                           |                                                                           |                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                                                                                    | 4 inch - 150 lb ANSI Flange                                                                 |
| 48 W/in <sup>2</sup> | 240                                                                       | 9.0                                                                                  | 1                                                             | (WA1                                                          | CFON713J10S                                                                                                                                                | М                                         | 122                                                                       | (56)                                                                                             | 30                                                                                                                                                                                                                                                                 | (989)                                                                                                  | 201/2                                                                                                                                                                                                | (521)                                                                                                                           | 17                                                                                                                                                                                                                                                                                                   | (432)                                                                                              | 4 mon 100 ib Artor Flange                                                                   |
| Steel Tank           | 240                                                                       | 9.0                                                                                  | 3                                                             | 1                                                             | CFON713J3S                                                                                                                                                 | M                                         | 122                                                                       | (56)                                                                                             |                                                                                                                                                                                                                                                                    | (989)                                                                                                  |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              | 5 <sup>13</sup> / <sub>6</sub> in.<br>(147.6 mm)                                            |
| 6-Alloy 800          | 480                                                                       | 9.0                                                                                  | 1                                                             | 1                                                             | CFON713J11S                                                                                                                                                | M                                         | 122                                                                       | (56)                                                                                             | 39                                                                                                                                                                                                                                                                 | (989)                                                                                                  |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              | (147.8 11111)                                                                               |
| Elements             | 480                                                                       | 9.0                                                                                  | 3                                                             | 1                                                             | CFON713J13                                                                                                                                                 | M                                         | 122                                                                       | (56)                                                                                             | 39                                                                                                                                                                                                                                                                 | (989)                                                                                                  |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              |                                                                                             |
| (7.5 W/cm²)          | 240                                                                       | 12.0                                                                                 | 1                                                             | 2                                                             | CFON718A10S                                                                                                                                                | M                                         | 125                                                                       | (50)                                                                                             | 39                                                                                                                                                                                                                                                                 | (989)                                                                                                  |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              | ½ in.                                                                                       |
| (7.0 11,0111)        | 240                                                                       | 12.0                                                                                 | 3                                                             | 1                                                             |                                                                                                                                                            | M                                         | 125                                                                       | ` '                                                                                              | 39                                                                                                                                                                                                                                                                 |                                                                                                        |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | . ,                                                                                                | NPT Drain                                                                                   |
|                      |                                                                           |                                                                                      | 1                                                             | 1                                                             | CFON718A3S                                                                                                                                                 |                                           |                                                                           | (57)                                                                                             |                                                                                                                                                                                                                                                                    | (989)                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              | <del>                                      </del>                                           |
|                      | 480                                                                       | 12.0                                                                                 |                                                               |                                                               | CFON718A11S                                                                                                                                                | M                                         | 125                                                                       | (57)                                                                                             | 39                                                                                                                                                                                                                                                                 | (989)                                                                                                  |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              | 125% in. Ref. 143% in. Ref.                                                                 |
|                      | 480                                                                       | 12.0                                                                                 | 3                                                             | 1                                                             | CFON718A5S                                                                                                                                                 | M                                         | 125                                                                       | (57)                                                                                             | 39                                                                                                                                                                                                                                                                 | (989)                                                                                                  |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              | (320.7 mm) (365.1 mr                                                                        |
|                      | 240                                                                       | 15.0                                                                                 | 1                                                             | 2                                                             | CFON720J10S                                                                                                                                                | M                                         | 127                                                                       | (58)                                                                                             | 39                                                                                                                                                                                                                                                                 | (989)                                                                                                  |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              |                                                                                             |
|                      | 240<br>480                                                                | 15.0                                                                                 | 3                                                             | 1                                                             | CFON720J3S                                                                                                                                                 | M<br>M                                    | 127<br>127                                                                | (58)                                                                                             | 39                                                                                                                                                                                                                                                                 | (989)                                                                                                  |                                                                                                                                                                                                      | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              | 1½ in                                                                                       |
|                      | /IXII                                                                     |                                                                                      |                                                               |                                                               |                                                                                                                                                            |                                           | ロンノ                                                                       |                                                                                                  | 39                                                                                                                                                                                                                                                                 | IUXUI                                                                                                  | $20^{1/2}$                                                                                                                                                                                           | (521)                                                                                                                           | 17                                                                                                                                                                                                                                                                                                   | (432)                                                                                              | A Ref. NPT Inlet                                                                            |
|                      |                                                                           | 15.0                                                                                 | 1                                                             | 1                                                             | CFON720J11S                                                                                                                                                |                                           |                                                                           | (58)                                                                                             |                                                                                                                                                                                                                                                                    |                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                 | 17                                                                                                                                                                                                                                                                                                   | (400)                                                                                              | and Outlet                                                                                  |
|                      | 480                                                                       | 15.0                                                                                 | 3                                                             | 1                                                             | CFON720J5S                                                                                                                                                 | М                                         | 127                                                                       | (58)                                                                                             | 39                                                                                                                                                                                                                                                                 | (989)                                                                                                  | 20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                       | (521)                                                                                                                           |                                                                                                                                                                                                                                                                                                      | (432)                                                                                              | B and Outlet C                                                                              |
|                      | 480<br>240                                                                | 15.0<br>18.0                                                                         | 3<br>1                                                        | 1 2                                                           | CFON720J5S<br>CFON725J10S                                                                                                                                  | M<br>M                                    | 127<br>160                                                                | (58)<br>(73)                                                                                     | 39<br>39                                                                                                                                                                                                                                                           | (989)<br>(989)                                                                                         | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                     | (521)<br>(521)                                                                                                                  | 17                                                                                                                                                                                                                                                                                                   | (432)                                                                                              |                                                                                             |
|                      | 480<br>240<br>240                                                         | 15.0<br>18.0<br>18.0                                                                 | 3<br>1<br>3                                                   | 1<br>2<br>1                                                   | CFON720J5S<br>CFON725J10S<br>CFON725J3S                                                                                                                    | M<br>M<br>M                               | 127<br>160<br>160                                                         | (58)<br>(73)<br>(73)                                                                             | 39<br>39<br>39                                                                                                                                                                                                                                                     | (989)<br>(989)<br>(989)                                                                                | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                   | (521)<br>(521)<br>(521)                                                                                                         | 17<br>17                                                                                                                                                                                                                                                                                             | (432)<br>(432)                                                                                     | E + 1½ in.                                                                                  |
|                      | 480<br>240<br>240<br>480                                                  | 15.0<br>18.0<br>18.0<br>18.0                                                         | 3<br>1<br>3<br>1                                              | 1<br>2<br>1<br>1                                              | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S                                                                                                     | M<br>M<br>M                               | 127<br>160<br>160<br>160                                                  | (58)<br>(73)<br>(73)<br>(73)                                                                     | 39<br>39<br>39<br>39                                                                                                                                                                                                                                               | (989)<br>(989)<br>(989)<br>(989)                                                                       | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                 | (521)<br>(521)<br>(521)<br>(521)                                                                                                | 17<br>17<br>17                                                                                                                                                                                                                                                                                       | (432)<br>(432)<br>(432)                                                                            | 1½ in. (32 mm                                                                               |
|                      | 480<br>240<br>240<br>480<br>480                                           | 15.0<br>18.0<br>18.0<br>18.0<br>18.0                                                 | 3<br>1<br>3<br>1<br>3                                         | 1<br>2<br>1<br>1                                              | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S                                                                                       | M<br>M<br>M<br>M                          | 127<br>160<br>160<br>160<br>160                                           | (58)<br>(73)<br>(73)<br>(73)<br>(73)                                                             | 39<br>39<br>39<br>39<br>39                                                                                                                                                                                                                                         | (989)<br>(989)<br>(989)<br>(989)<br>(989)                                                              | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                               | (521)<br>(521)<br>(521)<br>(521)<br>(521)                                                                                       | 17<br>17<br>17<br>17                                                                                                                                                                                                                                                                                 | (432)<br>(432)<br>(432)<br>(432)                                                                   | # 1½ in. (22 Place                                                                          |
|                      | 480<br>240<br>240<br>480<br>480<br>240                                    | 15.0<br>18.0<br>18.0<br>18.0<br>18.0<br>24.0                                         | 3<br>1<br>3<br>1<br>3                                         | 1<br>2<br>1<br>1<br>1<br>2                                    | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S<br>CFON733A10S                                                                        | M<br>M<br>M<br>M<br>M                     | 127<br>160<br>160<br>160<br>160<br>163                                    | (58)<br>(73)<br>(73)<br>(73)<br>(73)<br>(74)                                                     | 39<br>39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                       | (989)<br>(989)<br>(989)<br>(989)<br>(989)<br>(1256)                                                    | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31                         | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)                                                                     | 17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                               | (432)<br>(432)<br>(432)<br>(432)<br>(699)                                                          | %-16 UNC (Threads (4 Places) (4 Places)                                                     |
|                      | 480<br>240<br>240<br>480<br>480<br>240<br>240                             | 15.0<br>18.0<br>18.0<br>18.0<br>18.0<br>24.0<br>24.0                                 | 3<br>1<br>3<br>1<br>3<br>1<br>3                               | 1<br>2<br>1<br>1<br>1<br>2<br>2                               | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S<br>CFON733A10S<br>CFON733A3S                                                          | M<br>M<br>M<br>M<br>M                     | 127<br>160<br>160<br>160<br>160<br>163<br>163                             | (58)<br>(73)<br>(73)<br>(73)<br>(73)<br>(74)<br>(74)                                             | 39<br>39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                     | (989)<br>(989)<br>(989)<br>(989)<br>(989)<br>(1256)<br>(1256)                                          | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31                   | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)                                                            | 17<br>17<br>17<br>17<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2                                                                                                                                                                                                                                     | (432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)                                                 | %-16 UNC (Threads (4 Places) (4 Places)                                                     |
|                      | 480<br>240<br>240<br>480<br>480<br>240<br>240                             | 15.0<br>18.0<br>18.0<br>18.0<br>18.0<br>24.0<br>24.0<br>24.0                         | 3<br>1<br>3<br>1<br>3<br>1<br>3                               | 1<br>2<br>1<br>1<br>1<br>2                                    | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S<br>CFON733A10S<br>CFON733A3S<br>CFON733A11S                                           | M<br>M<br>M<br>M<br>M<br>M                | 127<br>160<br>160<br>160<br>160<br>163<br>163                             | (58)<br>(73)<br>(73)<br>(73)<br>(73)<br>(74)<br>(74)<br>(74)                                     | 39<br>39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                     | (989)<br>(989)<br>(989)<br>(989)<br>(989)<br>(1256)<br>(1256)<br>(1256)                                | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31             | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)                                                   | 17<br>17<br>17<br>17<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2                                                                                                                                                                                                               | (432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)                                                 | #-16 UNC (Threads (4 Places) 31%6 in NPT                                                    |
|                      | 480<br>240<br>480<br>480<br>240<br>240<br>480<br>480                      | 15.0<br>18.0<br>18.0<br>18.0<br>24.0<br>24.0<br>24.0<br>24.0                         | 3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3                     | 1<br>2<br>1<br>1<br>1<br>2<br>2<br>1                          | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S<br>CFON733A10S<br>CFON733A3S<br>CFON733A11S<br>CFON733A5S                             | M<br>M<br>M<br>M<br>M<br>M<br>M           | 127<br>160<br>160<br>160<br>163<br>163<br>163<br>163                      | (58)<br>(73)<br>(73)<br>(73)<br>(73)<br>(74)<br>(74)<br>(74)<br>(74)                             | 39<br>39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub>                                                                                                                                   | (989)<br>(989)<br>(989)<br>(989)<br>(989)<br>(1256)<br>(1256)<br>(1256)<br>(1256)                      | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>31       | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)                                                   | 17<br>17<br>17<br>17<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2                                                                                                                                                                                         | (432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)                                        | #-16 UNC (Threads (4 Places) 31%6 in NPT                                                    |
|                      | 480<br>240<br>240<br>480<br>480<br>240<br>240<br>480<br>480<br>240        | 15.0<br>18.0<br>18.0<br>18.0<br>24.0<br>24.0<br>24.0<br>24.0<br>30.0                 | 3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>3                | 1<br>2<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>2                | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S<br>CFON733A10S<br>CFON733A3S<br>CFON733A11S                                           | M<br>M<br>M<br>M<br>M<br>M                | 127<br>160<br>160<br>160<br>163<br>163<br>163<br>163<br>229               | (58)<br>(73)<br>(73)<br>(73)<br>(74)<br>(74)<br>(74)<br>(74)<br>(104)                            | 39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub>                                                                     | (989)<br>(989)<br>(989)<br>(989)<br>(1256)<br>(1256)<br>(1256)<br>(1256)<br>(1789)                     | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>31<br>52 | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(787)<br>(1321)                                | 17<br>17<br>17<br>17<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2<br>27 <sup>1</sup> /2<br>48 <sup>1</sup> /2                                                                                                                                                                   | (432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(699)<br>(1232)                     | %-16 UNC (Threads (4 Places)  311/16 in.  11/4 in. (22 Place 65% in. (168.3 mm) 1/2 in. NPT |
|                      | 480<br>240<br>480<br>480<br>240<br>240<br>480<br>480                      | 15.0<br>18.0<br>18.0<br>18.0<br>24.0<br>24.0<br>24.0<br>24.0<br>30.0<br>30.0         | 3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3           | 1<br>2<br>1<br>1<br>1<br>2<br>2<br>1                          | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S<br>CFON733A10S<br>CFON733A3S<br>CFON733A5S<br>CFON733A5S<br>CFON740J3S<br>CFON740J11S | M<br>M<br>M<br>M<br>M<br>M<br>M           | 127<br>160<br>160<br>160<br>160<br>163<br>163<br>163<br>229<br>229        | (58)<br>(73)<br>(73)<br>(73)<br>(74)<br>(74)<br>(74)<br>(74)<br>(104)<br>(104)                   | 39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub>                                                                     | (989)<br>(989)<br>(989)<br>(989)<br>(1256)<br>(1256)<br>(1256)<br>(1256)<br>(1789)<br>(1789)           | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>52<br>52 | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)                               | 17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                       | (432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)           | #-16 UNC (Threads (4 Places) 31%6 in NPT                                                    |
|                      | 480<br>240<br>240<br>480<br>480<br>240<br>240<br>480<br>480<br>240        | 15.0<br>18.0<br>18.0<br>18.0<br>24.0<br>24.0<br>24.0<br>24.0<br>30.0<br>30.0         | 3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3           | 1<br>2<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>2                | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S<br>CFON733A10S<br>CFON733A3S<br>CFON733A11S<br>CFON733A5S<br>CFON740J3S               | M<br>M<br>M<br>M<br>M<br>M<br>M           | 127<br>160<br>160<br>160<br>163<br>163<br>163<br>163<br>229<br>229<br>229 | (58)<br>(73)<br>(73)<br>(73)<br>(74)<br>(74)<br>(74)<br>(74)<br>(104)<br>(104)<br>(104)          | 39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub>                                                                     | (989)<br>(989)<br>(989)<br>(989)<br>(1256)<br>(1256)<br>(1256)<br>(1256)<br>(1789)<br>(1789)           | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>52<br>52                                   | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)                     | 17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                     | (432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232) | #-16 UNC (Threads (4 Places) 31%6 in NPT                                                    |
|                      | 480<br>240<br>480<br>480<br>240<br>240<br>480<br>480<br>480<br>480        | 15.0<br>18.0<br>18.0<br>18.0<br>24.0<br>24.0<br>24.0<br>30.0<br>30.0<br>30.0         | 3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>3      | 1<br>2<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>2<br>2           | CFON720J5S<br>CFON725J10S<br>CFON725J3S<br>CFON725J11S<br>CFON725J5S<br>CFON733A10S<br>CFON733A3S<br>CFON733A5S<br>CFON733A5S<br>CFON740J3S<br>CFON740J11S | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M      | 127<br>160<br>160<br>160<br>163<br>163<br>163<br>229<br>229<br>229<br>234 | (58)<br>(73)<br>(73)<br>(73)<br>(74)<br>(74)<br>(74)<br>(74)<br>(104)<br>(104)<br>(104)<br>(107) | 39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub> | (989)<br>(989)<br>(989)<br>(989)<br>(1256)<br>(1256)<br>(1256)<br>(1256)<br>(1789)<br>(1789)<br>(1789) | 201/2<br>201/2<br>201/2<br>201/2<br>201/2<br>31<br>31<br>31<br>52<br>52<br>52                                                                                                                        | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)                               | 17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                     | (432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232) | #-16 UNC (Threads (4 Places) 31%6 in NPT                                                    |
|                      | 480<br>240<br>480<br>480<br>240<br>240<br>480<br>480<br>240<br>480<br>480 | 15.0<br>18.0<br>18.0<br>18.0<br>24.0<br>24.0<br>24.0<br>30.0<br>30.0<br>30.0<br>36.0 | 3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>3<br>1<br>3<br>3 | 1<br>2<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>1 | CFON720J5S CFON725J10S CFON725J3S CFON725J11S CFON725J5S CFON733A10S CFON733A3S CFON733A5S CFON733A5S CFON740J3S CFON740J11S CFON740J5S                    | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M | 127<br>160<br>160<br>160<br>163<br>163<br>163<br>229<br>229<br>229<br>234 | (58)<br>(73)<br>(73)<br>(73)<br>(74)<br>(74)<br>(74)<br>(74)<br>(104)<br>(104)<br>(104)<br>(107) | 39<br>39<br>39<br>39<br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>49 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub><br>70 <sup>1</sup> / <sub>2</sub> | (989)<br>(989)<br>(989)<br>(989)<br>(1256)<br>(1256)<br>(1256)<br>(1256)<br>(1789)<br>(1789)           | 201/2<br>201/2<br>201/2<br>201/2<br>31<br>31<br>31<br>52<br>52<br>52<br>52                                                                                                                           | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(1321)<br>(1321) | 17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub> | (432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232) | #-16 UNC (Threads (4 Places) 31%6 in NPT                                                    |



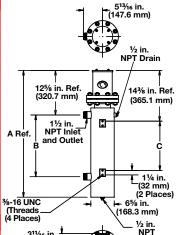
• RS - Next day shipment • M - Manufacturing lead times up to 2 pieces

When steel vessel materials are used in this application, some rust may be present in the process media

Truck Shipment only

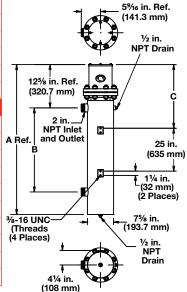
## **WATROD** and **FIREBAR Circulation Heaters**




## **Application: Process Water** <sup>®</sup>

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                           |       |         |     | #     | Part         |      | Shij | o Wt. | "A                | " Dim.                | "B"                            | Dim.   | "C"                | Dim.    | 4 inc            | h - 150                                                      | lb AN      | SI F        | lange                         |
|---------------------------|-------|---------|-----|-------|--------------|------|------|-------|-------------------|-----------------------|--------------------------------|--------|--------------------|---------|------------------|--------------------------------------------------------------|------------|-------------|-------------------------------|
| Description               | Volts | kW      | Ph  | Circ. | Number       | Del. | 1 7  |       | in.               | (mm)                  |                                | (mm)   | in.                | (mm)    |                  |                                                              | -          |             | 5 <sup>13</sup> ⁄16 in.       |
| 4 inch - 150              | lb AN | ISI Fla | nge | (FIRE | BAR)         |      |      |       |                   |                       |                                |        |                    |         |                  |                                                              |            | (1          | 47.6 mm                       |
| 45 W/in²                  | 240   | 12.0    | 3   | 1     | CFONF13G27S  | М    | 125  | (57)  | 39                | (989)                 | 20 <sup>1</sup> /2             | (521)  | 17                 | (432)   |                  |                                                              | 4          | $(\cdot)$   | <b>)</b>                      |
| Steel Tank<br>6-Alloy 800 | 240   | 15.0    | 3   | 1     | CFONF16A27S  | М    | 128  | (58)  | 39                | (989)                 | 20 <sup>1</sup> /2             | (521)  | 17                 | (432)   |                  |                                                              |            | <b>4</b>    | <sup>1</sup> ½ in.<br>NPT Dra |
| Elements                  | 240   | 18.0    | 3   | 1     | CFONF18G27S  | М    | 130  | (59)  | 39                | (989)                 | 20 <sup>1</sup> /2             | (521)  | 17                 | (432)   | <sub> </sub>     | -                                                            | — r        | <del></del> |                               |
| (7 W/cm²)                 | 240   | 24.0    | 3   | 2     | CFONF22R27S  | М    | 133  | (61)  | 39                | (989)                 | 20 <sup>1</sup> /2             | (521)  | 17                 | (432)   |                  | 125% in. l                                                   | Ref.       | 0           | , /14¾ i                      |
|                           | 480   | 24.0    | 3   | 1     | CFONF22R28S  | М    | 133  | (61)  | 39                | (989)                 | 20 <sup>1</sup> /2             | (521)  | 17                 | (432)   |                  | (320.7 m                                                     | ,          | 9           | (365.                         |
|                           | 240   | 30.0    | 3   | 2     | CFONF27R27S  | М    | 168  | (77)  | 49 <sup>1</sup> , | /2 (1256)             | 31                             | (787)  | 27 <sup>1</sup> /2 | (699)   |                  | 1½ i                                                         |            |             | <i>y</i>                      |
|                           | 480   | 30.0    | 3   | 1     | CFONF27R28S  | М    | 168  | (77)  | 49 <sup>1</sup> , | /2 (1256)             | 31                             | (787)  | 27 <sup>1</sup> /2 | (699)   | A Ref            | . NPT II<br>and O                                            |            |             |                               |
|                           | 240   | 36.0    | 3   | 2     | CFONF32R27S  | М    | 170  | (78)  | 49 <sup>1</sup> , | /2 (1256)             | 31                             | (787)  | 27 <sup>1</sup> /2 | (699)   |                  |                                                              |            |             |                               |
|                           | 480   | 36.0    | 3   | 1     | CFONF32R28S  | М    | 170  | (78)  | 49 <sup>1</sup> , | /2 (1256)             | 31                             | (787)  | 27 <sup>1</sup> /2 | (699)   |                  |                                                              |            |             | # 13                          |
|                           | 480   | 48.0    | 3   | 2     | CFONF42G28S  | М    | 236  | (107) | 70 <sup>1</sup> , | /2 (1789)             | 52                             | (1321) | 48 <sup>1</sup> /2 | (1232)  |                  |                                                              | 7          |             | (32<br>(2 P                   |
|                           | 480   | 60.0    | 3   | 2     | CFONF51R28S  | М    | 240  | (109) | 70 <sup>1</sup> / | /2 (1789)             | 52                             | (1321) | 48 <sup>1</sup> /2 | (1232)  | %-16 U<br>(Threa | NC<br>ds_                                                    | -          | T           | - 6% in.<br>(168.3 m          |
|                           |       |         |     |       |              |      |      |       |                   |                       |                                |        |                    |         | (4 Plac          |                                                              |            | ,           | ½ iı                          |
| 5 inch - 150              | lb AN | ISI Fla | nge | (WAT  | ROD)         |      |      |       |                   |                       |                                |        |                    |         |                  | 3 <sup>11</sup> / <sub>16</sub> in. <del>*</del><br> 3.7 mm) | R          | *           | NP<br>Dra                     |
| 48 W/in <sup>2</sup>      | 240   | 24.0    | 1   | 3     | CFNN733A10S  | М    | 145  | (66)  | 491,              | /4 (1249)             | 30                             | (762)  | 14 <sup>7</sup> /8 | (377.8) |                  | Ŧ                                                            | -          |             | Ţ                             |
| Steel Tank                | 240   | 24.0    | 3   | 2     | CFNN733A3S   | М    | 145  | (66)  | 491,              | /4 (1249)             | 30                             | (762)  | 14 <sup>7</sup> /8 | (377.8) |                  |                                                              |            | Т           |                               |
| 6-Alloy 800<br>Elements   | 480   | 24.0    | 1   | 2     | CFNN733A11S  | М    | 145  | (66)  | 491,              | /4 (1249)             | 30                             | (762)  | 14 <sup>7</sup> /8 | (377.8) |                  |                                                              |            |             |                               |
| (7.5 W/cm <sup>2</sup> )  | 480   | 24.0    | 3   | 1     | CFNN733A5S   | М    | 145  | (66)  | 491,              | /4 (1249)             | 30                             | (762)  | 14 <sup>7</sup> /8 | (377.8) | 5 inc            | h - 150                                                      | lb AN      | ISI F       | lange                         |
|                           | 240   | 30.0    | 3   | 2     | CFNN740J3S   | М    | 167  | (76)  | 56 <sup>1</sup> / | /4 (1427)             | 37                             | (940)  | 18 <sup>5</sup> /8 | (473.1) |                  |                                                              |            | 1           | 5% in.                        |
|                           | 480   | 30.0    | 1   | 2     | CFNN740J11S  | М    | 167  | (76)  | 56 <sup>1</sup> / | /4 (1427)             | 37                             | (940)  | 18 <sup>5</sup> /8 | (473.1) |                  |                                                              |            | No.         | (141.3                        |
|                           | 480   | 30.0    | 3   | 1     | CFNN740J5S   | М    | 167  | (76)  | 56 <sup>1</sup> / | /4 (1427)             | 37                             | (940)  | 18 <sup>5</sup> /8 | (473.1) |                  |                                                              | ₹,         | <i>.</i>    | 1/2                           |
|                           | 240   | 36.0    | 3   | 2     | CFNN748A3S   | М    | 180  | (82)  | 67 <sup>3</sup> / | /4 (1719)             | 48 <sup>1</sup> / <sub>2</sub> | (1232) | 25                 | (633.0) |                  |                                                              | •          | 4           | NPT<br>/                      |
|                           | 480   | 36.0    | 1   | 2     | CFNN748A11S  | М    | 180  | (82)  | 67 <sup>3</sup> / | /4 (1719)             | 48 <sup>1</sup> / <sub>2</sub> | (1232) | 25                 | (633.0) | T                |                                                              | _ [        |             | $\overline{}$                 |
|                           | 480   | 36.0    | 3   | 1     | CFNN748A5S   | М    | 180  | (82)  | 67 <sup>3</sup> / | /4 (1719)             | 48 <sup>1</sup> / <sub>2</sub> | (1232) | 25                 | (633.0) |                  | 12% in. R<br>(320.7 mn                                       | ~~         |             | <u>4</u> /                    |
|                           |       |         |     |       |              |      |      |       |                   |                       |                                |        |                    |         | .                | _ \                                                          | - 0        | 0,0         | 7                             |
| 5 inch - 150              | lb AN | ISI Fla | nge | (WAT  | ROD)         |      |      |       |                   |                       |                                |        |                    |         |                  | 2 in                                                         |            | <b></b>     |                               |
| 48 W/in²                  | 240   | 36.0    | 3   | 3     | CFNN733A3XS  | М    | 150  | (68)  | 491,              | /4 (1249)             | 30                             | (762)  | 14 <sup>7</sup> /8 | (377.8) | A Ref            |                                                              |            |             |                               |
| Steel Tank                | 480   | 36.0    | 1   | 3     | CFNN733A11XS | М    | 150  | (68)  | 491,              | /4 (1249)             | 30                             | (762)  | 14 <sup>7</sup> /8 | (377.8) | 1                | В<br>                                                        |            |             | . (                           |
| 9-Alloy 800<br>Elements   | 480   | 36.0    | 3   | 1     | CFNN733A5XS  | М    | 150  | (68)  | 49 <sup>1</sup> , | / <sub>4</sub> (1249) | 30                             | (762)  | 14 <sup>7</sup> /8 | (377.8) |                  |                                                              | .          | <b>戸</b> ╪  | 1 1                           |
| (7.5 W/cm²)               | 240   | 45.0    | 3   | 3     | CFNN740J3XS  | М    | 173  | (79)  |                   | /4 (1427)             |                                | , ,    | 18 <sup>5</sup> /8 | (473.1) |                  | <u> </u>                                                     | -⊯         |             | L(32<br>(2 F                  |
|                           | 480   | 45.0    | 1   | 3     | CFNN740J11XS | М    | 173  | (79)  |                   | / <sub>4</sub> (1427) |                                | , ,    | 18 <sup>5</sup> /8 | (473.1) |                  |                                                              |            |             | ·                             |
|                           | 480   | 45.0    | 3   | 3     | CFNN740J5XS  | М    | 173  | (79)  |                   | /4 (1427)             |                                | , ,    | 18 <sup>5</sup> /8 | (473.1) | 3/8-16<br>(Thre  |                                                              | -          | T           | 75⁄8 i<br>193.7               |
|                           | 240   | 54.0    | 3   | 3     | CFNN748A3XS  | М    | 188  | (86)  |                   | / <sub>4</sub> (1719) |                                | , ,    |                    | (633.0) | (4 Pla           |                                                              |            | 1           | 1/2                           |
|                           | 480   | 54.0    | 1   | 3     | CFNN748A11XS | М    | 188  | . ,   |                   | / <sub>4</sub> (1719) |                                | , ,    |                    | (633.0) | 1                | 1_                                                           |            |             | NI<br>Dr                      |
|                           | 480   | 54.0    | 3   | 3     | CFNN748A5XS  | М    | 188  |       |                   | / <sub>4</sub> (1719) |                                |        |                    | (633.0) | -                | <b>4</b> 4 ir                                                | , <b>V</b> |             | Γ -                           |
| • M - Manufa              |       |         |     | <br>S |              |      |      | . ,   |                   | teel vess             |                                | , ,    |                    | , ,     | J                | (108 m                                                       |            | T           |                               |


M - Manufacturing lead times

- When steel vessel materials are used in this application, some rust may be present in the process media
  - Truck Shipment only



Drain

## 5 inch - 150 lb ANSI Flange



## **WATROD** and **FIREBAR Circulation Heaters**



147/16 in. Ref. (366.7 mm)

31/2 in. ∟(89 mm) (2 Places) - 8¾ in. (222 mm)

– ½ in. NPT Drain

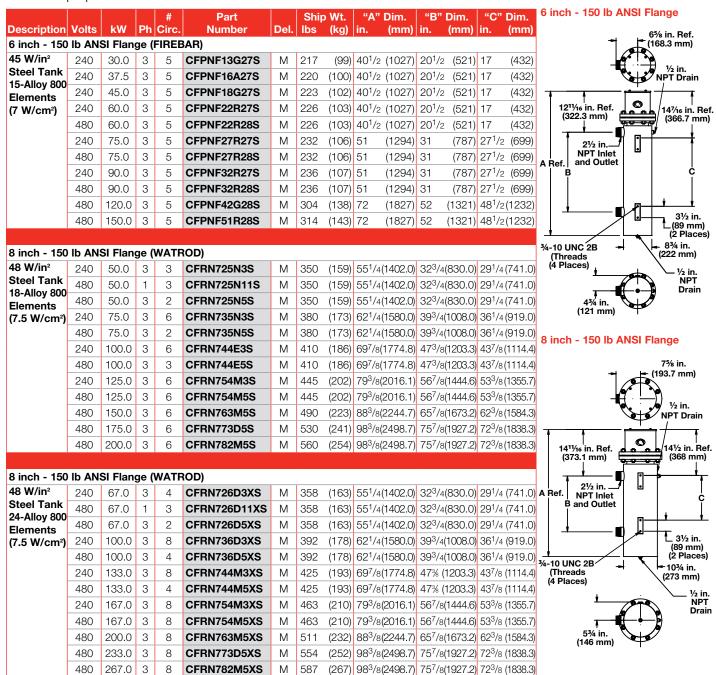
## **Application: Process Water** ®

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| Goriorai                       | - ·     |        |      | ı          |              |       | Chi. | - VA/4 | 66 A 33                        | Dim    | "D"     | Dim     | "C"                | Dim.      | 6 inch - 150 lb        | ANSI F      | lange                 |
|--------------------------------|---------|--------|------|------------|--------------|-------|------|--------|--------------------------------|--------|---------|---------|--------------------|-----------|------------------------|-------------|-----------------------|
| Description                    | Volto   | I-VA/  | Dh   | #          | Part         | Dal   |      | o Wt.  |                                | Dim.   |         | Dim.    |                    |           |                        |             | _                     |
| Description<br>6 inch - 150    |         |        |      |            | Number       | Del.  | lbs  | (kg)   | ш.                             | (mm)   | ļiii.   | (mm)    | III.               | (mm)      | +                      |             | 65% in. R<br>168.3 mı |
|                                |         |        |      | •          |              | N 4   | 010  | (0.7)  | 401/2                          | (1007) | 001/2   | (EQ1)   | 17                 | (400)     | _                      | (2) X       | 7                     |
| 48 W/in²                       | 240     | 18.0   | 1    | 2          | CFPN713G10S  |       | 212  | . ,    |                                | (1027) |         | _ , ,   | +                  | (432)     | _                      |             | ∯ ½ in                |
| Steel Tank                     | 240     | 18.0   | 3    | 1          | CFPN713G3S   | M     | 212  |        |                                | (1027) |         |         |                    | (432)     |                        |             | NPT D                 |
| 12-Alloy 800<br>Elements       |         | 18.0   | 1    | 1          | CFPN713G11S  | M     | 212  | . ,    |                                | (1027) |         |         |                    | (432)     |                        | <del></del> | : <del> </del>        |
| (7.5 W/cm²)                    | 480     | 18.0   | 3    | 1          | CFPN713G5S   | M     | 212  | . ,    | 401/2                          | (1027) |         |         | +                  | (432)     |                        |             | 147/16                |
| (7.5 W/CIII)                   | 240     | 24.0   | 1    | 3          | CFPN717R10S  | M     | 214  |        |                                | (1027) |         |         |                    | (432)     | (022.0 111111)         |             | 1000                  |
|                                | 240     | 24.0   | 3    | 2          | CFPN717R3S   | M     | 214  |        |                                | (1027) |         |         |                    | (432)     |                        |             | þ∲                    |
|                                | 480     | 24.0   | 1    | 2          | CFPN717R11S  | M     | 214  |        |                                | (1027) |         |         |                    | (432)     | 2½ in.—                | <b>∄</b> ∷_ |                       |
|                                | 480     | 24.0   | 3    | 1          | CFPN717R5S   | M     | 214  | (97)   |                                | (1027) |         | _ ' /   | +                  | (432)     |                        | :   -       | İ                     |
|                                | 240     | 30.0   | 1    | 3          | CFPN720G10S  | M     | 217  |        |                                | (1027) |         |         |                    |           |                        | •           | İ                     |
|                                | 240     | 30.0   | 3    | 2          | CFPN720G3S   | M     | 217  | /      | 401/2                          | (1027) |         |         |                    | (432)     | <u>'</u>               |             | İ                     |
|                                | 480     | 30.0   | 1    | 2          | CFPN720G11S  | M     | 217  | _ ` ′  | 401/2                          | (1027) |         | _ ' /   | +                  | (432)     | -                      |             | ١.                    |
|                                | 480     | 30.0   | 3    | 1          | CFPN720G5S   | M     | 217  | _ `    |                                | (1027) |         | (521)   |                    | (432)     |                        | ▄▎╭▛▔       |                       |
|                                | 240     | 36.0   | 1    | 4          | CFPN725G10S  | M     | 222  | . ,    | 401/2                          | (1027) |         |         |                    | (432)     |                        | ኝ╚╜         | 31,<br>(89            |
|                                | 240     | 36.0   | 3    | 2          | CFPN725G3S   | M     | 222  |        | 401/2                          | (1027) |         | _ ' /   | +                  | (432)     | 1                      | _           | (2 F                  |
|                                | 480     | 36.0   | 1    | 2          | CFPN725G11S  | M     | 222  |        | 40 <sup>1</sup> / <sub>2</sub> | (1027) |         | (521)   |                    | (432)     | /4 10 0110 LD          | 7           | 83/4 i                |
|                                | 480     | 36.0   | 3    | 1          | CFPN725G5S   | M     | 222  |        |                                | (1027) | 1       |         |                    | (432)     | (Threads<br>(4 Places) | `           | (222 m                |
|                                | 240     | 48.0   | 3    | 4          | CFPN732R3S   | M     | 226  | (103)  |                                | (1294) |         |         | 271/2              |           | <u> </u>               |             | \_ ½                  |
|                                | 480     | 48.0   | 1    | 3          | CFPN732R11S  | M     | 226  | (103)  |                                | (1294) |         |         | 271/2              | (699)     | -                      |             |                       |
|                                | 480     | 48.0   | 3    | 2          | CFPN732R5S   | M     | 226  | (103)  |                                | (1294) |         |         | 27 <sup>1</sup> /2 | (699)     |                        |             | 9                     |
|                                | 240     | 60.0   | 3    | 4          | CFPN740G3S   | M     | 290  | (132)  |                                | (1827) |         |         |                    | (1232)    | (121 mm)               | 4           |                       |
|                                | 480     | 60.0   | 1    | 3          | CFPN740G11S  | M     | 290  | (132)  |                                | (1827) |         |         |                    | (1232)    |                        |             |                       |
|                                | 480     | 60.0   | 3    | 2          | CFPN740G5S   | M     | 290  | (132)  |                                | (1827) |         |         |                    | (1232)    |                        |             |                       |
|                                | 240     | 72.0   | 3    | 4          | CFPN747R3S   | M     | 298  | (136)  |                                | (1827) |         |         |                    | (1232)    | -                      |             |                       |
|                                | 480     | 72.0   | 3    | 2          | CFPN747R5S   | M     | 298  | (136)  | 72                             | (1827) | 52      | (1321)  | 481/2              | (1232)    |                        |             |                       |
| 0 1 1 1 1 1 1 1 1              |         | 01 51  |      | () A / A 7 | TDOD)        |       |      |        |                                |        |         |         |                    |           | 4                      |             |                       |
| 6 inch - 150                   |         |        |      | •          |              | N 4   | 015  | (0.0)  | 401/-                          | (1007) | 001/-   | (501)   | 17                 | (400)     | _                      |             |                       |
| 48 W/in²                       | 240     | 23.0   | 1    | 3          | CFPN713G10XS |       | 215  | . ,    |                                | (1027) |         |         |                    | (432)     | -                      |             |                       |
| Steel Tank                     | 240     | 23.0   | 3    | 5          | CFPN713G3XS  | M     | 215  | _ ` ′  |                                | (1027) |         | _ ' /   |                    | (432)     | -                      |             |                       |
| 15-Alloy 800                   |         | 23.0   | 1    | 1          | CFPN713G11XS |       | 215  |        |                                | (1027) |         | (521)   |                    | (432)     | -                      |             |                       |
| Elements<br>(7.5 W/cm²)        | 480     | 23.0   | 3    | 1          | CFPN713G5XS  | M     | 215  |        |                                | (1027) |         |         |                    | (432)     | -                      |             |                       |
| (7.5 W/CIII)                   | 240     | 30.0   | 1    | 3          | CFPN717R10XS | M     | 217  | _ `    |                                | (1027) |         | _ ' /   | +                  | (432)     | _                      |             |                       |
|                                | 240     | 30.0   | 3    | 5          | CFPN717R3XS  | M     | 217  |        |                                | (1027) |         |         |                    | (432)     | -                      |             |                       |
|                                | 480     | 30.0   | 1    | 3          | CFPN717R11XS | M     | 217  |        |                                | (1027) |         | (521)   |                    | (432)     | -                      |             |                       |
|                                | 480     | 30.0   | 3    | 1          | CFPN717R5XS  | M     | 217  |        |                                | (1027) |         |         |                    | (432)     | _                      |             |                       |
|                                | 240     | 38.0   | 1    | 5          | CFPN720G10XS | M     | 223  | . ,    |                                | (1027) |         |         | +                  | (432)     | -                      |             |                       |
|                                | 240     | 38.0   | 3    | 5          | CFPN720G3XS  | M     | 223  | (102)  |                                | (1027) |         |         |                    | (432)     | -                      |             |                       |
|                                | 480     | 38.0   | 1    | 3          | CFPN720G11XS |       | 223  | (102)  |                                | (1027) |         |         |                    | (432)     | -                      |             |                       |
|                                | 480     | 38.0   | 3    | 1          | CFPN720G5XS  | M     | 223  |        |                                | (1027) |         |         | +                  | (432)     |                        |             |                       |
|                                | 240     | 45.0   | 1    | 5          | CFPN725G10XS |       | 226  |        |                                | (1027) |         |         |                    | (432)     | -                      |             |                       |
|                                | 240     | 45.0   | 3    | 5          | CFPN725G3XS  | M     | 226  | . ,    |                                | (1027) |         | (521)   |                    | (432)     | -                      |             |                       |
|                                | 480     | 45.0   | 1    | 3          | CFPN725G11XS |       | 226  |        |                                | (1027) |         |         |                    | (432)     |                        |             |                       |
|                                | 480     | 45.0   | 3    | 5          | CFPN725G5XS  | M     | -    |        |                                | (1027) |         |         |                    | (432)     |                        |             |                       |
|                                |         | 60.0   | 3    | 5          | CFPN732R3XS  |       |      | (131)  |                                | (1294) |         |         | 27 <sup>1</sup> /2 |           |                        |             |                       |
|                                | 480     | 60.0   | 1    | 3          | CFPN732R11XS |       | 288  | (131)  |                                | (1294) |         |         | 271/2              |           | 1                      |             |                       |
|                                | 480     | 60.0   | 3    | 5          | CFPN732R5XS  |       | 288  | (131)  |                                | (1294) |         |         | 27 <sup>1</sup> /2 |           | -                      |             |                       |
|                                |         | 75.0   | 3    | 5          | CFPN740G3XS  |       | 296  | (135)  |                                | (1827) |         |         |                    | (1232)    |                        |             |                       |
|                                |         | 75.0   | 1    | 5          | CFPN740G11XS |       |      | (135)  |                                | (1827) |         |         |                    | (1232)    | -                      |             |                       |
|                                |         | 75.0   | 3    | 5          | CFPN740G5XS  |       | 296  | (135)  |                                | (1827) |         |         |                    | (1232)    |                        |             |                       |
|                                |         | 90.0   | 3    | 5          | CFPN747R3XS  |       | 306  | (139)  |                                | (1827) |         |         |                    | (1232)    |                        |             |                       |
|                                | 480     | 90.0   |      | 5          | CFPN747R5XS  |       |      | (139)  | 72                             | (1827) |         |         | *                  | (1232)    | _                      |             |                       |
| <ul> <li>M - Manufa</li> </ul> | acturin | a lead | time | 20         | Truck Shipm  | ant c | anly |        |                                | (5) \∧ | /hen st | eel ves | sel mat            | terials a | re used in this        |             |                       |

• M - Manufacturing lead times Truck Shipment only

When steel vessel materials are used in this application, some rust may be present in the process media




# WATROD and FIREBAR Circulation Heaters



## **Application: Process Water** <sup>®</sup>

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure



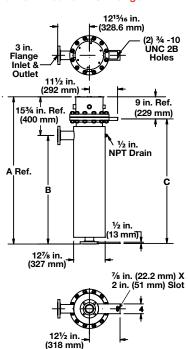
<sup>•</sup> M - Manufacturing lead times

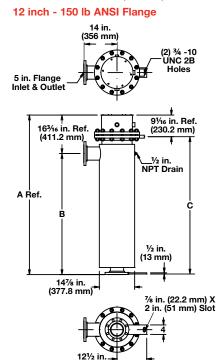
When steel vessel materials are used in this application, some rust may be present in the process media

Truck Shipment only

# WATROD and FIREBAR Circulation Heaters




## **Application: Process Water** ®


- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| Description                                                       | Volts   | kW      | Ph  | #<br>Circ. | Part<br>Number | Del. | Ship<br>lbs | Wt.<br>(kg) | "A"<br>in.          | Dim.<br>(mm) | "B"<br>in.                     | Dim.<br>(mm) | "C"<br>in.                      | Dim.<br>(mm) |
|-------------------------------------------------------------------|---------|---------|-----|------------|----------------|------|-------------|-------------|---------------------|--------------|--------------------------------|--------------|---------------------------------|--------------|
| 10 inch - 150                                                     | lb Al   | NSI Fla | nge | (WA        | TROD)          |      |             |             |                     |              |                                |              |                                 |              |
| 48 W/in² ®                                                        | 480     | 262.0   | 3   | 9          | CFSN773E5S     | М    | 600         | (273)       | 106 <sup>5</sup> /8 | (2708.3)     | 907/8                          | (2308.2)     | 97 <sup>5</sup> /16             | (2471.7)     |
| Steel Tank<br>27-Alloy 800<br>Elements<br>(7.5 W/cm²)             |         |         |     |            |                |      |             |             |                     |              |                                |              |                                 |              |
| 40 in ab. 450 l                                                   | I- A NI | CI Flor |     | ()A/ A T   | (DOD)          |      |             |             |                     |              |                                |              |                                 |              |
| 12 inch, 150                                                      |         | 1       | _   | 1          | 1              |      | 1           |             |                     |              |                                |              |                                 |              |
| 48 W/in²<br>Steel Tank<br>36-Alloy 800<br>Elements<br>(7.5 W/cm²) | 480     | 350.0   | 3   | 12         | CFTN773C5S     | M    | 650         | (295)       | 1061/2              | 2 (2705)     | 909/8                          | (2295.5)     | 97 1/8                          | (2467.0)     |
|                                                                   |         |         |     |            |                |      |             |             |                     |              |                                |              |                                 |              |
| 14 inch - 150                                                     | Ib Al   | NSI Fla | nge | (WA        | TROD)          |      |             |             |                     |              |                                |              |                                 |              |
| 48 W/in²                                                          | 480     | 315.0   | 3   | 15         | CFWN754J5S     | М    | 600         | (273)       | 831/4               | (2115)       | 67                             | (1700)       | 7311/16                         | (1871.7)     |
| Steel Tank<br>45-Alloy 800<br>Elements<br>(7.5 W/cm²)             | 480     | 375.0   | 3   | 15         | CFWN763J5S     | М    | 650         | (295)       | 90 <sup>3</sup> /4  | (2305)       | 74 <sup>1</sup> / <sub>2</sub> | (1891)       | 81 <sup>3</sup> / <sub>16</sub> | (2062.2)     |

- M Manufacturing lead times
   Truck Shipment only
- When steel vessel materials are used in this application, some rust may be present in the process media
- ® Can be wired for 1-phase operation

#### 10 inch - 150 lb ANSI Flange

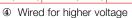




## 14 inch - 150 lb ANSI Flange 15 in. (2) ¾ -10 UNC 2B Holes 6 in. Flange Inlet & Outlet 11½ in. (292 mm) 9¼ in. Ref. (235 mm) 165/16 in. Ref. (414.3 mm) \_\_½ in. NPT Drain A Ref. 31/2 in. 1/2 in. (13 mm) 16½ in. (410 mm) ⅓ in. (22.2 mm) X 2 in. (51 mm) Slot 121/2 in

**WATLOW®** 

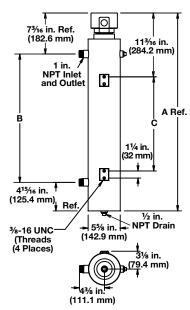
349


## **WATROD** and **FIREBAR Circulation Heaters**



## **Application: Forced Air and Caustic Solutions**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


| Description                           | Volts   | kW   | Ph  | #<br>Circ. | Part<br>Number | Del. |    | Wt.<br>(kg) |                                | Dim.<br>(mm) |                                | Dim.<br>(mm) | "C"<br>in.         | Dim.<br>(mm) | 1 <sup>1</sup> / <sub>4</sub> inch NPT Screv   | v Plug       |
|---------------------------------------|---------|------|-----|------------|----------------|------|----|-------------|--------------------------------|--------------|--------------------------------|--------------|--------------------|--------------|------------------------------------------------|--------------|
| 1 <sup>1</sup> /4 inch NP             | T Screw | Plug | (WA | TROI       | D)             |      | •  |             | •                              |              | '                              |              | ,                  |              | <u> </u>                                       |              |
| 23 W/in² ④                            | 120/240 | 1.0  | 1   | 1          | CBEN13G6S      | RS   | 21 | (10)        | 24 <sup>5</sup> /8             | (625.5)      | 15                             | (381)        | 31/8               | (79.4)       | 6 <sup>7</sup> ∕16 in. Ref. ☐<br>(163.5 mm) ☐  |              |
| Steel Tank<br>2-Alloy 800             | 120/240 | 1.5  | 1   | 1          | CBEN19A6S      | RS   | 29 | (14)        | 24 <sup>5</sup> /8             | (625.5)      | 15                             | (381)        | 3 <sup>1</sup> /8  | (79.4)       | · • · <u>-</u>                                 |              |
| Elements                              | 120/240 | 2.0  | 1   | 1          | CBEN24G6S      | RS   | 29 | (14)        | 32 <sup>5</sup> /8             | (828.7)      | 23                             | (584)        | 3 <sup>1</sup> /8  | (79.4)       | 7                                              |              |
| (3.6 W/cm²)                           |         |      |     |            |                |      |    |             |                                |              |                                |              |                    |              | <sup>3</sup> / <sub>4</sub> in. /<br>NPT Inlet |              |
|                                       |         |      |     |            |                |      |    |             |                                |              |                                |              |                    |              | and Outlet                                     |              |
| 2 <sup>1</sup> / <sub>2</sub> inch NP | T Screw | Plug | (WA | ATRO       | D)             |      |    |             |                                |              |                                |              |                    |              | B                                              |              |
| 23 W/in²                              | 240     | 3.0  | 3   | 1          | CBLNA17G3S     | RS   | 24 | (11)        | 34 <sup>3</sup> / <sub>4</sub> | (881)        | 221/2                          | (572)        | 16 <sup>1</sup> /2 | (419)        | Ī                                              |              |
| Steel Tank<br>3-Alloy 800             | 480     | 3.0  | 3   | 1          | CBLNA17G5S     | RS   | 24 | (11)        | 34 <sup>3</sup> / <sub>4</sub> | (881)        | 22 <sup>1</sup> / <sub>2</sub> | (572)        | 16 <sup>1</sup> /2 | (419)        |                                                |              |
| Elements                              | 240     | 4.5  | 3   | 1          | CBLNA24R3S     | RS   | 27 | (13)        | 44 <sup>3</sup> / <sub>4</sub> | (1135)       | 321/2                          | (1129)       | 26 <sup>1</sup> /2 | (673)        |                                                |              |
| (3.6 W/cm <sup>2</sup> )              | 480     | 4.5  | 3   | 1          | CBLNA24R5S     | RS   | 27 | (13)        | 44 <sup>3</sup> / <sub>4</sub> | (1135)       | 321/2                          | (1129)       | 26 <sup>1</sup> /2 | (673)        | <u> </u>                                       |              |
|                                       | 240     | 6.0  | 3   | 1          | CBLNA32G3S     | RS   | 29 | (14)        | 44 <sup>3</sup> / <sub>4</sub> | (1135)       | 321/2                          | (1129)       | 26 <sup>1</sup> /2 | (673)        | C Ref.                                         |              |
|                                       | 480     | 6.0  | 3   | 1          | CBLNA32G5S     | RS   | 29 | (14)        | 44 <sup>3</sup> / <sub>4</sub> | (1135)       | 321/2                          | (1129)       | 26 <sup>1</sup> /2 | (673)        | <u> </u>                                       |              |
|                                       | 240     | 7.5  | 3   | 1          | CBLNA39R3S     | RS   | 31 | (14)        | 57 <sup>1</sup> / <sub>4</sub> | (1453)       | 45                             | (1143)       | 39                 | (991)        |                                                | in.<br>2 mm) |
|                                       | 480     | 7.5  | 3   | 1          | CBLNA39R5S     | RS   | 31 | (14)        | 57 <sup>1</sup> / <sub>4</sub> | (1453)       | 45                             | (1143)       | 39                 | (991)        | (1.6                                           |              |
|                                       | 240     | 9.0  | 3   | 1          | CBLNA47G3S     | RS   | 32 | (15)        | 57 <sup>1</sup> / <sub>4</sub> | (1453)       | 45                             | (1143)       | 39                 | (991)        |                                                | ( Q          |
|                                       | 480     | 9.0  | 3   | 1          | CBLNA47G5S     | RS   | 32 | (15)        | 57 <sup>1</sup> /4             | (1453)       | 45                             | (1143)       | 39                 | (991)        | 33/4 ir                                        | $\checkmark$ |

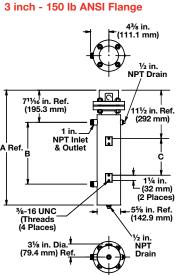


## 3/4 in. / NPT Inlet and Outlet A Ref. C Ref. ½ in. NPT Drain 4 in. (102 mm) 3¾ in. (95 mm)

• RS - Next day shipment up to 5 pieces

#### 21/2 inch NPT Screw Plug




# WATROD and FIREBAR Circulation Heaters



## **Application: Forced Air and Caustic Solutions**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                      |         |       |       | #     | Part        |      | Ship | Wt.   | "A"                            | Dim.   | "B"                            | Dim.   | "C"                            | Dim.  |
|----------------------|---------|-------|-------|-------|-------------|------|------|-------|--------------------------------|--------|--------------------------------|--------|--------------------------------|-------|
| Description          | Volts   | kW    | Ph    | Circ. | Number      | Del. | lbs  | (kg)  | in.                            | (mm)   | in.                            | (mm)   | in.                            | (mm)  |
| 3 inch - 150         | Ib ANSI | Flang | ge (V | VATR  | OD)         |      |      |       |                                |        |                                |        |                                |       |
| 23 W/in²             | 240     | 3.0   | 1     | 1     | CFMNA18A10S | RS   | 68   | (31)  | 35 <sup>1</sup> / <sub>4</sub> | (894)  | 22 <sup>1</sup> /2             | (573)  | 16 <sup>1</sup> /2             | (419) |
| Steel Tank           | 240     | 3.0   | 3     | 1     | CFMNA18A3S  | RS   | 68   | (31)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> /2             | (573)  | 16 <sup>1</sup> /2             | (419) |
| 3-Alloy 800 Elements | 480     | 3.0   | 1     | 1     | CFMNA18A11S | RS   | 68   | (31)  | 35 <sup>1</sup> /4             | (894)  | 22 <sup>1</sup> /2             | (573)  | 16 <sup>1</sup> /2             | (419) |
| (3.6 W/cm²)          | 480     | 3.0   | 3     | 1     | CFMNA18A5S  | RS   | 68   |       | 35 <sup>1</sup> / <sub>4</sub> |        | 22 <sup>1</sup> / <sub>2</sub> | (573)  | 16 <sup>1</sup> /2             | (419) |
| -                    | 240     | 4.5   | 1     | 1     | CFMNA25J10S | М    | 78   | (36)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> /2             | (673) |
| -                    | 240     | 4.5   | 3     | 1     | CFMNA25J3S  | М    | 78   | (36)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> / <sub>2</sub> | (673) |
| -                    | 480     | 4.5   | 1     | 1     | CFMNA25J11S | М    | 78   | (36)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> /2             | (673) |
| -                    | 480     | 4.5   | 3     | 1     | CFMNA25J5S  | М    | 78   | (36)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> /2             | (673) |
| -                    | 240     | 6.0   | 1     | 1     | CFMNA33A10S | М    | 96   | (44)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> /2             | (673) |
| -                    | 240     | 6.0   | 3     | 1     | CFMNA33A3S  | М    | 96   | (44)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> /2             | (673) |
| -                    | 480     | 6.0   | 1     | 1     | CFMNA33A11S | М    | 96   | (44)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> /2             | (673) |
| -                    | 480     | 6.0   | 3     | 1     | CFMNA33A5S  | М    | 96   | (44)  | 45 <sup>1</sup> /4             | (1148) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 26 <sup>1</sup> /2             | (673) |
| -                    | 240     | 7.5   | 1     | 1     | CFMNA40J10S | М    | 100  | (46)  | 57 <sup>3</sup> /4             | (1465) | 45                             | (1143) | 39                             | (991) |
| -                    | 240     | 7.5   | 3     | 1     | CFMNA40J3S  | М    | 100  | (46)  | 57 <sup>3</sup> /4             | (1465) | 45                             | (1143) | 39                             | (991) |
| -                    | 480     | 7.5   | 1     | 1     | CFMNA40J11S | М    | 100  | (46)  | 57 <sup>3</sup> /4             | (1465) | 45                             | (1143) | 39                             | (991) |
| -                    | 480     | 7.5   | 3     | 1     | CFMNA40J5S  | М    | 100  | (46)  | 57 <sup>3</sup> /4             | (1465) | 45                             | (1143) | 39                             | (991) |
| -                    | 240     | 9.0   | 1     | 1     | CFMNA48A10S | М    | 107  |       |                                | (1465) |                                | (1143) |                                | (991) |
|                      | 240     | 9.0   | 3     | 1     | CFMNA48A3S  | М    | 107  | . ,   |                                | (1465) |                                | (1143) |                                | (991) |
| -                    | 480     | 9.0   | 1     | 1     | CFMNA48A11S | М    | 107  | . ,   |                                | (1465) |                                | (1143) |                                | (991) |
| -                    | 480     | 9.0   | 3     | 1     | CFMNA48A5S  | М    | 107  | ( - / | -                              | (1465) | -                              | (1143) |                                | (991) |



RAPID SHIP

• **RS** - Next day shipment up to 5 pieces

• M - Manufacturing lead times

Truck Shipment only

# WATROD and FIREBAR Circulation Heaters



## **Application: Forced Air and Caustic Solutions**

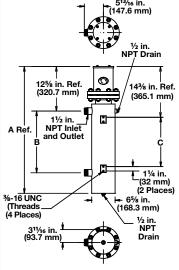
Part

Ship Wt.

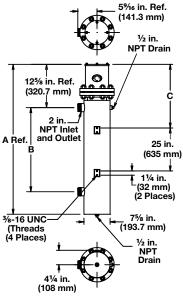
"A" Dim.

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| Description              | Volts | kW      | Ph   | Circ. | Number        | Del. | lbs | (kg)  | in.                | (mm)     | in.                            | (mm)     | in.                | (mm)     |                           |
|--------------------------|-------|---------|------|-------|---------------|------|-----|-------|--------------------|----------|--------------------------------|----------|--------------------|----------|---------------------------|
| 4 inch - 150             | lb AN | ISI Fla | ange | (WA   | TROD)         |      |     |       |                    |          |                                |          |                    |          |                           |
| 23 W/in <sup>2</sup> 6   | 240   | 6.0     | 1    | 1     | CFONA18A10S   | М    | 125 | (57)  | 39                 | (989)    | 20 <sup>1</sup> /2             | (521)    | 17                 | (432)    |                           |
| Steel Tank               | 240   | 6.0     | 3    | 1     | CFONA18A3S    | М    | 125 | (57)  | 39                 | (989)    | 201/2                          | (521)    | 17                 | (432)    |                           |
| 6-Alloy 800              | 480   | 6.0     | 1    | 1     | CFONA18A11S   | М    | 125 | (57)  | 39                 | (989)    |                                |          | 17                 | (432)    |                           |
| Elements                 | 480   | 6.0     | 3    | 1     | CFONA18A5S    | М    | 125 | (57)  | 39                 | (989)    |                                | (521)    | 17                 | (432)    |                           |
| (3.6 W/cm <sup>2</sup> ) | 240   | 9.0     | 1    | 1     | CFONA25J10S   | М    | 160 | (73)  | 39                 | (989)    | 20 <sup>1</sup> / <sub>2</sub> | (521)    | 17                 | (432)    | l I.                      |
|                          | 240   | 9.0     | 3    | 1     | CFONA25J3S    | М    | 160 | (73)  | 39                 | (989)    |                                | (521)    |                    | (432)    |                           |
|                          | 480   | 9.0     | 1    | 1     | CFONA25J11S   | М    | 160 | (73)  | 39                 | (989)    |                                | (521)    |                    | (432)    |                           |
|                          | 480   | 9.0     | 3    | 1     | CFONA25J5S    | М    | 160 | (73)  | 39                 | (989)    | 20 <sup>1</sup> / <sub>2</sub> | (521)    | _                  | (432)    | 7                         |
|                          | 240   | 12.0    | 1    | 2     | CFONA33A10S   | М    | 163 | (74)  |                    | (1256)   |                                | (787)    |                    |          | A Ref.                    |
|                          | 240   | 12.0    | 3    | 1     | CFONA33A3S    | М    | 163 | (74)  |                    | (1256)   | 31                             | (787)    |                    |          | į                         |
|                          | 480   | 12.0    | 1    | 1     | CFONA33A11S   | М    | 163 | (74)  |                    | (1256)   |                                | (787)    |                    |          |                           |
|                          | 480   | 12.0    | 3    | 1     | CFONA33A5S    | М    | 163 | (74)  |                    | (1256)   |                                | (787)    |                    |          | _+                        |
|                          | 240   | 15.0    | 1    | 2     | CFONA40J10S   | М    | 229 | (104) |                    | (1789)   |                                | (1321)   |                    | 2 (1232) |                           |
|                          | 240   | 15.0    | 3    | 1     | CFONA40J3S    | М    | 229 | (104) |                    | (1789)   |                                | (1321)   |                    | 2 (1232) | %-16 UN                   |
|                          | 480   | 15.0    | 1    | 1     | CFONA40J11S   | М    | 229 | (104) |                    | (1789)   | 52                             | (1321)   | _                  | 2 (1232) | (Threads                  |
|                          | 480   | 15.0    | 3    | 1     | CFONA40J5S    | М    | 229 | \ - / |                    | (1789)   | -                              | , ,      |                    | 2 (1232) | (4 Places                 |
|                          | 240   | 18.0    | 1    | 2     | CFONA48A10S   | М    | 234 | (107) |                    | (1789)   |                                | . ,      |                    | 2 (1232) | 3 <sup>11</sup> ,<br>(93. |
|                          | 240   | 18.0    | 3    | 1     | CFONA48A3S    | М    | 234 | (107) |                    | (1789)   |                                | (1321)   |                    | 2 (1232) | •                         |
|                          | 480   | 18.0    | 1    | 1     | CFONA48A11S   | М    | 234 | (107) |                    | (1789)   |                                |          |                    | 2 (1232) |                           |
|                          | 480   | 18.0    | 3    | 1     | CFONA48A5S    | М    | 234 | (107) |                    | (1789)   |                                | . ,      |                    | 2 (1232) |                           |
|                          | 240   | 25.0    | 3    | 2     | CFONA64J3S    | М    | 298 |       |                    | (2326)   |                                | (1854)   |                    | (1676)   |                           |
|                          | 480   | 25.0    | 1    | 2     | CFONA64J11S   | М    | 298 | (136) |                    | (2326)   |                                | (1854)   | _                  | (1676)   | 5 inch                    |
|                          | 480   | 25.0    | 3    | 1     | CFONA64J5S    | М    | 298 |       |                    | (2326)   |                                | (1854)   |                    | (1676)   |                           |
|                          | 240   | 30.0    | 3    | 2     | CFONA77A3S    | М    | 306 |       |                    | (2326)   |                                | (1854)   |                    | (1676)   |                           |
|                          | 480   | 30.0    | 1    | 2     | CFONA77A11S   | М    | 306 | . ,   |                    | (2326)   |                                | (1854)   | _                  | (1676)   |                           |
|                          | 480   | 30.0    | 3    | 1     | CFONA77A5S    | М    | 306 |       |                    | (2326)   |                                | (1854)   |                    | (1676)   |                           |
|                          |       |         | _    |       |               | 111  |     | (100) |                    | (====)   |                                | ( , , ,  |                    | (1010)   |                           |
| 5 inch - 150             | lb AN | ISI Fla | ange | (WA   | TROD)         |      |     |       |                    |          |                                |          |                    |          |                           |
| 23 W/in² 6               | 240   | 9.0     | 1    | 1     | CFNNA25J10S   | М    | 140 | (64)  | 491/40             | (1249.0) | 30                             | (762.0)  | 147/               | 8(377.8) | 1 1                       |
| Steel Tank               | 240   | 9.0     | 3    | 1     | CFNNA25J3S    | М    | 140 | (64)  | 491/4              | (1249.0) | 30                             |          |                    | 8(377.8) | 12 <sup>5</sup><br>(32    |
| 6-Alloy 800              | 480   | 9.0     | 1    | 1     | CFNNA25J11S   | М    | 140 | (64)  |                    | (1249.0) |                                |          |                    | s(377.8) | (02                       |
| Elements                 | 480   | 9.0     | 3    | 1     | CFNNA25J5S    | М    | 140 | (64)  | 49 <sup>1</sup> /4 | (1249.0) | 30                             | (762.0)  | 14 <sup>7</sup> /8 | в(377.8) | T                         |
| (3.6 W/cm <sup>2</sup> ) | 240   | 12.0    | 1    | 2     | CFNNA33A10S   | М    | 145 | (66)  |                    | (1427.0) |                                | ,        |                    | s(473.1) |                           |
|                          | 240   | 12.0    | 3    | 1     | CFNNA33A3S    | М    | 145 | (66)  |                    | (1427.0) |                                | . ,      | _                  | s(473.1) | A Ref.                    |
|                          | 480   | 12.0    | 1    | 1     | CFNNA33A11S   | М    | 145 | (66)  |                    | (1427.0) |                                | (940.0)  |                    | в(473.1) | B                         |
|                          | 480   | 12.0    | 3    | 1     | CFNNA33A5S    | М    | 145 | (66)  | 56 <sup>1</sup> /4 | (1427.0) | 37                             | (940.0)  |                    | s(473.1) |                           |
|                          | 240   | 15.0    | 1    | 2     | CFNNA40J10S   | М    | 167 | (76)  | 56 <sup>1</sup> /4 | (1427.0) | 37                             | (940.0)  | 18 <sup>5</sup> /8 | s(473.1) |                           |
|                          | 240   | 15.0    | 3    | 1     | CFNNA40J3S    | М    | 167 | (76)  | 56 <sup>1</sup> /4 | (1427.0) | 37                             | (940.0)  | 18 <sup>5</sup> /8 | s(473.1) | +                         |
|                          | 480   | 15.0    | 1    | 1     | CFNNA40J11S   | М    | 167 | (76)  | 56 <sup>1</sup> /4 | (1427.0) | 37                             | (940.0)  | 18 <sup>5</sup> /8 | s(473.1) | ↓                         |
|                          | 480   | 15.0    | 3    | 1     | CFNNA40J5S    | М    | 167 | (76)  | 56 <sup>1</sup> /4 | (1427.0) | 37                             |          |                    | s(473.1) | 3∕8-16 UI                 |
|                          | 240   | 18.0    | 1    | 2     | CFNNA48A10S   | М    | 180 | (82)  | 67 <sup>3</sup> /4 | (1719.0) | 48 <sup>1</sup> / <sub>2</sub> | (1232.0) | 25                 | (633.0)  | (Thread                   |
|                          | 240   | 18.0    | 3    | 1     | CFNNA48A3S    | М    | 180 | (82)  | 67 <sup>3</sup> /4 | (1719.0) | 48 <sup>1</sup> / <sub>2</sub> | (1232.0) | 25                 | (633.0)  | (+ Flace                  |
|                          | 480   | 18.0    | 1    | 1     | CFNNA48A11S   | М    | 180 | (82)  | 67 <sup>3</sup> /4 | (1719.0) | 48 <sup>1</sup> / <sub>2</sub> | (1232.0) | 25                 | (633.0)  |                           |
|                          | 480   | 18.0    | 3    | 1     | CFNNA48A5S    | М    | 180 | (82)  |                    | (1719.0) |                                | (1232.0) | _                  | (633.0)  |                           |
|                          | 240   | 25.0    | 3    | 2     | CFNNA64J3S    | М    | 195 | (89)  |                    | . ,      |                                | (1571.6) | _                  | (633.0)  |                           |
|                          | 480   | 25.0    | 1    | 2     | CFNNA64J11S   | М    | 195 | (89)  |                    | (2060.6) |                                | (1571.6) | _                  | (633.0)  |                           |
|                          | 480   | 25.0    | 3    | 1     | CFNNA64J5S    | М    | 195 | (89)  |                    | (2060.6) |                                | (1571.6) | _                  | (633.0)  |                           |
|                          | 240   | 30.0    | 3    | 2     | CFNNA77A3S    | М    | 220 | (100) |                    | (2390.8) |                                | (1902.0) |                    | (633.0)  |                           |
|                          | 480   | 30.0    | 1    | 2     | CFNNA77A11S   | М    | 220 | (100) |                    | (2390.8) |                                | (1902.0) | _                  | (633.0)  |                           |
|                          | 480   | 30.0    | 3    | 1     | CFNNA77A5S    | М    | 220 |       |                    | (2390.8) |                                | (1902.0) |                    | (633.0)  |                           |
|                          | .50   | 00.0    |      |       | 2.1110.117.00 |      |     | (100) | 0 1 /01            | ()       | . 0                            | ()       |                    | ,000.0)  | J                         |


94<sup>1</sup>/<sub>8</sub> (2390.8) | 75 (1902.0) | 25 (633.0)
 Can be wired 3-phase wye to produce
 1/3 of the rated kW and watt density

Truck Shipment only


"B" Dim.

"C" Dim.

<sup>4</sup> inch - 150 lb ANSI Flange



5 inch - 150 lb ANSI Flange



## **WATROD** and **FIREBAR Circulation Heaters**



5% in. Ref. (141.3 mm)

**NPT Drain** 

25 in. (635 mm)

1¼ in. (32 mm) (2 Places)

½ in. NPT Drain

## **Application: Forced Air and Caustic Solutions**

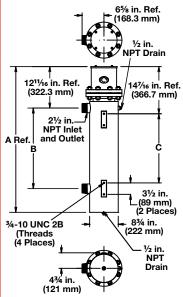
**Part** Number

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| Description            |                                                      |                                                      |                                      |                                 |                                                                                                  | Dei.                       | IDS                                           | (Kg)                                                        | ın.                                          | (mm)                                                               | ın.                                          | (mm)                                                               | ın.                                                                                                                  | (mm)                                                                       |          |
|------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------|
| 5 inch - 150           | Ib ANS                                               | SI Flan                                              | ige (                                | WATI                            | ROD)                                                                                             |                            |                                               |                                                             |                                              |                                                                    |                                              |                                                                    |                                                                                                                      |                                                                            |          |
| 23 W/in <sup>2</sup> ⑥ | 240                                                  | 14.0                                                 | 1                                    | 3                               | CFNNA25J10XS                                                                                     | М                          | 145                                           | (66)                                                        | 491/4(                                       | 1249.0)                                                            | 30                                           | (762.0)                                                            | 14 <sup>7</sup> /8                                                                                                   | (377.8)                                                                    |          |
| Steel Tank             | 240                                                  | 14.0                                                 | 3                                    | 1                               | CFNNA25J3XS                                                                                      | М                          | 145                                           | (66)                                                        | 491/4(                                       | (1249.0)                                                           | 30                                           | (762.0)                                                            | 14 <sup>7</sup> /8                                                                                                   | (377.8)                                                                    |          |
| 9-Alloy 800            | 480                                                  | 14.0                                                 | 1                                    | 1                               | CFNNA25J11XS                                                                                     | М                          | 145                                           | (66)                                                        | 49 <sup>1</sup> /4(                          | 1249.0)                                                            | 30                                           | (762.0)                                                            | 14 <sup>7</sup> /8                                                                                                   | (377.8)                                                                    |          |
| Elements               | 480                                                  | 14.0                                                 | 3                                    | 1                               | CFNNA25J5XS                                                                                      | М                          | 145                                           | (66)                                                        | 491/4(                                       | 1249.0)                                                            | 30                                           | (762.0)                                                            | 14 <sup>7</sup> /8                                                                                                   | (377.8)                                                                    | 7        |
| (3.6 W/cm²)            | 240                                                  | 18.0                                                 | 1                                    | 3                               | CFNNA33A10XS                                                                                     | М                          | 150                                           | (68)                                                        | 56 <sup>1</sup> /4(                          | 1427.0)                                                            | 37                                           | (940.0)                                                            | 18 <sup>5</sup> /8                                                                                                   | (473.1)                                                                    | 1:       |
|                        | 240                                                  | 18.0                                                 | 3                                    | 1                               | CFNNA33A3XS                                                                                      | М                          | 150                                           | (68)                                                        | 56 <sup>1</sup> /4(                          | 1427.0)                                                            | 37                                           | (940.0)                                                            | 18 <sup>5</sup> /8                                                                                                   | (473.1)                                                                    | (        |
|                        | 480                                                  | 18.0                                                 | 1                                    | 1                               | CFNNA33A11XS                                                                                     | М                          | 150                                           | (68)                                                        | 56 <sup>1</sup> /4(                          | 1427.0)                                                            | 37                                           | (940.0)                                                            | 18 <sup>5</sup> /8                                                                                                   | (473.1)                                                                    | -        |
|                        | 480                                                  | 18.0                                                 | 3                                    | 1                               | CFNNA33A5XS                                                                                      | М                          | 150                                           | (68)                                                        | 56 <sup>1</sup> /4(                          | 1427.0)                                                            | 37                                           | (940.0)                                                            | 18 <sup>5</sup> /8                                                                                                   | (473.1)                                                                    |          |
|                        | 240                                                  | 23.0                                                 | 1                                    | 3                               | CFNNA40J10XS                                                                                     | М                          | 174                                           | (79)                                                        | 56 <sup>1</sup> /4(                          | 1427.0)                                                            | 37                                           | (940.0)                                                            | 18 <sup>5</sup> /8                                                                                                   | (473.1)                                                                    | A Ref.   |
|                        | 240                                                  | 23.0                                                 | 3                                    | 3                               | CFNNA40J3XS                                                                                      | М                          | 174                                           | (79)                                                        | 56 <sup>1</sup> /4(                          | 1427.0)                                                            | 37                                           | (940.0)                                                            | 18 <sup>5</sup> /8                                                                                                   | (473.1)                                                                    | A Ref.   |
|                        | 480                                                  | 23.0                                                 | 1                                    | 1                               | CFNNA40J11XS                                                                                     | М                          | 174                                           | (79)                                                        |                                              | 1427.0)                                                            |                                              | (940.0)                                                            |                                                                                                                      | (473.1)                                                                    | 1 1      |
|                        | 480                                                  | 23.0                                                 | 3                                    | 1                               | CFNNA40J5XS                                                                                      | М                          | 174                                           | (79)                                                        |                                              | 1427.0)                                                            |                                              | (940.0)                                                            |                                                                                                                      | (473.1)                                                                    |          |
|                        | 240                                                  | 27.0                                                 | 1                                    | 3                               | CFNNA48A10XS                                                                                     | М                          | 189                                           | (86)                                                        |                                              |                                                                    |                                              | 2(1232.0)                                                          |                                                                                                                      | (633.0)                                                                    | 1        |
|                        | 240                                                  | 27.0                                                 | 3                                    | 3                               | CFNNA48A3XS                                                                                      | М                          | 189                                           | (86)                                                        |                                              | ,                                                                  |                                              | 2(1232.0)                                                          |                                                                                                                      | (633.0)                                                                    |          |
|                        | 480                                                  | 27.0                                                 | 1                                    | 3                               | CFNNA48A11XS                                                                                     | M                          | 189                                           | (86)                                                        |                                              |                                                                    |                                              | 2(1232.0)                                                          |                                                                                                                      | (633.0)                                                                    | <u> </u> |
|                        | 480                                                  | 27.0                                                 | 3                                    | 1                               | CFNNA48A5XS                                                                                      | M                          | 189                                           | (86)                                                        |                                              |                                                                    |                                              | 2(1232.0)<br>2(1232.0)                                             |                                                                                                                      | (633.0)                                                                    | ∜8-16 U  |
|                        | 240                                                  | 38.0                                                 | 3                                    | 3                               | CFNNA64J3XS                                                                                      | M                          | 207                                           | (94)                                                        |                                              | . ,                                                                |                                              | 2(1232.0)<br>3 (1571.6)                                            |                                                                                                                      | (633.0)                                                                    |          |
|                        | 480                                                  | 38.0                                                 | 1                                    | 3                               | CFNNA64J11XS                                                                                     | M                          | 207                                           | (94)                                                        |                                              | , ,                                                                |                                              | (157 1.6)<br>3 (1571.6)                                            |                                                                                                                      | (633.0)                                                                    |          |
|                        | 480                                                  | 38.0                                                 | 3                                    | 1                               | CFNNA64J5XS                                                                                      | M                          | 207                                           | (94)                                                        |                                              | . ,                                                                |                                              | , ,                                                                |                                                                                                                      | (633.0)                                                                    | 1        |
|                        | 240                                                  | 45.0                                                 | 3                                    | 3                               |                                                                                                  | M                          |                                               | . ,                                                         |                                              |                                                                    |                                              | 3 (1571.6)<br>1902.0)                                              |                                                                                                                      | (633.0)                                                                    | 4        |
|                        | 480                                                  |                                                      | 1                                    |                                 | CFNNA77A3XS                                                                                      | M                          |                                               |                                                             |                                              | ,                                                                  |                                              | ,                                                                  |                                                                                                                      | ,                                                                          | -        |
|                        |                                                      | 45.0                                                 |                                      | 3                               | CFNNA77A11XS                                                                                     |                            |                                               | (106)                                                       |                                              |                                                                    |                                              | 1902.0)                                                            |                                                                                                                      | (633.0)                                                                    | 1        |
|                        | 480                                                  | 45.0                                                 | 3                                    | 3                               | CFNNA77A5XS                                                                                      | М                          | 233                                           | (100)                                                       | 94 1/8(                                      | 2309.0)                                                            | 75 (                                         | 1902.0)                                                            | 25                                                                                                                   | (633.0)                                                                    |          |
| Circle 450             | II- A N I C                                          | N Flan                                               |                                      | 14/A TI                         | DOD)                                                                                             |                            |                                               |                                                             |                                              |                                                                    |                                              |                                                                    |                                                                                                                      |                                                                            | 6 incl   |
| 6 inch - 150           |                                                      |                                                      |                                      | _                               |                                                                                                  | N 4                        | 01.4                                          | (0.7)                                                       | 401/-                                        | (1007)                                                             | 001/                                         | - (501)                                                            | 47                                                                                                                   | (400)                                                                      |          |
| 23 W/in² ⑥             | 240                                                  | 12.0                                                 | 1                                    | 2                               | CFPNA17R10S                                                                                      | M                          | 214                                           | (97)                                                        |                                              | (1027)                                                             |                                              | 2 (521)                                                            | 17                                                                                                                   | (432)                                                                      |          |
| Steel Tank             | 240                                                  | 12.0                                                 | 3                                    | 1                               | CFPNA17R3S                                                                                       | M                          | 214                                           | (97)                                                        |                                              | (1027)                                                             |                                              | , ,                                                                | 17                                                                                                                   | (432)                                                                      |          |
| 12-Alloy 800           |                                                      | 12.0                                                 | 1                                    | 1                               | CFPNA17R11S                                                                                      | M                          | 214                                           | (97)                                                        |                                              | (1027)                                                             |                                              | ,                                                                  | 17                                                                                                                   | (432)                                                                      |          |
| Elements               | 480                                                  | 12.0                                                 | 3                                    | 1                               | CFPNA17R5S                                                                                       | M                          | 214                                           | (97)                                                        |                                              | (1027)                                                             |                                              | . ,                                                                | 17                                                                                                                   | (432)                                                                      |          |
| (3.6 W/cm²)            | 240                                                  | 18.0                                                 | 1                                    | 2                               | CFPNA25G10S                                                                                      | М                          |                                               | (101)                                                       |                                              | (1027)                                                             |                                              | , ,                                                                | 17                                                                                                                   | (432)                                                                      | 1        |
|                        | 240                                                  | 18.0                                                 | 3                                    | 1                               | CFPNA25G3S                                                                                       | М                          |                                               | (101)                                                       |                                              | (1027)                                                             |                                              | /                                                                  | 17                                                                                                                   | (432)                                                                      | 12       |
|                        | 480                                                  | 18.0                                                 | 1                                    | 1                               | CFPNA25G11S                                                                                      | М                          |                                               | (101)                                                       |                                              | (1027)                                                             |                                              | 2 (521)                                                            | 17                                                                                                                   | (432)                                                                      | (3       |
|                        | 480                                                  | 18.0                                                 | 3                                    | 1                               | CFPNA25G5S                                                                                       | М                          |                                               | (101)                                                       |                                              | (1027)                                                             | 201/2                                        | , ,                                                                | 17                                                                                                                   | (432)                                                                      |          |
|                        | 240                                                  | 24.0                                                 | 1                                    | 3                               | CFPNA32R10S                                                                                      | М                          |                                               | (103)                                                       |                                              | (1294)                                                             |                                              | (787)                                                              |                                                                                                                      | 2 (699)                                                                    |          |
|                        | 240                                                  | 24.0                                                 | 3                                    | 2                               | CFPNA32R3S                                                                                       | М                          |                                               | (103)                                                       |                                              | (1294)                                                             | 31                                           | (787)                                                              |                                                                                                                      | 2 (699)                                                                    | A Ref.   |
|                        | 480                                                  | 24.0                                                 | 1                                    | 2                               | CFPNA32R11S                                                                                      | М                          |                                               | (103)                                                       |                                              | (1294)                                                             | 31                                           | (787)                                                              |                                                                                                                      | 2 (699)                                                                    | E        |
|                        | 480                                                  | 24.0                                                 | 3                                    | 1                               | CFPNA32R5S                                                                                       | М                          |                                               | (103)                                                       |                                              | (1294)                                                             | 31                                           | (787)                                                              |                                                                                                                      | 2 (699)                                                                    |          |
|                        | 240                                                  | 30.0                                                 | 1                                    | 3                               | CFPNA40G10S                                                                                      | М                          | 290                                           | (132)                                                       | 72                                           | (1827)                                                             | 52                                           | (1321)                                                             | 481/2                                                                                                                | 2 (1232)                                                                   |          |
|                        | 240                                                  | 30.0                                                 | 3                                    | 2                               | CFPNA40G3S                                                                                       | М                          | 290                                           | (132)                                                       | 72                                           | (1827)                                                             | 52                                           | (1321)                                                             | 48 <sup>1</sup> /2                                                                                                   | 2 (1232)                                                                   | ك        |
|                        | 480                                                  | 30.0                                                 | 1                                    | 2                               | CFPNA40G11S                                                                                      | М                          | 290                                           | (132)                                                       | 72                                           | (1827)                                                             | 52                                           | (1321)                                                             | 48 <sup>1</sup> /2                                                                                                   | 2 (1232)                                                                   |          |
|                        | 400                                                  | 30.0                                                 | 3                                    | 1                               | CFPNA40G5S                                                                                       | М                          | 290                                           | (132)                                                       | 72                                           | (1827)                                                             | 52                                           | (1321)                                                             | 481/2                                                                                                                | 2 (1232)                                                                   |          |
|                        | 480                                                  | 00.0                                                 |                                      |                                 |                                                                                                  | N 4                        | 208                                           | (136)                                                       | 72                                           | (1827)                                                             | 50                                           | (1321)                                                             | 481/2                                                                                                                | (1232)                                                                     | ¾-10 l   |
|                        | 240                                                  | 36.0                                                 | 1                                    | 4                               | CFPNA47R10S                                                                                      | M                          | 230                                           | (100)                                                       | 12                                           | (1021)                                                             | 52                                           | (1321)                                                             | .0,.                                                                                                                 | (1202)                                                                     |          |
|                        |                                                      |                                                      | 1                                    | 2                               | CFPNA47R10S<br>CFPNA47R3S                                                                        | M                          |                                               | (136)                                                       |                                              | (1827)                                                             | 52                                           | (1321)                                                             |                                                                                                                      | 2 (1232)                                                                   | (Thr     |
|                        | 240                                                  | 36.0                                                 | _                                    | _                               |                                                                                                  |                            | 298                                           | . ,                                                         | 72                                           | , ,                                                                |                                              | ` /                                                                | 48 <sup>1</sup> /2                                                                                                   | (1232)                                                                     | (4 PI    |
|                        | 240<br>240                                           | 36.0<br>36.0                                         | 3                                    | 2                               | CFPNA47R3S                                                                                       | М                          | 298<br>298                                    | (136)                                                       | 72<br>72                                     | (1827)                                                             | 52                                           | (1321)                                                             | 48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                     |                                                                            | (4 PI    |
|                        | 240<br>240<br>480                                    | 36.0<br>36.0<br>36.0                                 | 3                                    | 2                               | CFPNA47R3S<br>CFPNA47R11S                                                                        | M<br>M                     | 298<br>298<br>298                             | (136)<br>(136)                                              | 72<br>72<br>72                               | (1827)<br>(1827)                                                   | 52<br>52                                     | (1321)<br>(1321)                                                   | 48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                   | (1232)<br>(1232)<br>(1232)                                                 | (4 PI    |
|                        | 240<br>240<br>480<br>480<br>240                      | 36.0<br>36.0<br>36.0<br>36.0<br>50.0                 | 3<br>1<br>3                          | 2<br>2<br>1<br>4                | CFPNA47R3S<br>CFPNA47R11S<br>CFPNA47R5S<br>CFPNA64G3S                                            | M<br>M<br>M                | 298<br>298<br>298<br>360                      | (136)<br>(136)<br>(136)<br>(164)                            | 72<br>72<br>72<br>93                         | (1827)<br>(1827)<br>(1827)<br>(1827)<br>(2361)                     | 52<br>52<br>52<br>73                         | (1321)<br>(1321)<br>(1321)<br>(1854)                               | 48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>66             | 2 (1232)<br>2 (1232)<br>2 (1232)<br>2 (1232)<br>(1676)                     | (4 PI    |
|                        | 240<br>240<br>480<br>480                             | 36.0<br>36.0<br>36.0<br>36.0<br>50.0                 | 3<br>1<br>3<br>3                     | 2 2 1                           | CFPNA47R3S<br>CFPNA47R11S<br>CFPNA47R5S<br>CFPNA64G3S<br>CFPNA64G11S                             | M<br>M<br>M                | 298<br>298<br>298<br>360<br>360               | (136)<br>(136)<br>(136)<br>(164)<br>(164)                   | 72<br>72<br>72<br>93<br>93                   | (1827)<br>(1827)<br>(1827)<br>(1827)<br>(2361)<br>(2361)           | 52<br>52<br>52<br>73<br>73                   | (1321)<br>(1321)<br>(1321)<br>(1854)<br>(1854)                     | 48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>66<br>66       | 2 (1232)<br>2 (1232)<br>2 (1232)<br>(1676)<br>(1676)                       | (4 PI    |
|                        | 240<br>240<br>480<br>480<br>240<br>480<br>480        | 36.0<br>36.0<br>36.0<br>36.0<br>50.0<br>50.0         | 3<br>1<br>3<br>3<br>1<br>3           | 2<br>2<br>1<br>4<br>3<br>2      | CFPNA47R3S<br>CFPNA47R11S<br>CFPNA47R5S<br>CFPNA64G3S<br>CFPNA64G11S<br>CFPNA64G5S               | M<br>M<br>M<br>M<br>M      | 298<br>298<br>298<br>360<br>360<br>360        | (136)<br>(136)<br>(136)<br>(164)<br>(164)<br>(164)          | 72<br>72<br>72<br>93<br>93<br>93             | (1827)<br>(1827)<br>(1827)<br>(1827)<br>(2361)<br>(2361)<br>(2361) | 52<br>52<br>52<br>73<br>73<br>73             | (1321)<br>(1321)<br>(1321)<br>(1854)<br>(1854)<br>(1854)           | 48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>66<br>66       | 2 (1232)<br>2 (1232)<br>2 (1232)<br>(1676)<br>(1676)<br>(1676)             | (4 Pla   |
|                        | 240<br>240<br>480<br>480<br>240<br>480<br>480<br>240 | 36.0<br>36.0<br>36.0<br>50.0<br>50.0<br>50.0<br>60.0 | 3<br>1<br>3<br>3<br>1<br>3<br>3<br>3 | 2<br>2<br>1<br>4<br>3<br>2<br>4 | CFPNA47R3S<br>CFPNA47R11S<br>CFPNA47R5S<br>CFPNA64G3S<br>CFPNA64G11S<br>CFPNA64G5S<br>CFPNA76R3S | M<br>M<br>M<br>M<br>M<br>M | 298<br>298<br>298<br>360<br>360<br>360<br>368 | (136)<br>(136)<br>(136)<br>(164)<br>(164)<br>(164)<br>(167) | 72<br>72<br>72<br>93<br>93<br>93<br>93       | (1827)<br>(1827)<br>(1827)<br>(2361)<br>(2361)<br>(2361)<br>(2361) | 52<br>52<br>52<br>73<br>73<br>73<br>73       | (1321)<br>(1321)<br>(1321)<br>(1854)<br>(1854)<br>(1854)<br>(1854) | 48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>66<br>66<br>66 | 2 (1232)<br>2 (1232)<br>2 (1232)<br>2 (1232)<br>(1676)<br>(1676)<br>(1676) | (4 PI    |
|                        | 240<br>240<br>480<br>480<br>240<br>480<br>480        | 36.0<br>36.0<br>36.0<br>36.0<br>50.0<br>50.0         | 3<br>1<br>3<br>3<br>1<br>3           | 2<br>2<br>1<br>4<br>3<br>2      | CFPNA47R3S<br>CFPNA47R11S<br>CFPNA47R5S<br>CFPNA64G3S<br>CFPNA64G11S<br>CFPNA64G5S               | M<br>M<br>M<br>M<br>M      | 298<br>298<br>360<br>360<br>360<br>368<br>368 | (136)<br>(136)<br>(136)<br>(164)<br>(164)<br>(164)          | 72<br>72<br>72<br>93<br>93<br>93<br>93<br>93 | (1827)<br>(1827)<br>(1827)<br>(1827)<br>(2361)<br>(2361)<br>(2361) | 52<br>52<br>52<br>73<br>73<br>73<br>73<br>73 | (1321)<br>(1321)<br>(1321)<br>(1854)<br>(1854)<br>(1854)           | 48 <sup>1</sup> / <sub>2</sub> 48 <sup>1</sup> / <sub>2</sub> 48 <sup>1</sup> / <sub>2</sub> 66 66 66 66             | 2 (1232)<br>2 (1232)<br>2 (1232)<br>(1676)<br>(1676)<br>(1676)             | (4 Pi    |

3/8-16 UNC-(Threads (4 Places) \_\_ 75% in. (193.7 mm)

5 inch - 150 lb ANSI Flange


12% in. Ref. (320.7 mm)

> 2 in. NPT Inlet

and Outlet

6 inch - 150 lb ANSI Flange

4¼ in. (108 mm)



© Can be wired 3-phase wye to produce 1/3 of the rated kW and watt density

Truck Shipment only

"A" Dim.

(mm) in.

"B" Dim.

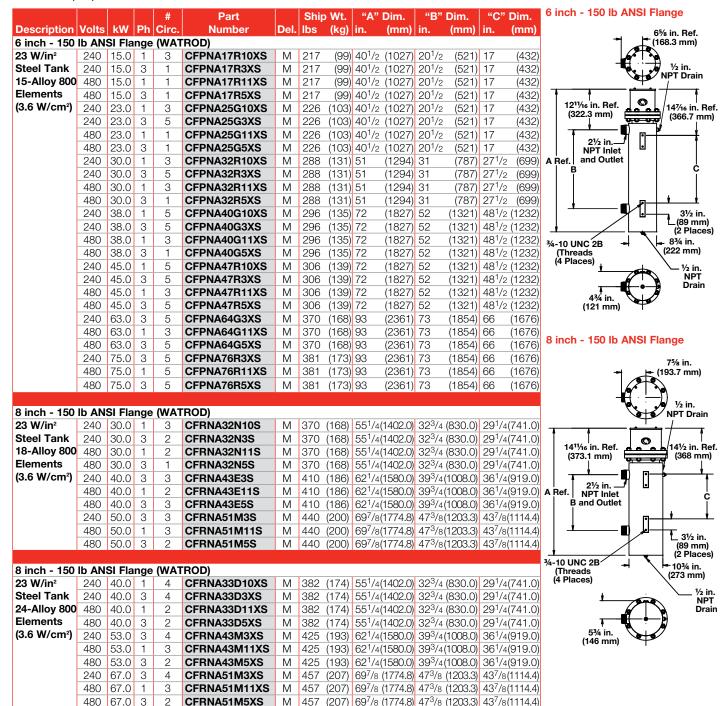
(mm) in.

"C" Dim.

(mm)

Ship Wt.

(kg) in.


<sup>•</sup> M - Manufacturing lead times

## WATROD and FIREBAR Circulation Heaters



## **Application: Forced Air and Caustic Solutions**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure



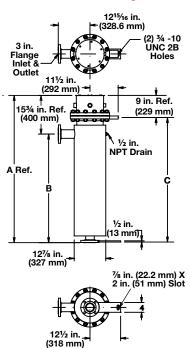
<sup>•</sup> M - Manufacturing lead times

Truck Shipment only

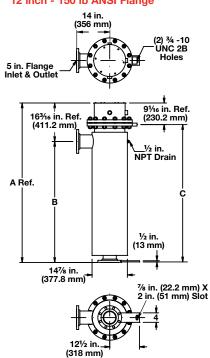
# WATROD and FIREBAR Circulation Heaters



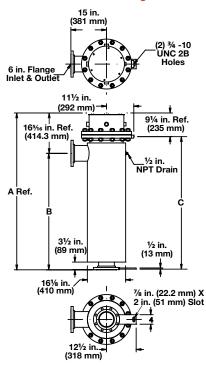
## **Application: Forced Air and Caustic Solutions**


- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                          |         |         |     | #     | Dout           |      | Chi | \ \A/4 | "A"                            | Dim     | "D"                            | Dim     | "0"                 | Dim.      |
|--------------------------|---------|---------|-----|-------|----------------|------|-----|--------|--------------------------------|---------|--------------------------------|---------|---------------------|-----------|
| Description              | Volto   | LAM     | Dh  |       | Part<br>Number | Dal  |     | Wt.    |                                |         | _                              | Dim.    | _                   |           |
| Description              |         |         |     | Circ. |                | Del. | Bal | (kg)   | in.                            | (mm)    | in.                            | (mm)    | in.                 | (mm)      |
| 10 inch - 150            | ) Ib Ar | NSI Fla | nge | (WAT  | ROD)           |      |     |        | 1                              |         |                                |         |                     |           |
| 23 W/in²                 | 240     | 60.0    | 3   | 3     | CFSNA43N3S     | М    | 515 | (234)  | 76 <sup>5</sup> /8(            | 1946.3) | 60 <sup>7</sup> /8(            | 1546.2) | 67 <sup>5</sup> /1  | 6(1709.7) |
| Steel Tank               | 480     | 60.0    | 3   | 3     | CFSNA43N5S     | М    | 515 | (234)  | 76 <sup>5</sup> /8(            | 1946.3) | 60 <sup>7</sup> /8(            | 1546.2) | 67 <sup>5</sup> /1  | 6(1709.7) |
| 27-Alloy 800<br>Elements | 240     | 75.0    | 3   | 9     | CFSNA51N3S     | М    | 530 | (241)  | 84 <sup>1</sup> /8(2           | 2136.8) | 68 <sup>3</sup> /8(            | 1736.2) | 74 <sup>13</sup> /- | 6(1900.2) |
| (3.6 W/cm²)              | 480     | 75.0    | 3   | 3     | CFSNA51N5S     | М    | 530 |        |                                |         |                                |         |                     | 6(1900.2) |
| (0.0 11/0111)            |         | - 1 4   |     |       |                |      |     | ,,     | - , - (-                       | /       | /=(                            | /       |                     | - ( )     |
|                          |         |         |     |       |                |      |     |        |                                |         |                                |         |                     |           |
|                          |         |         |     |       | \              |      |     |        |                                |         |                                |         |                     |           |
| 12 inch - 150            | ) Ib Al | NSI Fla | nge | (WAT  | ROD)           |      |     |        |                                |         |                                |         |                     |           |
| 23 W/in²                 | 480     | 80.0    | 3   | 3     | CFTNA43L5S     | М    | 565 | (257)  | 76 <sup>7</sup> /8(            | 1952.6) | 60 <sup>3</sup> /4             | (1541)  | 67 <sup>1</sup> /2  | (1714.0)  |
| Steel Tank               | 480     | 100.0   | 3   | 3     | CFTNA51L5S     | М    | 585 | (266)  | 84 <sup>3</sup> /8(2           | 2143.1) | 68 <sup>1</sup> / <sub>4</sub> | (1732)  | 75                  | (1905.0)  |
| 36-Alloy 800             |         |         |     |       |                |      |     |        |                                |         |                                |         |                     |           |
| Elements                 |         |         |     |       |                |      |     |        |                                |         |                                |         |                     |           |
| (3.6 W/cm²)              |         |         |     |       |                |      |     |        |                                |         |                                |         |                     |           |
|                          |         |         |     |       |                |      |     |        |                                |         |                                |         |                     |           |
| 14 inch - 150            | lb AN   | NSI Fla | nge | (WAT  | ROD)           |      |     |        |                                |         |                                |         |                     |           |
| 23 W/in²                 | 480     | 100.0   | 3   | 3     | CFWNA43J5S     | М    | 570 | (259)  | 75 <sup>3</sup> / <sub>4</sub> | (1924)  | 59 <sup>1</sup> / <sub>2</sub> | (1510)  | 66 <sup>3</sup> /1  | 6(1681.2) |
| Steel Tank               | 480     | 125.0   | 3   | 5     | CFWNA51J5S     | М    | 590 | (268)  | 83 <sup>1</sup> / <sub>4</sub> | (2115)  | 67                             | (1700)  | 73 <sup>11</sup> /1 | 6(1871.7) |
| 45-Alloy 800             |         |         |     |       |                |      |     | · · ·  |                                |         |                                | . ,     |                     | . ,       |
| Elements                 |         |         |     |       |                |      |     |        |                                |         |                                |         |                     |           |
| (3.6 W/cm <sup>2</sup> ) |         |         |     |       |                |      |     |        |                                |         |                                |         |                     |           |


• M - Manufacturing lead times

Truck Shipment only


#### 10 inch - 150 lb ANSI Flange



#### 12 inch - 150 lb ANSI Flange



#### 14 inch - 150 lb ANSI Flange



# **WATROD and FIREBAR Circulation Heaters**



A Ref.

## **Application: Lightweight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                                       |           |        |      | #    | Part        |      | Ship | Wt.  | "A" Dim.                    | "B  | " Dim. | "C'               | ' Dim.  | 1 <sup>1</sup> / <sub>4</sub> inch NPT Screw P | lug |
|---------------------------------------|-----------|--------|------|------|-------------|------|------|------|-----------------------------|-----|--------|-------------------|---------|------------------------------------------------|-----|
| Description                           | Volts     | kW     | Ph   | Circ |             | Del. | lbs  |      | in. (mm)                    | in. | (mm)   | in.               | (mm)    | ,                                              | _   |
| 1 <sup>1</sup> / <sub>4</sub> inch NP | Γ Screw I | Plug ( | WAT  | ROD  | )           |      |      |      |                             |     |        |                   |         |                                                |     |
| 23 W/in² 4                            | 120/240   | 1.5    | 1    | 1    | CBES19G6S   | RS   | 29   | (14) | 24 <sup>5</sup> /8(625.5)   | 15  | (381)  | 3 <sup>1</sup> /8 | (79.4)  | 6 <sup>7</sup> ⁄16 in. Ref.<br>(163.5 mm)      | 〒   |
| Steel Tank<br>2-Steel                 | 120/240   | 2.0    | 1    | 1    | CBES25G6S   | RS   | 29   | (14) | 32 <sup>5</sup> /8(828.7)   | 23  | (584)  | 3                 | (76.0)  |                                                |     |
| Element                               |           |        |      |      |             |      |      |      |                             |     |        |                   |         | 7                                              |     |
| (3.6 W/cm²)                           |           |        |      |      |             |      |      |      |                             |     |        |                   |         | 3/4 in. /<br>NPT Inlet                         |     |
|                                       |           |        |      |      |             |      |      |      |                             |     |        |                   |         | and Outlet                                     |     |
| 1 <sup>1</sup> /4 inch NP             | Γ Screw I | Plug ( | FIRE | BAR  | )           |      |      |      |                             |     |        |                   |         | B                                              | 1   |
| 30 W/in <sup>2</sup>                  | 240       | 1.7    | 3    | 1    | CBDNF16G12S | М    | 26   | (12) | 24 <sup>5</sup> /8(625.5)   | 15  | (381)  | 3 <sup>1</sup> /8 | (79.4)  |                                                | 1   |
| Steel Tank<br>1-Alloy 800             | 480       | 1.7    | 3    | 1    | CBDNF16G13S | М    | 26   | (12) | 24 <sup>5</sup> /8(625.5)   | 15  | (381)  | 31/8              | (79.4)  |                                                |     |
| Element                               | 240       | 2.2    | 3    | 1    | CBDNF19G12S | М    | 30   | (14) | 325/8(828.7)                | 23  | (584)  | 31/8              | (79.4)  |                                                |     |
| (4.7 W/cm²)                           | 480       | 2.2    | 3    | 1    | CBDNF19G13S | М    | 30   | (14) | 325/8(828.7)                | 23  | (584)  | 31/8              | (79.4)  |                                                |     |
|                                       | 240       | 2.8    | 3    | 1    | CBDNF24L12S | М    | 31   | (14) | 325/8(828.7)                | 23  | (584)  | 31/8              | (79.4)  | C Ref.                                         |     |
|                                       | 480       | 2.8    | 3    | 1    | CBDNF24L13S | М    | 31   | (14) | 325/8(828.7)                | 23  | (584)  | 31/8              | (79.4)  |                                                | Ī   |
|                                       | 240       | 3.5    | 3    | 1    | CBDNF29R12S | М    | 43   | (20) | 42 <sup>5</sup> /8(1082.7)  | 32  | (813)  | 4 <sup>3</sup> /8 | (111.1) | 4 in.<br>(102 m                                |     |
|                                       | 480       | 3.5    | 3    | 1    | CBDNF29R13S | М    | 43   | (20) | 42 <sup>5</sup> /8(1082.7)  | 32  | (813)  | 4 <sup>3</sup> /8 | (111.1) |                                                | ,   |
|                                       | 240       | 4.3    | 3    | 1    | CBDNF34R12S | М    | 44   | (20) | 42 <sup>5</sup> /8(1082.7)  | 32  | (813)  | 4 <sup>3</sup> /8 | (111.1) | <b>=</b>                                       | ))  |
|                                       | 480       | 4.3    | 3    | 1    | CBDNF34R13S | М    | 44   | (20) | 42 <sup>5</sup> /8(1082.7)  | 32  | (813)  | 4 <sup>3</sup> /8 | (111.1) | 3¾ in.                                         | "   |
|                                       | 240       | 5.7    | 3    | 1    | CBDNF45G12S | М    | 69   | (32) | 63 <sup>5</sup> /8(1616.1)  | 53  | (1346) | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 480       | 5.7    | 3    | 1    | CBDNF45G13S | М    | 69   | (32) | 63 <sup>5</sup> /8(1616.1)  | 53  | (1346) | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 240       | 7.2    | 3    | 1    | CBDNF55R12S | М    | 71   | (33) | 63 <sup>5</sup> /8(1616.1)  | 53  | (1346) | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 480       | 7.2    | 3    | 1    | CBDNF55R13S | М    | 71   | (33) | 63 <sup>5</sup> /8(1616.1)  | 53  | (1346) | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       |           |        |      |      |             |      |      |      |                             |     |        |                   |         |                                                |     |
| 1 <sup>1</sup> /4 inch NP             | Γ Screw I | Plug ( | FIRE | BAR  | )           |      |      |      |                             |     |        |                   |         |                                                |     |
| 23 W/in <sup>2</sup>                  | 240       | 1.25   | 3    | 1    | CBDNF16G20S | М    | 26   | (12) | 24 <sup>5</sup> /8 (625.5)  | 15  | (381)  | 31/8              | (79.4)  |                                                |     |
| Steel Tank<br>1-Alloy 800             | 240       | 1.65   | 3    | 1    | CBDNF19G20S | М    | 30   | (14) | 32 <sup>5</sup> /8 (828.7)  | 23  | (584)  | 31/8              | (79.4)  |                                                |     |
| Element                               | 240       | 2.15   | 3    | 1    | CBDNF24L20S | М    | 31   | (14) | 32 <sup>5</sup> /8 (828.7)  | 23  | (584)  | 31/8              | (79.4)  |                                                |     |
| (3.6 W/cm²)                           | 480       | 2.15   | 3    | 1    | CBDNF24L19S | М    | 31   | (14) | 32 <sup>5</sup> /8 (828.7)  | 23  | (584)  | 31/8              | (79.4)  |                                                |     |
|                                       | 240       | 2.65   | 3    | 1    | CBDNF29R20S | М    | 43   | (20) | 42 <sup>5</sup> /8(1082.7)  | 32  |        |                   | (111.1) |                                                |     |
|                                       | 480       | 2.65   | 3    | 1    | CBDNF29R19S | М    | 43   | (20) | 425/8(1082.7)               | 32  | (813)  | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 240       | 3.20   | 3    | 1    | CBDNF34R20S | М    | 44   | (20) | 42 <sup>5</sup> /8(1082.7)  | 32  | (813)  | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 480       | 3.20   | 3    | 1    | CBDNF34R19S | М    | 44   | (20) | 42 <sup>5</sup> /8 (1082.7) | 32  | (813)  | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 240       | 4.25   | 3    | 1    | CBDNF45G20S | М    | 69   | (32) | 63 <sup>5</sup> /8(1616.1)  | 53  | (1346) | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 480       | 4.25   | 3    | 1    | CBDNF45G19S | М    | 69   | (32) | 63 <sup>5</sup> /8(1616.1)  | 53  | (1346) | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 240       | 5.40   | 3    | 1    | CBDNF55R20S | М    | 71   | (33) | 63 <sup>5</sup> /8(1616.1)  | 53  | (1346) | 4 <sup>3</sup> /8 | (111.1) |                                                |     |
|                                       | 480       | 5.40   | 3    | 1    | CBDNF55R19S | М    | 71   | (33) | 63 <sup>5</sup> /8(1616.1)  | 53  | (1346) | 4 <sup>3</sup> /8 | (111.1) |                                                |     |

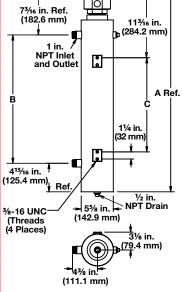
Wired for higher voltage



• RS - Next day shipment up to 5 pieces

<sup>•</sup> M - Manufacturing lead times

# WATROD and FIREBAR Circulation Heaters




## **Application: Lightweight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                                       |        |        |      | #     | Part        |      | Shi | p Wt. | "A"                            | Dim.   | "B"                            | Dim.   | "C"                | Dim.   | 2   |
|---------------------------------------|--------|--------|------|-------|-------------|------|-----|-------|--------------------------------|--------|--------------------------------|--------|--------------------|--------|-----|
| Description                           | Volts  | kW     | Ph   | Circ. | Number      | Del. | lbs | (kg)  | in.                            | (mm)   | in.                            | (mm)   | in.                | (mm)   |     |
| 2 <sup>1</sup> / <sub>2</sub> inch NP | T Scre | w Plug | (WA  | ATRO  | D)          |      |     |       |                                |        |                                |        |                    |        |     |
| 23 W/in <sup>2</sup>                  | 240    | 3.0    | 3    | 1     | CBLS717E3S  | RS   | 24  | (11)  | 34 <sup>3</sup> / <sub>4</sub> | (881)  | 221/2                          | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
| Steel Tank                            | 480    | 3.0    | 3    | 1     | CBLS717E5S  | RS   | 24  | (11)  | 34 <sup>3</sup> / <sub>4</sub> | (881)  | 221/2                          | (572)  | 16 <sup>1</sup> /2 | (419)  | -   |
| 3-Steel<br>(3.6 W/cm²)                | 240    | 4.5    | 3    | 1     | CBLS724N3S  | RS   | 27  | (13)  |                                | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
| (0.0 11/0111)                         | 480    | 4.5    | 3    | 1     | CBLS724N5S  | RS   | 27  | (13)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
|                                       | 240    | 6.0    | 3    | 1     | CBLS732E3S  | RS   | 29  | (14)  | 44 <sup>3</sup> /4             | (1135) | 32 <sup>1</sup> /2             | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 480    | 6.0    | 3    | 1     | CBLS732E5S  | RS   | 29  | (14)  | 44 <sup>3</sup> /4             | (1135) | 32 <sup>1</sup> /2             | (1129) | 26 <sup>1</sup> /2 | (673)  | 1   |
|                                       | 240    | 7.5    | 3    | 1     | CBLS739N3S  | RS   | 31  | (14)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                 | (991)  |     |
|                                       | 480    | 7.5    | 3    | 1     | CBLS739N5S  | RS   | 31  | (14)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                 | (991)  |     |
|                                       | 240    | 9.0    | 3    | 1     | CBLS747E3S  | RS   | 32  | (15)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                 | (991)  |     |
|                                       | 480    | 9.0    | 3    | 1     | CBLS747E5S  | RS   | 32  | (15)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                 | (991)  | _   |
|                                       |        |        |      |       |             |      |     |       |                                |        |                                |        |                    |        | (1: |
| 2 <sup>1</sup> / <sub>2</sub> inch NP | T Scre | w Plug | (FIF | REBA  | R)          |      |     |       |                                |        |                                |        |                    |        | •   |
| 30 W/in <sup>2</sup> ③                | 240    | 5.0    | 3    | 1     | CBLNF15C12S | М    | 22  | (10)  | 343/4                          | (881)  | 221/2                          | (572)  | 16 <sup>1</sup> /2 | (419)  | 3/8 |
| Steel Tank                            | 480    | 5.0    | 3    | 1     | CBLNF15C13S | М    | 22  | (10)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2 |        | (4  |
| 3-Alloy 800<br>Elements               | 240    | 6.5    | 3    | 1     | CBLNF18C12S | М    | 23  | (11)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2 | (419)  | (-  |
| (4.7 W/cm²)                           | 480    | 6.5    | 3    | 1     | CBLNF18C13S | М    | 23  | (11)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
| ( ,                                   | 240    | 8.5    | 3    | 1     | CBLNF23C12S | М    | 31  | (14)  | 34 <sup>3</sup> /4             | (881)  | 22 <sup>1</sup> /2             | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
|                                       | 480    | 8.5    | 3    | 1     | CBLNF23C13S | М    | 31  | (14)  | 343/4                          | (881)  | 22 <sup>1</sup> / <sub>2</sub> | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
|                                       | 240    | 10.5   | 3    | 1     | CBLNF28L12S | М    | 34  | (16)  |                                | (1135) | 321/2                          | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 480    | 10.5   | 3    | 1     | CBLNF28L13S | М    | 34  | (16)  | 44 <sup>3</sup> /4             | (1135) | 321/2                          | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 240    | 12.8   | 3    | 1     | CBLNF33L12S | М    | 35  | (16)  | 44 <sup>3</sup> / <sub>4</sub> | (1135) | 321/2                          | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 480    | 12.8   | 3    | 1     | CBLNF33L13S | М    | 35  | (16)  | 44 <sup>3</sup> / <sub>4</sub> | (1135) | 321/2                          | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 240    | 17.0   | 3    | 1     | CBLNF44C12S | М    | 44  | (20)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                 | (991)  |     |
|                                       | 480    | 17.0   | 3    | 1     | CBLNF44C13S | М    | 44  | (20)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                 | (991)  |     |
|                                       | 480    | 21.5   | 3    | 1     | CBLNF54L13S | М    | 52  | (24)  | 63 <sup>3</sup> /4             | (1618) | 51 <sup>1</sup> /2             | (1308) | 46 <sup>1</sup> /2 | (1181) |     |
|                                       |        |        |      |       |             |      |     |       |                                |        |                                |        |                    |        |     |
| 21/2 inch NP                          | T Scre | w Plug | (FIF | REBA  | R)          |      |     |       |                                |        |                                |        |                    |        |     |
| 23 W/in <sup>2</sup> ®                | 240    | 3.80   | 3    | 1     | CBLNF15C20S | М    | 22  | (10)  | 34 <sup>3</sup> /4             | (881)  | 221/2                          | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
| Steel Tank                            | 240    | 4.90   | 3    | 1     | CBLNF18C20S | М    | 23  | (11)  | 34 <sup>3</sup> / <sub>4</sub> | (881)  | 221/2                          | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
| 3-Alloy 800<br>Elements               | 240    | 6.40   | 3    | 1     | CBLNF23C20S | М    | 31  | (14)  | 34 <sup>3</sup> / <sub>4</sub> | (881)  | 221/2                          | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
| (3.6 W/cm²)                           | 480    | 6.40   | 3    | 1     | CBLNF23C19S | М    | 31  | (14)  | 34 <sup>3</sup> /4             | (881)  | 221/2                          | (572)  | 16 <sup>1</sup> /2 | (419)  |     |
| ,                                     | 240    | 7.90   | 3    | 1     | CBLNF28L20S | М    | 34  | (16)  | 44 <sup>3</sup> / <sub>4</sub> | (1135) | 321/2                          | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 480    | 7.90   | 3    | 1     | CBLNF28L19S | М    | 34  | (16)  | 443/4                          | (1135) | 321/2                          | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 240    | 9.60   | 3    | 1     | CBLNF33L20S | М    | 35  | (16)  | 44 <sup>3</sup> / <sub>4</sub> | (1135) | 32 <sup>1</sup> /2             | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 480    | 9.60   | 3    | 1     | CBLNF33L19S | М    | 35  | (16)  | 44 <sup>3</sup> / <sub>4</sub> | (1135) | 32 <sup>1</sup> / <sub>2</sub> | (1129) | 26 <sup>1</sup> /2 | (673)  |     |
|                                       | 240    | 12.80  | 3    | 1     | CBLNF44C20S | М    | 44  | (20)  | 57 <sup>1</sup> /4             | (1453) | 45                             | (1143) | 39                 | (991)  |     |
|                                       | 480    | 12.80  | 3    | 1     | CBLNF44C19S | М    | 44  | (20)  |                                | (1453) | 45                             | (1143) |                    | (991)  |     |
|                                       | 240    | 16.10  | 3    | 1     | CBLNF54L20S | М    | 52  | (24)  | 633/4                          | (1618) | 51 <sup>1</sup> /2             | (1308) | 46 <sup>1</sup> /2 | (1181) |     |
|                                       | 480    | 16.10  | 3    | 1     | CBLNF54L19S | М    | 52  | (24)  | 633/4                          | (1618) | 51 <sup>1</sup> /2             | (1308) | 46 <sup>1</sup> /2 | (1181) |     |
|                                       |        |        |      |       |             |      |     | . /   |                                | . ,    |                                | . ,    |                    |        |     |

## 2<sup>1</sup>/<sub>2</sub> inch NPT Screw Plug



- **RS** Next day shipment up to 5 pieces
- M Manufacturing lead times

- Wired for 3-phase operation only
- ® Can be wired for 1-phase operation

<sup>&</sup>lt;u>RAPID SHIP</u>

## **WATROD** and **FIREBAR Circulation Heaters**



## **Application: Lightweight Oils and Heat Transfer Oils**

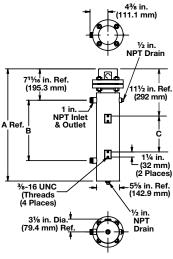
Part

Number

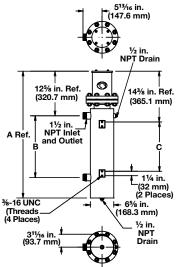
• WATROD or FIREBAR elements

kW

Ph Circ


Without thermostat

**Description Volts** 


• General purpose enclosure

|                          |            |         |     |     |             |        |     | ( 3)   |                                | , ,     |                                | · /    |                                |        |                           |
|--------------------------|------------|---------|-----|-----|-------------|--------|-----|--------|--------------------------------|---------|--------------------------------|--------|--------------------------------|--------|---------------------------|
| 3 inch - 150             |            |         |     |     |             |        |     |        | 1 1 /                          |         |                                | ·      | 14.                            |        |                           |
| 23 W/in²                 | 240        | 3.0     | 1   | 1   | CFMS718A10S | RS     | 68  | (31)   |                                |         | 22 <sup>1</sup> / <sub>2</sub> | _ ,    | 16 <sup>1</sup> /2             | (419)  |                           |
| Steel Tank               | 240        | 3.0     | 3   | 1   | CFMS718A3S  | RS     | 68  |        | 35 <sup>1</sup> / <sub>4</sub> |         | 221/2                          |        | 16 <sup>1</sup> /2             | (419)  |                           |
| 3-Steel                  | 480        | 3.0     | 1   | 1   | CFMS718A11S | RS     | 68  |        |                                |         | 221/2                          |        | 16 <sup>1</sup> /2             | (419)  |                           |
| Elements                 | 480        | 3.0     | 3   | 1   | CFMS718A5S  | RS     | 68  | _ ,    | $35^{1}/4$                     |         | $22^{1}/_{2}$                  |        | 16 <sup>1</sup> /2             | (419)  |                           |
| (3.6 W/cm²)              | 240        | 4.5     | 1   | 1   | CFMS725J10S | М      | 78  | /      | 35 <sup>1</sup> / <sub>4</sub> | _ ,     | $22^{1/2}$                     | (573)  | 16 <sup>1</sup> /2             | (419)  | 711/                      |
|                          | 240        | 4.5     | 3   | 1   | CFMS725J3S  | М      | 78  |        | 35 <sup>1</sup> / <sub>4</sub> | (894)   | $22^{1/2}$                     | (573)  | 16 <sup>1</sup> /2             | (419)  | (19                       |
|                          | 480        | 4.5     | 1   | 1   | CFMS725J11S | М      | 78  | (36)   | 35 <sup>1</sup> /4             | (894)   | $22^{1/2}$                     | (573)  | 16 <sup>1</sup> /2             | (419)  |                           |
|                          | 480        | 4.5     | 3   | 1   | CFMS725J5S  | М      | 78  | (36)   | 35 <sup>1</sup> /4             | (894)   | $22^{1/2}$                     | (573)  | 16 <sup>1</sup> /2             | (419)  |                           |
|                          | 240        | 6.0     | 1   | 2   | CFMS733A10S | М      | 96  | (44)   | 45 <sup>1</sup> /4             | (1148)  | $32^{1/2}$                     | (826)  | 26 <sup>1</sup> /2             | (673)  | A Ref.  <br>  B           |
|                          | 240        | 6.0     | 3   | 1   | CFMS733A3S  | М      | 96  | (44)   | 45 <sup>1</sup> / <sub>4</sub> | (1148)  | $32^{1/2}$                     | (826)  | 26 <sup>1</sup> /2             | (673)  |                           |
|                          | 480        | 6.0     | 1   | 1   | CFMS733A11S | М      | 96  | (44)   | 45 <sup>1</sup> /4             | (1148)  | $32^{1/2}$                     | (826)  | 26 <sup>1</sup> / <sub>2</sub> | (673)  | ±                         |
|                          | 480        | 6.0     | 3   | 1   | CFMS733A5S  | М      | 96  |        |                                | (1148)  | $32^{1/2}$                     | (826)  | 26 <sup>1</sup> /2             | (673)  |                           |
|                          | 240        | 7.5     | 1   | 2   | CFMS740J10S | М      | 100 | (46)   | 57 <sup>3</sup> /4             | (1465)  | 45                             | (1143) | 39                             | (991)  | <u>₹</u><br>3⁄8-16        |
|                          | 240        | 7.5     | 3   | 1   | CFMS740J3S  | М      | 100 | (46)   | 57 <sup>3</sup> /4             | (1465)  | 45                             | (1143) | 39                             | (991)  | (Thi<br>(4 Pi             |
|                          | 480        | 7.5     | 1   | 1   | CFMS740J11S | М      | 100 | (46)   | 57 <sup>3</sup> /4             | (1465)  | 45                             | (1143) | 39                             | (991)  | -                         |
|                          | 480        | 7.5     | 3   | 1   | CFMS740J5S  | М      | 100 |        |                                | (1465)  |                                | (1143) | 39                             | (991)  | 3!<br>(79.                |
|                          | 240        | 9.0     | 1   | 2   | CFMS748A10S | М      | 107 |        |                                | (1465)  |                                | (1143) |                                | (991)  | (10.                      |
|                          | 240        | 9.0     | 3   | 1   | CFMS748A3S  | М      | 107 | . ,    |                                | (1465)  |                                | (1143) |                                | (991)  |                           |
|                          | 480        | 9.0     | 1   | 1   | CFMS748A11S | М      | 107 | /      |                                | (1465)  |                                | (1143) |                                | (991)  |                           |
|                          | 480        | 9.0     | 3   | 1   | CFMS748A5S  | М      | 107 | . ,    |                                | (1465)  |                                | (1143) |                                | (991)  |                           |
|                          | 100        | 0.0     |     |     |             |        |     | ( . 0) | 0. , .                         | (1.100) | .0                             | (1110) |                                | (00.)  |                           |
| 4 inch - 150             | lb AN      | ISI Fla | nae | (WA | TROD)       |        |     |        |                                |         |                                |        |                                |        |                           |
| 23 W/in²                 | 240        | 6.0     | 1   | 1   | CFOS718A10S | М      | 125 | (57)   | 39                             | (989)   | 201/2                          | (521)  | 17                             | (432)  | 4 inch                    |
| Steel Tank               | 240        | 6.0     | 3   | 1   | CFOS718A3S  | М      | 125 | (57)   | 39                             | _ , ,   | 20 <sup>1</sup> / <sub>2</sub> | (521)  |                                | (432)  | 4 111011                  |
| 6-Steel                  | 480        | 6.0     | 1   | 1   | CFOS718A11S | М      | 125 | (57)   | 39                             | _ ,     | 201/2                          | (521)  |                                | (432)  |                           |
| Elements                 | 480        | 6.0     | 3   | 1   | CFOS718A5S  | М      | 125 | (57)   |                                |         | 201/2                          | (521)  |                                | (432)  |                           |
| (3.6 W/cm <sup>2</sup> ) | 240        | 9.0     | 1   | 1   | CFOS725J10S | М      | 160 | (73)   |                                | _ , ,   | 201/2                          | (521)  |                                | (432)  |                           |
|                          | 240        | 9.0     | 3   | 1   | CFOS725J3S  | М      | 160 | (73)   |                                | _ , ,   | 20 <sup>1</sup> / <sub>2</sub> | (521)  |                                | (432)  |                           |
|                          | 480        | 9.0     | 1   | 1   | CFOS725J11S | M      | 160 | (73)   |                                |         | 201/2                          | (521)  |                                | (432)  |                           |
|                          | 480        | 9.0     | 3   | 1   | CFOS725J5S  | М      | 160 | (73)   |                                |         | 201/2                          | (521)  |                                | (432)  | 1                         |
|                          | 240        | 12.0    | 1   | 2   | CFOS733A10S | М      | 163 | . ,    |                                | (1256)  |                                | _ ,    | 27 <sup>1</sup> / <sub>2</sub> | (699)  | 1                         |
|                          | 240        | 12.0    | 3   | 1   | CFOS733A3S  | М      | 163 | /      |                                | (1256)  |                                | . ,    | 27 <sup>1</sup> /2             | (699)  | (                         |
|                          | 480        | 12.0    | 1   | 1   | CFOS733A11S | M      | 163 |        |                                | (1256)  |                                |        | 27 <sup>1</sup> / <sub>2</sub> | (699)  | 7                         |
|                          | 480        | 12.0    | 3   | 1   | CFOS733A5S  | M      | 163 |        |                                | (1256)  |                                | _ ,    | 27 <sup>1</sup> / <sub>2</sub> | (699)  | A Ref.                    |
|                          | 240        | 15.0    | 1   | 2   | CFOS740J10S | M      | 229 |        |                                | (1789)  |                                |        |                                | (1232) |                           |
|                          | 240        | 15.0    | 3   | 1   | CFOS740J3S  | M      | 229 | . ,    |                                | (1789)  | 52                             |        |                                | (1232) |                           |
|                          | 480        | 15.0    | 1   | 1   | CFOS740J11S | M      | 229 |        |                                | (1789)  |                                |        |                                | (1232) |                           |
|                          | 480        | 15.0    | 3   | 1   | CFOS740J5S  | M      | 229 |        |                                | (1789)  |                                |        |                                | (1232) |                           |
|                          | 240        | 18.0    | 1   | 2   | CFOS748A10S | M      | 234 |        |                                | (1789)  |                                |        |                                | (1232) | %-16 UNG                  |
|                          | 240        | 18.0    | 3   | 1   | CFOS748A3S  | M      | 234 |        |                                | (1789)  |                                | . ,    |                                | (1232) | (Threads                  |
|                          | 480        | 18.0    | 1   | 1   | CFOS748A11S | M      | 234 |        | 70 <sup>1</sup> / <sub>2</sub> |         |                                |        |                                | (1232) | (4 Places                 |
|                          |            |         |     | 1   |             |        | _   |        |                                |         |                                |        |                                | . ,    | 3 <sup>11</sup> ,<br>(93. |
|                          | 480<br>240 | 18.0    | 3   | 2   | CFOS748A5S  | M<br>M | 234 | . ,    | 701/2                          | (1789)  |                                |        |                                | (1232) | ,50.                      |
|                          |            | 25.0    | 3   |     | CFOS764J3S  |        | 298 | , ,    | 91 <sup>1</sup> /2             | (2326)  |                                | (1854) |                                | (1676) |                           |
|                          | 480        | 25.0    | 1   | 2   | CFOS764J11S | M      | 298 |        | 91 <sup>1</sup> /2             |         | 73                             | (1854) |                                | (1676) |                           |
|                          | 480        | 25.0    | 3   | 1   | CFOS764J5S  | M      | 298 | . ,    | 911/2                          |         |                                | (1854) |                                | (1676) |                           |
|                          | 240        | 30.0    | 3   | 2   | CFOS777A3S  | M      | 306 | . ,    | 911/2                          | . ,     |                                | (1854) |                                | (1676) |                           |
|                          | 480        | 30.0    | 1   | 2   | CFOS777A11S | M      | 306 |        | 911/2                          | (2326)  | 73                             | (1854) |                                | (1676) |                           |
|                          | 480        | 30.0    | 3   | 1   | CFOS777A5S  | М      | 306 | (139)  | 91 1/2                         | (2326)  | 73                             | (1854) | 66                             | (1676) |                           |

#### 3 inch - 150 lb ANSI Flange



- 150 lb ANSI Flange





Truck Shipment only

"B" Dim.

(mm) in.

(mm) in.

(kg) in.

"C" Dim.

(mm)



# **WATROD and FIREBAR Circulation Heaters**



## **Application: Lightweight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| ANSI 440 440 440 440 440 440 440 440 440 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flange 7.5 10.0 12.8 12.8 15.8 15.8 19.0                                                                                                      | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>1<br>2                                                                                                                                        | CFONF16J12S CFONF16J13S CFONF19J12S CFONF24J12S CFONF24J13S CFONF30A12S CFONF30A13S CFONF35A12S CFONF35A12S CFONF45J12S CFONF45J13S CFONF56A13S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M M M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128<br>128<br>130<br>130<br>133<br>148<br>168<br>170<br>170<br>236<br>240<br>128<br>133<br>133<br>133<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (77)<br>(78)<br>(78)<br>(78)<br>(107)                                                                           | 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 49¹/2 (12 49¹/2 (12 49¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§  | nm) 989) 989) 989) 989) 989) 989) 989) 98                                                              | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>52 (52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)                    | 17<br>17<br>17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (432)<br>(432)<br>(432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432) | %-16<br>(Thre<br>(4 Pla     | ef. I a B UNC eads _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % in. Re 20.7 mm) 11/2 in. NPT Inleind Outle |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14% in. Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANSI 440 440 440 440 440 440 440 440 440 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flange 10.0 13.0 13.0 17.0 17.0 21.0 21.0 25.5 34.0 34.0 43.0 Flange 7.5 10.0 12.8 12.8 15.8 15.8                                             | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REBA  1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1                                                                                                                                                                                   | AR)  CFONF16J12S  CFONF16J13S  CFONF19J12S  CFONF24J12S  CFONF30A12S  CFONF35A12S  CFONF35A12S  CFONF45J12S  CFONF45J13S  CFONF56A13S  AR)  CFONF16J20S  CFONF24J20S  CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128<br>130<br>130<br>133<br>133<br>168<br>168<br>170<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (58)<br>(59)<br>(59)<br>(61)<br>(61)<br>(77)<br>(78)<br>(78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61) | 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 49¹/2 (12 49¹/2 (12 49¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§  | 989)<br>989)<br>989)<br>989)<br>989)<br>989)<br>256)<br>256)<br>256)<br>789)<br>789)<br>989)           | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521) | 17<br>17<br>17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (432)<br>(432)<br>(432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)          | ³⁄s-16<br>(Thre<br>(4 Pla   | (32<br>ef. I<br>B<br>UNC<br>eads —<br>ices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.7 mm) 11/2 in. NPT Inlei                  | f. Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 147.6 mm)  1/2 in.  NPT Drain  143% in. Ref (365.1 mm)  C  C  11/4 in. (32 mm) (2 Places)  65% in. (168.3 mm)  1/2 in.  NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 40   40   40   40   40   40   40   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0   10.0   13.0   13.0   17.0   17.0   21.0   25.5   25.5   34.0   34.0   43.0   17.5   10.0   12.8   12.8   15.8   15.8   15.8            | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>1<br>2                                                                                                                                        | CFONF16J12S CFONF16J13S CFONF19J12S CFONF19J13S CFONF24J12S CFONF30A12S CFONF30A13S CFONF35A12S CFONF35A13S CFONF45J12S CFONF45J13S CFONF56A13S CFONF16J20S CFONF19J20S CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128<br>130<br>133<br>133<br>168<br>168<br>170<br>170<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (58)<br>(59)<br>(61)<br>(61)<br>(77)<br>(78)<br>(78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)         | 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 49¹/2 (12 49¹/2 (12 49¹/2 (12 49¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 | 989)<br>989)<br>989)<br>989)<br>989)<br>989)<br>256)<br>256)<br>256)<br>2789)<br>7789)<br>989)<br>989) | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521)                   | 17<br>17<br>17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (432)<br>(432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)          | ³⁄s-16<br>(Thre<br>(4 Pla   | (32<br>ef. I<br>B<br>UNC<br>eads —<br>ices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.7 mm) 11/2 in. NPT Inlei                  | et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NPT Drain  14% in. Ref (365.1 mm)  14 in. (32 mm) (2 Places)  - 65% in. (168.3 mm)  1/2 in. NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 880   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440   440    | 10.0   13.0   13.0   17.0   17.0   21.0   25.5   25.5   34.0   34.0   43.0   17.5   10.0   12.8   12.8   15.8   15.8   15.8                   | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         | CFONF16J13S CFONF19J12S CFONF19J13S CFONF24J12S CFONF30A12S CFONF30A13S CFONF35A12S CFONF35A13S CFONF45J12S CFONF45J13S CFONF56A13S CFONF16J20S CFONF19J20S CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128<br>130<br>133<br>133<br>168<br>168<br>170<br>170<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (58)<br>(59)<br>(61)<br>(61)<br>(77)<br>(78)<br>(78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)         | 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 49¹/2 (12 49¹/2 (12 49¹/2 (12 49¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 | 989)<br>989)<br>989)<br>989)<br>989)<br>989)<br>256)<br>256)<br>256)<br>2789)<br>7789)<br>989)<br>989) | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521)                   | 17<br>17<br>17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (432)<br>(432)<br>(432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)          | ³⁄s-16<br>(Thre<br>(4 Pla   | (32<br>ef. I<br>B<br>UNC<br>eads —<br>ices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.7 mm) 11/2 in. NPT Inlei                  | et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NPT Drain  14% in. Ref (365.1 mm)  14 in. (32 mm) (2 Places)  - 65% in. (168.3 mm)  1/2 in. NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.0<br>13.0<br>17.0<br>17.0<br>21.0<br>21.0<br>25.5<br>25.5<br>34.0<br>34.0<br>43.0<br>Flange<br>7.5<br>10.0<br>12.8<br>12.8<br>15.8<br>15.8 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         | CFONF19J12S CFONF19J13S CFONF24J12S CFONF30A12S CFONF30A13S CFONF35A12S CFONF35A13S CFONF45J12S CFONF45J13S CFONF56A13S  AR) CFONF16J20S CFONF19J20S CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130<br>130<br>133<br>133<br>168<br>170<br>170<br>236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (59)<br>(61)<br>(61)<br>(77)<br>(78)<br>(78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)                 | 39 (§ 39 (§ 39 (§ 39 (§ 49¹/2 (12 49¹/2 (12 49¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§ 39 (§  | 989)<br>989)<br>989)<br>989)<br>989)<br>256)<br>256)<br>256)<br>2789)<br>789)<br>989)<br>989)          | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (521)<br>(521)<br>(521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521)                            | 17<br>17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (432)<br>(432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                            | ³⁄s-16<br>(Thre<br>(4 Pla   | (32<br>ef. I<br>B<br>UNC<br>eads —<br>ices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.7 mm) 11/2 in. NPT Inlei                  | et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NPT Drain  14% in. Ref (365.1 mm)  14 in. (32 mm) (2 Places)  - 65% in. (168.3 mm)  1/2 in. NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 880   440   5   6   6   6   6   6   6   6   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.0<br>17.0<br>17.0<br>21.0<br>21.0<br>25.5<br>25.5<br>34.0<br>34.0<br>43.0<br>Flange<br>7.5<br>10.0<br>12.8<br>12.8<br>15.8<br>15.8         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>1<br>1                                                                                                                              | CFONF19J13S CFONF24J12S CFONF30A12S CFONF30A13S CFONF35A12S CFONF35A13S CFONF45J12S CFONF45J13S CFONF56A13S  AR) CFONF16J20S CFONF19J20S CFONF24J20S CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M M M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130<br>133<br>133<br>168<br>168<br>170<br>170<br>236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (59)<br>(61)<br>(61)<br>(77)<br>(78)<br>(78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)                 | 39 (§ 39 (§ 49¹/2 (12 49¹/2 (12 49¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/ | 989)<br>989)<br>989)<br>989)<br>2256)<br>2256)<br>2256)<br>789)<br>789)<br>989)                        | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (521)<br>(521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521)                                     | 17<br>17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (432)<br>(432)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                     | ³⁄s-16<br>(Thre<br>(4 Pla   | (32<br>ef. I<br>B<br>UNC<br>eads —<br>ices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.7 mm) 11/2 in. NPT Inlei                  | et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143% in. Ref<br>(365.1 mm)<br>C<br>C<br>11/4 in.<br>(32 mm)<br>(2 Places)<br>65% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40<br>80<br>40<br>80<br>80<br>80<br>80<br>80<br>80<br>40<br>40<br>40<br>40<br>40<br>40<br>80<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.0<br>17.0<br>21.0<br>21.0<br>25.5<br>25.5<br>34.0<br>34.0<br>43.0<br>Flange<br>7.5<br>10.0<br>12.8<br>12.8<br>15.8<br>15.8                 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>1<br>1                                                                                                                              | CFONF24J12S CFONF30A12S CFONF30A13S CFONF35A12S CFONF35A13S CFONF45J12S CFONF45J13S CFONF56A13S  AR) CFONF16J20S CFONF19J20S CFONF24J20S CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 133<br>133<br>168<br>168<br>170<br>170<br>236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (61)<br>(61)<br>(77)<br>(78)<br>(78)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)                                  | 39 (§ 49¹/2 (12 49¹/2 (12 49¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17  | 989)<br>989)<br>256)<br>256)<br>256)<br>256)<br>789)<br>789)<br>789)<br>989)                           | 20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (521)<br>(521)<br>(787)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521)<br>(521)                                     | 17<br>17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (432)<br>(699)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                     | ³⁄s-16<br>(Thre<br>(4 Pla   | (32<br>ef. I<br>B<br>UNC<br>eads —<br>ices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.7 mm) 11/2 in. NPT Inlei                  | et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14% in. Hef<br>(365.1 mm)<br>C<br>C<br>11/4 in.<br>(32 mm)<br>(2 Places)<br>6% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.0<br>21.0<br>21.0<br>25.5<br>25.5<br>34.0<br>34.0<br>43.0<br>Flange<br>7.5<br>10.0<br>12.8<br>15.8<br>15.8                                 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                       | CFONF24J13S CFONF30A12S CFONF35A12S CFONF35A13S CFONF45J12S CFONF45J13S CFONF56A13S  AR) CFONF16J20S CFONF19J20S CFONF24J20S CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133<br>168<br>168<br>170<br>170<br>236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (61)<br>(77)<br>(78)<br>(78)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)                                          | 39 (§ 49¹/2 (12 49¹/2 (12 49¹/2 (12 49¹/2 (12 49¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70¹/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70³/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17 70°/2 (17  | 989)<br>256)<br>256)<br>256)<br>256)<br>256)<br>789)<br>789)<br>789)<br>989)                           | 20 <sup>1</sup> / <sub>2</sub><br>31<br>31<br>31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (521)<br>(787)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521)<br>(521)                                              | 17<br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (432)<br>(699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                              | ³⁄s-16<br>(Thre<br>(4 Pla   | (32<br>ef. I<br>B<br>UNC<br>eads —<br>ices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.7 mm) 11/2 in. NPT Inlei                  | et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14% in. Hef<br>(365.1 mm)<br>C<br>C<br>11/4 in.<br>(32 mm)<br>(2 Places)<br>6% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40 : 80 : 40 : 80 : 40 : 80 : 40 : 40 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.0<br>21.0<br>25.5<br>25.5<br>34.0<br>34.0<br>43.0<br>Flange<br>7.5<br>10.0<br>12.8<br>12.8<br>15.8<br>15.8                                 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>2<br>1<br>2<br>1<br>2<br><b>REBA</b><br>1<br>1<br>1                                                                                                                                                                      | CFONF30A12S<br>CFONF30A13S<br>CFONF35A12S<br>CFONF45J12S<br>CFONF45J13S<br>CFONF56A13S<br>AR)<br>CFONF16J20S<br>CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 168<br>168<br>170<br>170<br>236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (77)<br>(77)<br>(78)<br>(78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)                                 | 49 <sup>1</sup> / <sub>2</sub> (12<br>49 <sup>1</sup> / <sub>2</sub> (12<br>49 <sup>1</sup> / <sub>2</sub> (12<br>49 <sup>1</sup> / <sub>2</sub> (12<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>39 (9<br>39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 256)<br>256)<br>256)<br>256)<br>789)<br>789)<br>789)<br>989)                                           | 31<br>31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (787)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521)<br>(521)                                                       | 27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                                       | ³⁄s-16<br>(Thre<br>(4 Pla   | UNC sads _ aces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NPT Inle                                     | et E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C C (32 mm) (2 Places) - 65% in. (168.3 mm) 1/2 in. NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 80 : 40 : 40 : 40 : 40 : 40 : 40 : 40 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.0<br>25.5<br>25.5<br>34.0<br>34.0<br>43.0<br>Flange<br>7.5<br>10.0<br>12.8<br>15.8<br>15.8                                                 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>2<br>1<br>2<br>1<br>2<br><b>REBA</b><br>1<br>1<br>1                                                                                                                                                                      | CFONF30A13S<br>CFONF35A12S<br>CFONF45J12S<br>CFONF45J13S<br>CFONF56A13S<br>AR)<br>CFONF16J20S<br>CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 168<br>170<br>170<br>236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (77)<br>(78)<br>(78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)                                         | 49 <sup>1</sup> / <sub>2</sub> (12<br>49 <sup>1</sup> / <sub>2</sub> (12<br>49 <sup>1</sup> / <sub>2</sub> (12<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 256)<br>256)<br>256)<br>789)<br>789)<br>789)<br>989)<br>989)                                           | 31<br>31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (787)<br>(787)<br>(787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(521)<br>(521)                                                       | 27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (699)<br>(699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                                       | ³⁄s-16<br>(Thre<br>(4 Pla   | UNC sads _ aces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NPT Inle                                     | et et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (32 mm)<br>(2 Places)<br>(5% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40 : 880 : 40 : 880 : 40 : 40 : 40 : 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.5   25.5   34.0   34.0   43.0   43.0   43.0   45.8   15.8   15.8   15.8   15.8                                                             | 3<br>3<br>3<br>3<br>3<br>(FIII<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>2<br>1<br>2<br><b>REBA</b><br>1<br>1<br>1<br>1                                                                                                                                                                           | CFONF35A12S<br>CFONF35A13S<br>CFONF45J12S<br>CFONF45J13S<br>CFONF56A13S<br>AR)<br>CFONF16J20S<br>CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170<br>170<br>236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (78)<br>(78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)                                                 | 49 <sup>1</sup> / <sub>2</sub> (12<br>49 <sup>1</sup> / <sub>2</sub> (12<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>39 (9<br>39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256)<br>256)<br>789)<br>789)<br>789)<br>789)<br>989)<br>989)                                           | 31<br>31<br>52<br>52<br>52<br>6<br>52<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (787)<br>(787)<br>(1321)<br>(1321)<br>(1321)<br>(1321)<br>(521)                                                                        | 27 <sup>1</sup> / <sub>2</sub><br>27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (699)<br>(699)<br>(1232)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                                      | ³⁄s-16<br>(Thre<br>(4 Pla   | UNC sads _ aces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in.                                          | et 📗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (32 mm)<br>(2 Places)<br>(5% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80 : 40 : 880 : 880 : 440 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 440 : 880 : 880 : 440 : 880 : 880 : 440 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 880 : 88 | 25.5 34.0 34.0 43.0 Flange 7.5 10.0 12.8 15.8 15.8                                                                                            | 3<br>3<br>3<br>3<br><b>(FII</b><br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>2<br>1<br>2<br><b>REBA</b><br>1<br>1<br>1<br>1                                                                                                                                                                           | CFONF35A13S<br>CFONF45J12S<br>CFONF45J13S<br>CFONF56A13S<br>AR)<br>CFONF16J20S<br>CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170<br>236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (78)<br>(107)<br>(107)<br>(109)<br>(58)<br>(59)<br>(61)                                                         | 49 <sup>1</sup> / <sub>2</sub> (12<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>39 (9<br>39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256)<br>789)<br>789)<br>789)<br>789)<br>989)<br>989)                                                   | 31<br>52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (787)<br>(1321)<br>(1321)<br>(1321)<br>(1321)<br>(521)<br>(521)                                                                        | 27 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (699)<br>(1232)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                                               | (Thre<br>(4 Pla             | UNC eadsaces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in. ‡                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (32 mm)<br>(2 Places)<br>(5% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40 3<br>80 3<br>80 4<br>40 40 40 80 40 80 40 80 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.0<br>34.0<br>43.0<br>Flange<br>7.5<br>10.0<br>12.8<br>12.8<br>15.8<br>15.8                                                                 | 3<br>3<br>3<br>(FII<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>2<br><b>REBA</b><br>1<br>1<br>1<br>1                                                                                                                                                                                     | CFONF45J12S<br>CFONF45J13S<br>CFONF56A13S<br>AR)<br>CFONF16J20S<br>CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 236<br>236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (107)<br>(107)<br>(109)<br>(109)<br>(58)<br>(59)<br>(61)                                                        | 70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 789)<br>789)<br>789)<br>989)<br>989)                                                                   | 52 (<br>52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1321)<br>(1321)<br>(1321)<br>(1321)<br>(521)<br>(521)                                                                                 | 48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1232)<br>(1232)<br>(1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                                                        | (Thre<br>(4 Pla             | eads<br>ices)<br>311/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in. I                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (32 mm)<br>(2 Places)<br>(5% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ANSI<br>40<br>40<br>40<br>80<br>40<br>80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34.0<br>43.0<br>Flange<br>7.5<br>10.0<br>12.8<br>12.8<br>15.8                                                                                 | 3<br>3<br>(FIII<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>2<br><b>REBA</b><br>1<br>1<br>1<br>1                                                                                                                                                                                     | CFONF45J13S<br>CFONF56A13S<br>AR)<br>CFONF16J20S<br>CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 236<br>240<br>128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (107)<br>(109)<br>(58)<br>(59)<br>(61)                                                                          | 70 <sup>1</sup> / <sub>2</sub> (17<br>70 <sup>1</sup> / <sub>2</sub> (17<br>39 (9<br>39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 789)<br>789)<br>989)<br>989)                                                                           | 52 (<br>52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1321)<br>(1321)<br>(1321)<br>(521)<br>(521)                                                                                           | 48 <sup>1</sup> / <sub>2</sub><br>48 <sup>1</sup> / <sub>2</sub><br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1232)<br>(1232)<br>(432)<br>(432)<br>(432)                                                                                            | (Thre<br>(4 Pla             | eads<br>ices)<br>311/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in. I                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (32 mm)<br>(2 Places)<br>(5% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ANSI 40 40 80 40 80 40 40 80 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flange<br>7.5<br>10.0<br>12.8<br>12.8<br>15.8                                                                                                 | 3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>REBA<br>1<br>1<br>1<br>1                                                                                                                                                                                                 | CFONF56A13S  AR)  CFONF16J20S  CFONF19J20S  CFONF24J20S  CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (58)<br>(59)<br>(61)                                                                                            | 70 <sup>1</sup> / <sub>2</sub> (17<br>39 (9<br>39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 789)<br>989)<br>989)<br>989)                                                                           | 52 (<br>20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1321)<br>(521)<br>(521)                                                                                                               | 48 <sup>1</sup> / <sub>2</sub> 17 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (432)<br>(432)<br>(432)<br>(432)                                                                                                       | (Thre<br>(4 Pla             | eads<br>ices)<br>311/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2 Places) 65% in. (168.3 mm) 1/2 in. NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ANSI<br>40<br>40<br>40<br>80<br>40<br>80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.5<br>10.0<br>12.8<br>12.8<br>15.8<br>15.8                                                                                                   | 3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1<br>1                                                                                                                                                                                                         | AR) CFONF16J20S CFONF19J20S CFONF24J20S CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128<br>130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (58)<br>(59)<br>(61)                                                                                            | 39 (9<br>39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 989)<br>989)<br>989)                                                                                   | 20 <sup>1</sup> / <sub>2</sub><br>20 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (521)<br>(521)                                                                                                                         | 17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (432)<br>(432)<br>(432)                                                                                                                | (Thre<br>(4 Pla             | eads<br>ices)<br>311/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in. I                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65% in.<br>(168.3 mm)<br>1/2 in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 40<br>40<br>40<br>80<br>40<br>80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.5<br>10.0<br>12.8<br>12.8<br>15.8<br>15.8                                                                                                   | 3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1                                                                                                                                                                                                              | CFONF16J20S<br>CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (59)<br>(61)                                                                                                    | 39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 989)<br>989)                                                                                           | 201/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (521)                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (432)<br>(432)                                                                                                                         | (4 Pla                      | ces)<br>3 <sup>11</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in. ‡                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ½ in.<br>NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40<br>40<br>40<br>80<br>40<br>80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.5<br>10.0<br>12.8<br>12.8<br>15.8<br>15.8                                                                                                   | 3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1                                                                                                                                                                                                              | CFONF16J20S<br>CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (59)<br>(61)                                                                                                    | 39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 989)<br>989)                                                                                           | 201/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (521)                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (432)<br>(432)                                                                                                                         | (                           | 3¹⅓6<br>(93.7 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in. +                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40<br>40<br>80<br>40<br>80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0<br>12.8<br>12.8<br>15.8<br>15.8                                                                                                          | 3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>1                                                                                                                                                                                                                   | CFONF19J20S<br>CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 130<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (59)<br>(61)                                                                                                    | 39 (9<br>39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 989)<br>989)                                                                                           | 201/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (521)                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (432)<br>(432)                                                                                                                         | (                           | (93.7 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mm)                                          | <b>(</b> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40<br>80<br>40<br>80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.8<br>12.8<br>15.8<br>15.8                                                                                                                  | 3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>1                                                                                                                                                                                                                   | CFONF24J20S<br>CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (61)                                                                                                            | 39 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 989)                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . ,                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (432)                                                                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | P .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 80<br>40<br>80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.8<br>15.8<br>15.8                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFONF24J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ , ,                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | , _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                            | <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40<br>80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.8<br>15.8                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | $20^{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (521)                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (432)                                                                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 80<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.8                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               | 0. 0.1. 00/1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 49 <sup>1</sup> /2 (12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (787)                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                             | CFONF30A19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 49 <sup>1</sup> / <sub>2</sub> (12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (787)                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        | 5 ir                        | nch -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150 lb                                       | ANSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFONF35A20S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ , ,                                                                                                           | 49 <sup>1</sup> / <sub>2</sub> (12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (787)                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.0                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFONF35A19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 49 <sup>1</sup> / <sub>2</sub> (12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (787)                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ 5% in. Ref.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.0                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                             | CFONF45J20S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 70 <sup>1</sup> / <sub>2</sub> (17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1321)                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (141.3 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.0                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFONF45J19S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 70 <sup>1</sup> / <sub>2</sub> (17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1321)                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                            | <b>(</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | } ½ in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.3                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                             | CFONF56A20S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 70 <sup>1</sup> / <sub>2</sub> (17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        | 481/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . ,                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NPT Drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        | _                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (100)                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( - )                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( - )                                                                                                                                  | Î                           | 105/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . D.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ANSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flange                                                                                                                                        | e (W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATRO                                                                                                                                                                                                                          | OD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 40.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>-</b> 4 / :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                             | CFNS733A10S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (66)                                                                                                            | 56 <sup>1</sup> /4(142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.0)                                                                                                  | 37 (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 940.0)                                                                                                                                 | 18 <sup>5</sup> /8(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (473.1)                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | =<br><u>, ⇔•o-o+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 in                                         | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ľ l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - /                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PT Inlet                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFNS733A5S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        | A Ref                       | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d Outle                                      | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                             | CFNS740J10S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (635 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFNS740J3S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . ,                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41/ ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFNS740J11S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ ,                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1½ in.<br>(32 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFNS740J5S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2 Places                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                             | CFNS748A10S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        | 2/12                        | 111115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -/-                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75/- i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFNS748A3S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>-</b> .                                   | <b>→</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75% in.<br>(193.7 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             | CFNS748A11S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ½ in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                             | CFNS764J3S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            | €・→                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             | (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08 mm)                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40<br>40<br>80<br>80<br>40<br>80<br>40<br>40<br>80<br>80<br>40<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NSI                                                                                                                                           | NSI Flange<br>12.00<br>12.00<br>12.00<br>12.00<br>15.00<br>15.00<br>15.00<br>15.00<br>15.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.0 | NSI Flange (W 12.00 1 12.00 3 12.00 1 12.00 3 15.00 1 15.00 3 15.00 1 15.00 3 15.00 1 15.00 3 15.00 1 15.00 3 15.00 1 15.00 3 15.00 1 15.00 3 18.00 1 18.00 3 18.00 1 18.00 3 18.00 1 18.00 3 18.00 1 18.00 3 18.00 1 18.00 3 | NSI Flange (WATRO 1 12.00 1 2 1 12.00 3 1 1 12.00 3 1 1 12.00 3 1 1 15.00 1 2 1 15.00 3 1 1 15.00 1 1 1 15.00 3 1 1 15.00 1 1 1 15.00 3 1 1 15.00 3 1 1 15.00 1 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 1 15.00 3 1 | NSI Flange (WATROD) 1 12.00 1 2 CFNS733A10S 1 12.00 3 1 CFNS733A1S 1 12.00 3 1 CFNS733A1S 1 12.00 3 1 CFNS733A5S 1 15.00 1 2 CFNS740J10S 1 15.00 3 1 CFNS740J3S 1 15.00 1 1 CFNS740J1S 1 15.00 3 1 CFNS740J1S 1 15.00 3 1 CFNS740J1S 1 15.00 3 1 CFNS740J1S 1 15.00 3 1 CFNS740J1S 1 18.00 1 2 CFNS748A10S 1 18.00 3 1 CFNS748A1S 1 18.00 3 1 CFNS748A1S 1 18.00 3 1 CFNS748A1S 1 18.00 3 1 CFNS748A1S 1 18.00 3 1 CFNS748A1S 1 18.00 3 1 CFNS748A1S 1 18.00 3 1 CFNS748A1S 1 18.00 3 1 CFNS748A1S 1 18.00 3 1 CFNS74BA5S 1 25.00 3 2 CFNS764J3S 1 25.00 3 2 CFNS764J1S 1 25.00 3 2 CFNS764J5S 1 30.00 3 2 CFNS777A3S 1 30.00 1 2 CFNS777A3S | NSI Flange (WATROD) 1 12.00 1 2 CFNS733A10S M 1 12.00 3 1 CFNS733A3S M 1 12.00 3 1 CFNS733A1S M 1 12.00 3 1 CFNS733A5S M 1 15.00 1 2 CFNS740J10S M 1 15.00 3 1 CFNS740J3S M 1 15.00 1 1 CFNS740J1S M 1 15.00 3 1 CFNS740J1S M 1 15.00 3 1 CFNS740J1S M 1 15.00 3 1 CFNS740J1S M 1 15.00 3 1 CFNS740J1S M 1 18.00 1 2 CFNS748A10S M 1 18.00 3 1 CFNS748A3S M 1 18.00 3 1 CFNS748A1S M 1 18.00 3 1 CFNS748A1S M 1 18.00 3 1 CFNS748A5S M 1 18.00 3 1 CFNS748A1S M 1 18.00 3 1 CFNS748A5S M 1 25.00 3 2 CFNS764J3S M 1 25.00 3 2 CFNS764J3S M 1 25.00 3 1 CFNS764J5S M 1 30.00 3 2 CFNS764J5S M 1 30.00 3 2 CFNS777A3S M 1 30.00 3 2 CFNS777A3S M | NSI Flange (WATROD)  1 12.00                                                                                    | NSI Flange (WATROD)  1 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NSI Flange (WATROD)  1 2.00                                                                            | NSI Flange (WATROD) 1 12.00 1 2 CFNS733A10S M 145 (66) 56 <sup>1</sup> /4(1427.0) 1 12.00 3 1 CFNS733A3S M 145 (66) 56 <sup>1</sup> /4(1427.0) 1 12.00 1 1 CFNS733A11S M 145 (66) 56 <sup>1</sup> /4(1427.0) 1 12.00 3 1 CFNS733A5S M 145 (66) 56 <sup>1</sup> /4(1427.0) 1 15.00 1 2 CFNS740J10S M 167 (76) 56 <sup>1</sup> /4(1427.0) 1 15.00 3 1 CFNS740J3S M 167 (76) 56 <sup>1</sup> /4(1427.0) 1 15.00 1 1 CFNS740J1IS M 167 (76) 56 <sup>1</sup> /4(1427.0) 1 15.00 3 1 CFNS740J1S M 167 (76) 56 <sup>1</sup> /4(1427.0) 1 15.00 3 1 CFNS740J5S M 167 (76) 56 <sup>1</sup> /4(1427.0) 1 15.00 3 1 CFNS740J5S M 167 (76) 56 <sup>1</sup> /4(1427.0) 1 18.00 1 2 CFNS748A10S M 180 (82) 67 <sup>3</sup> /4(1719.0) 1 18.00 3 1 CFNS748A3S M 180 (82) 67 <sup>3</sup> /4(1719.0) 1 18.00 3 1 CFNS748A1IS M 180 (82) 67 <sup>3</sup> /4(1719.0) 1 18.00 3 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 1 18.00 3 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 1 18.00 3 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 1 25.00 3 2 CFNS764J3S M 195 (89) 81 <sup>1</sup> /8(2060.6) 1 25.00 3 1 CFNS764J5S M 195 (89) 81 <sup>1</sup> /8(2060.6) 1 25.00 3 1 CFNS77A3S M 220 (100) 94 <sup>1</sup> /8(2390.8) 1 30.00 1 2 CFNS777A11S M 220 (100) 94 <sup>1</sup> /8(2390.8) | NSI Flange (WATROD)  1 2.00                                                                                                            | NSI Flange (WATROD) 1 2.00 1 2 CFNS733A10S M 145 (66) 56¹/4(1427.0) 37 (940.0) 1 12.00 3 1 CFNS733A3S M 145 (66) 56¹/4(1427.0) 37 (940.0) 1 12.00 3 1 CFNS733A1S M 145 (66) 56¹/4(1427.0) 37 (940.0) 1 12.00 3 1 CFNS733A5S M 145 (66) 56¹/4(1427.0) 37 (940.0) 1 15.00 1 2 CFNS740J10S M 167 (76) 56¹/4(1427.0) 37 (940.0) 1 15.00 3 1 CFNS740J3S M 167 (76) 56¹/4(1427.0) 37 (940.0) 1 15.00 1 1 CFNS740J1S M 167 (76) 56¹/4(1427.0) 37 (940.0) 1 15.00 3 1 CFNS740J1S M 167 (76) 56¹/4(1427.0) 37 (940.0) 1 15.00 3 1 CFNS740J1S M 167 (76) 56¹/4(1427.0) 37 (940.0) 1 15.00 3 1 CFNS740J1S M 167 (76) 56¹/4(1427.0) 37 (940.0) 1 15.00 3 1 CFNS740J1S M 167 (76) 56¹/4(1427.0) 37 (940.0) 1 15.00 3 1 CFNS748A10S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 1 18.00 1 2 CFNS748A3S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 1 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 1 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 1 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 1 18.00 3 1 CFNS74BA5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 1 2 2 3 3 2 CFNS764J3S M 195 (89) 81¹/8(2060.6) 617/8(1571.6) 1 2 5 5 5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 | NSI Flange (WATROD)  1 2.00                                                                                                            | NSI Flange (WATROD)  1 2.00 | NSI Flange (WATROD) 1 12.00 1 2 CFNS733A10S M 145 (66) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 12.00 3 1 CFNS733A1S M 145 (66) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 12.00 1 1 1 CFNS733A1S M 145 (66) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 12.00 3 1 CFNS733A5S M 145 (66) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 12.00 3 1 CFNS73A5S M 145 (66) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 15.00 1 2 CFNS740J10S M 167 (76) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 15.00 3 1 CFNS740J3S M 167 (76) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 15.00 1 1 CFNS740J1S M 167 (76) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 15.00 3 1 CFNS740J5S M 167 (76) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 15.00 3 1 CFNS740J5S M 167 (76) 56¹/4(1427.0) 37 (940.0) 18⁵/8(473.1) 15.00 3 1 CFNS748A1S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 1 1 CFNS748A1S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 3 1 CFNS748A5S M 180 (82) 67³/4(1719.0) 48¹/2(1232.0) 18⁵/8(473.1) 18.00 1 | NSI Flange (WATROD) 1                        | NSI Flange (WATROD) 1 12.00 1 2 CFNS733A10S M 145 (66) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 12.00 3 1 CFNS733A3S M 145 (66) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 12.00 3 1 CFNS733A5S M 145 (66) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 12.00 3 1 CFNS733A5S M 145 (66) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 12.00 1 1 2 CFNS740J10S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 12.00 3 1 CFNS740J3S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 12.00 1 1 1 CFNS740J1S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 12.00 1 1 1 CFNS740J1S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 12.00 1 1 1 CFNS740J1S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 13 <sup>5</sup> /8(473.1) 13 <sup>5</sup> /8(173.1)  NSI Flange (WATROD) 12.00 1 2 CFNS733A10S M 145 (66) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 10 12.00 3 1 CFNS733A3S M 145 (66) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 10 12.00 3 1 CFNS733A5S M 145 (66) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 10 15.00 1 2 CFNS740J10S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 10 15.00 3 1 CFNS740J3S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 10 15.00 3 1 CFNS740J1S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 10 15.00 3 1 CFNS740J1S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS740J1S M 167 (76) 56 <sup>1</sup> /4(1427.0) 37 (940.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS740J1S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A1S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A1S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A1S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A1S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A1S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A1S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 CFNS748A5S M 180 (82) 67 <sup>3</sup> /4(1719.0) 48 <sup>1</sup> /2(1232.0) 18 <sup>5</sup> /8(473.1) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

• M - Manufacturing lead times

Truck Shipment only

## WATROD and FIREBAR Circulation Heaters



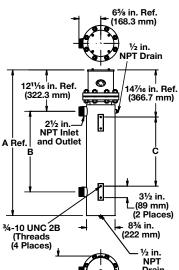
## **Application: Lightweight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                          |       |         |       | #          | Part         |      | Shir | o Wt. | "A" D                | im     | "P"                | Dim.     | "C                | " Dim.               | <b>5</b> i | inch           | - 1     | 50 lb           | ANS                     | l Fla         | ange                                             |
|--------------------------|-------|---------|-------|------------|--------------|------|------|-------|----------------------|--------|--------------------|----------|-------------------|----------------------|------------|----------------|---------|-----------------|-------------------------|---------------|--------------------------------------------------|
| Description              | Volte | kW      | Ph    | "<br>Circ. |              | Del. | lbs  |       |                      | mm)    |                    | (mm)     | in.               | (mm)                 |            |                |         |                 |                         |               |                                                  |
| 5 inch - 150             |       |         |       |            | •            | DCI. | IDS  | (Kg)  | ,                    | ,,,,,, | 1111.              | (11111)  |                   | (11111)              |            |                |         | -               |                         |               | 5% in. Ref.<br>(141.3 mm)                        |
| 23 W/in²                 | 240   | 18.0    | 1     | 3          | CFNS733A10XS | М    | 150  | (68)  | 56 <sup>1</sup> /4(1 | 427 N  | 37                 | (940 0)  | 185/              | /s(471.1)            |            |                |         | _               | $\mathcal{L}^{\dagger}$ | $\mathcal{J}$ |                                                  |
| Steel Tank               | 240   | 18.0    | 3     | 1          | CFNS733A3XS  | M    | 150  | (68)  |                      |        |                    |          | _                 | 8 (471.1)            |            |                |         |                 | Ø+                      | Ŋ             | ½ in.<br>NPT Drain                               |
| 9-Steel                  | 480   | 18.0    | 1     | 1          | CFNS733A11XS | M    | 150  | (68)  | ,                    |        |                    |          | _                 | 8 (471.1             |            |                |         |                 | 4                       |               | / Drain                                          |
| Elements                 | 480   | 18.0    | 3     | 1          | CFNS733A5XS  | M    | 150  |       | 56 <sup>1</sup> /4(1 |        |                    |          |                   | 8 (471.1             | 7          |                | 1       |                 |                         | <b>1</b> -    | <del></del>                                      |
| (3.6 W/cm <sup>2</sup> ) | 240   | 23.0    | 1     | 3          | CFNS740J10XS | M    | 173  |       | 56 <sup>1</sup> /4(1 |        |                    |          |                   | 8 (471.1             |            |                |         | . Ref.          |                         |               | /                                                |
|                          | 240   | 23.0    | 3     | 3          | CFNS740J3XS  | М    | 173  | (79)  |                      |        |                    | (940.0)  |                   |                      |            | (32            | 20.7    | mm)             | 90                      | 짺/            | ⁄ ç                                              |
|                          | 480   | 23.0    | 1     | 1          | CFNS740J11XS | М    | 173  | . ,   | 56 <sup>1</sup> /4(1 |        |                    | (940.0)  | _                 |                      |            | Ŧ              |         |                 | ₩                       | 1             |                                                  |
|                          | 480   | 23.0    | 3     | 1          | CFNS740J5XS  | М    | 173  | (79)  |                      |        |                    | (940.0)  | _                 |                      |            |                |         | in<br>Inlet     | (   <b></b>             | +             | <del></del>                                      |
|                          | 240   | 27.0    | 1     | 3          | CFNS748A10XS | М    | 188  | (86)  |                      |        |                    | (1232.0) |                   | (633.0)              | ΑĖ         | Ref.           |         | Outle           |                         |               | Ϊ<br>25 in.                                      |
|                          | 240   | 27.0    | 3     | 3          | CFNS748A3XS  | М    | 188  | (86)  |                      |        |                    | (1232.0) |                   | (633.0)              |            | B              |         |                 |                         |               | (635 mm)                                         |
|                          | 480   | 27.0    | 1     | 3          | CFNS748A11XS | М    | 188  | . ,   | 67 <sup>3</sup> /4(1 |        |                    |          | _                 | (633.0)              |            |                |         |                 |                         | $\perp$       |                                                  |
|                          | 480   | 27.0    | 3     | 1          | CFNS748A5XS  | М    | 188  |       | 67% (1               |        |                    |          | _                 | (633.0)              |            | ļ              |         |                 |                         |               | 1¼ in.<br>(32 mm)                                |
|                          | 240   | 38.0    | 3     | 3          | CFNS764J3XS  | М    | 206  |       | 81 <sup>1</sup> /8(2 |        |                    |          | _                 | (633.0)              |            |                |         |                 | <b>"</b>                |               | (2 Places)                                       |
|                          | 480   | 38.0    | 1     | 3          | CFNS764J11XS | М    | 206  | (94)  |                      |        |                    | (1571.6) | _                 | (633.0)              | الرا       | 40             |         | $-\!\!\!/$      | _                       | _ _           | _ 75⁄8 in.                                       |
|                          | 480   | 38.0    | 3     | 1          | CFNS764J5XS  | М    | 206  | /     | 81 <sup>1</sup> /8(2 |        |                    | · ,      |                   | (633.0)              |            | 16 U<br>hrea   |         |                 | <b>→ `</b>              | ╵┝╾           | 7% in.<br>(193.7 mm)                             |
|                          | 240   | 45.0    | 3     | 3          | CFNS777A3XS  | М    | 233  |       | 94 <sup>1</sup> /8(2 |        |                    |          | _                 | (633.0)              | (4         | Plac           | es)     | 1               | 1                       | /             | ½ in.                                            |
|                          | 480   | 45.0    | 1     | 3          | CFNS777A11XS | М    | 233  | (106) |                      |        |                    | 1902.0)  | _                 | (633.0)              |            |                |         |                 |                         |               | NPT<br>Drain                                     |
|                          | 480   | 45.0    | 3     | 3          | CFNS777A5XS  | М    | 233  | (106) | 941/8(2              | 390.8) | ,                  | . ,      | _                 | (633.0)              |            |                |         | 1               | •                       | 尹             | Drain                                            |
|                          |       |         |       |            |              |      |      |       |                      | ,      |                    | ,        |                   | , ,                  |            |                |         | 4 in.<br>3 mm)  | <b>A</b>                |               |                                                  |
| 6 inch - 150             | lb AN | SI Flar | nge ( | WAT        | ROD)         |      |      |       |                      |        |                    |          |                   |                      |            |                | (100    | , ,,,,,,        |                         |               |                                                  |
| 23 W/in <sup>2</sup>     | 240   | 12.0    | 1     | 2          | CFPS717R10S  | М    | 214  | (97)  | 40 <sup>1</sup> /2 ( | 1027)  | 20 <sup>1</sup> /2 | (521)    | 17                | (432)                | ۵:         | nah            | 4       | EO IL           | ANS                     | ı Ele         | 222                                              |
| Steel Tank               | 240   | 12.0    | 3     | 1          | CFPS717R3S   | М    | 214  | (97)  |                      |        |                    |          | _                 | (432)                | 0          | IIICII         | - 1     | מו טכ           | ANS                     | I FIG         | inge                                             |
| 12-Steel                 | 480   | 12.0    | 1     | 1          | CFPS717R11S  | М    | 214  | (97)  |                      |        |                    |          |                   | (432)                |            |                |         | _               |                         |               | % in. Ref.                                       |
| Elements                 | 480   | 12.0    | 3     | 1          | CFPS717R5S   | М    | 214  | (97)  | 40 <sup>1</sup> /2 ( | 1027)  | 20 <sup>1</sup> /2 | (521)    | 17                | (432)                |            |                |         |                 | 1                       | <b>S</b> (1)  | 68.3 mm)                                         |
| (3.6 W/cm²)              | 240   | 18.0    | 1     | 2          | CFPS725G10S  | М    | 222  |       | 40 <sup>1</sup> /2 ( |        |                    |          | 17                | (432)                |            |                |         | -               | <b>₩</b> !              | 7             | ½ in.                                            |
|                          | 240   | 18.0    | 3     | 1          | CFPS725G3S   | М    | 222  | (101) |                      |        |                    |          | 17                | (432)                |            |                |         |                 | Vy.                     | <u> </u>      | NPT Drain                                        |
|                          | 480   | 18.0    | 1     | 1          | CFPS725G11S  | М    | 222  | (101) | 40 <sup>1</sup> /2 ( |        |                    |          | 17                | (432)                | 7          | _              | -       |                 | - <del></del>           | <del>-</del>  | <del>/                                    </del> |
|                          | 480   | 18.0    | 3     | 1          | CFPS725G5S   | М    | 222  |       | 40 <sup>1</sup> /2 ( |        |                    |          | 17                | (432)                |            | 12¹            | 1/16 İI | n. Ref.         |                         | <u> </u>      | 147/16 in. Ref.                                  |
|                          | 240   | 24.0    | 1     | 3          | CFPS732R10S  | М    | 226  | (103) |                      | 1294)  |                    | (787)    |                   |                      |            | (32            | 22.3    | mm)             | -                       | 0,0           | (366.7 mm)                                       |
|                          | 240   | 24.0    | 3     | 2          | CFPS732R3S   | М    | 226  | (103) | 51 (                 | 1294)  | 31                 | (787)    | 27 <sup>1</sup> / | <sup>'</sup> 2 (699) |            | 7              | _ •     |                 | <b>9</b> ) ,            |               | <u>′</u>                                         |
|                          | 480   | 24.0    | 1     | 2          | CFPS732R11S  | М    | 226  | (103) |                      | 1294)  | 31                 |          |                   | <sup>'</sup> 2 (699) |            |                |         | ∕₂ in<br>T Inle | ַן  יַּ                 | ]             | <b>†</b>                                         |
|                          | 480   | 24.0    | 3     | 1          | CFPS732R5S   | М    | 226  | (103) |                      | 1294)  | 31                 | (787)    | 27 <sup>1</sup> / | <sup>'</sup> 2 (699) | ΑF         | Ref.           |         | Outle           |                         |               |                                                  |
|                          | 240   | 30.0    | 1     | 3          | CFPS740G10S  | М    | 290  | (132) | 72 (                 | 1827)  | 52                 | (1321)   | 48 <sup>1</sup> / | <sup>2</sup> (1232)  |            | В              |         |                 |                         |               | Ç                                                |
|                          | 240   | 30.0    | 3     | 2          | CFPS740G3S   | М    | 290  | (132) | 72 (                 | 1827)  | 52                 | (1321)   | 48 <sup>1</sup> / | <sup>/</sup> 2(1232) |            |                |         |                 |                         |               |                                                  |
|                          | 480   | 30.0    | 1     | 2          | CFPS740G11S  | М    | 290  | (132) | 72 (                 | 1827)  | 52                 | (1321)   | 48 <sup>1</sup> / | <sup>/</sup> 2(1232) |            | ļ              |         |                 | تر 🚽                    | $\dashv$      | <u> </u>                                         |
|                          | 480   | 30.0    | 3     | 1          | CFPS740G5S   | М    | 290  | (132) |                      | 1827)  | 52                 | (1321)   | 48 <sup>1</sup> / | <sup>/</sup> 2(1232) |            |                |         |                 | <b>』</b>                | $\dashv$      | 3½ in.                                           |
|                          | 240   | 36.0    | 1     | 4          | CFPS747R10S  | М    | 298  | (136) | 72 (                 | 1827)  | 52                 |          |                   | <sup>/</sup> 2(1232) | <u> </u>   |                |         | $\angle$        | _Ļ.                     | $\sqcup$      | Ľ (89 mm)<br>(2 Places)                          |
|                          | 240   | 36.0    | 3     | 2          | CFPS747R3S   | М    | 298  | (136) | 72 (                 | 1827)  | 52                 | (1321)   | 48 <sup>1</sup> / | <sup>/</sup> 2(1232) | 3/4-       | 10 U           |         | žΒ              | 4                       | <b>/</b> ŀ    | ⊷ 8³⁄4 in.                                       |
|                          | 480   | 36.0    | 1     | 2          | CFPS747R11S  | М    | 298  | (136) | 72 (                 | 1827)  | 52                 |          |                   | <sup>/</sup> 2(1232) | -          | (Thre<br>4 Pla |         |                 |                         | \             | (222 mm)                                         |
|                          | 480   | 36.0    | 3     | 1          | CFPS747R5S   | М    |      | (136) |                      | 1827)  |                    |          | _                 | <sup>/</sup> 2(1232) | '          | r i ia         | Juaj    | <u> </u>        | 1                       | •             | ½ in.<br>NPT                                     |
|                          | 240   | 50.0    | 3     | 4          | CFPS764G3S   | М    |      | (164) |                      | 2361)  |                    | (1854)   |                   | (1676)               |            |                |         | T               |                         | <i>\\</i>     | Drain                                            |
|                          | 480   | 50.0    | 1     | 3          | CFPS764G11S  | М    | 360  |       |                      | 2361)  |                    | (1854)   |                   | (1676)               |            |                |         | ¼ in.           | J.                      | <b>3</b> 9    |                                                  |
|                          | 480   | 50.0    | 3     | 2          | CFPS764G5S   | М    | 360  | (164) |                      | 2361)  |                    | (1854)   |                   | (1676)               |            |                | (12     | 1 mm            | ) 7                     | -             |                                                  |
|                          | 240   | 60.0    | 3     | 4          | CFPS776R3S   | М    | 368  |       |                      | 2361)  |                    | (1854)   |                   | (1676)               |            |                |         |                 |                         |               |                                                  |
|                          | 480   | 60.0    | 1     | 3          | CFPS776R11S  | М    | 368  | (167) |                      | 2361)  |                    | (1854)   |                   | (1676)               |            |                |         |                 |                         |               |                                                  |
|                          | 480   | 60.0    | 3     | 2          | CFPS776R5S   |      |      | (167) |                      | 2361)  |                    | (1854)   |                   | (1676)               |            |                |         |                 |                         |               |                                                  |
|                          |       |         |       |            |              |      | 1    | ,/    | (-                   | /      |                    | , '/     |                   | , 5/                 |            |                |         |                 |                         |               |                                                  |

• M - Manufacturing lead times

Truck Shipment only


#### **WATROD** and **FIREBAR Circulation Heaters**



#### **Application: Lightweight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                          |       |         |      | #     | Part         |      | Shir | Wt.   | "A" Dim.                              | "B"                            | Dim.   | "C"                            | Dim.   | 6 inch - 150 lb                                  | ANSI F        | lange                 |
|--------------------------|-------|---------|------|-------|--------------|------|------|-------|---------------------------------------|--------------------------------|--------|--------------------------------|--------|--------------------------------------------------|---------------|-----------------------|
| Description              | Volts | kW      | Ph   | Circ. | Number       | Del. |      | (kg)  | in. (mm)                              | 1.                             | (mm)   | in.                            | (mm)   |                                                  |               | 65∕s in. F            |
| 6 inch - 150             |       |         |      |       |              |      |      | (5)   | ()                                    |                                | ()     |                                | (      | •                                                |               | 168.3 m               |
| 23 W/in²                 | 240   | 15.0    | 1    | 3     | CFPS717R10XS | М    | 217  | (99)  | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | _                                                | <b>/</b>      | 1⁄2 ir                |
| Steel Tank               | 240   | 15.0    | 3    | 1     | CFPS717R3XS  | М    | 217  | . ,   | 40 <sup>1</sup> / <sub>2</sub> (1027) |                                | . ,    |                                | (432)  | -                                                | <b>*</b>      | NPT D                 |
| 15-Steel                 | 480   | 15.0    | 1    | 1     | CFPS717R11XS | М    | 217  | (99)  | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | <del>                                     </del> | _ <del></del> | <sub>1</sub> —        |
| Elements<br>(3.6 W/cm²)  | 480   | 15.0    | 3    | 1     | CFPS717R5XS  | М    | 217  | (99)  | 40 <sup>1</sup> / <sub>2</sub> (1027) |                                |        | 17                             | (432)  | 12 <sup>1</sup> / <sub>16</sub> in. Ref.         |               | 147/16                |
| S.O W/CIII )             | 240   | 23.0    | 1    | 3     | CFPS725G10XS | М    | 222  | (101) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> / <sub>2</sub> |        |                                | (432)  | (322.3 mm)                                       | 9,0 0,        | (366                  |
|                          | 240   | 23.0    | 3    | 5     | CFPS725G3XS  | М    | 222  | (101) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | 2½ in.–                                          | 쀳╓            | <u> </u>              |
|                          | 480   | 23.0    | 1    | 1     | CFPS725G11XS | М    | 222  | (101) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | NPT Inle                                         | . I           |                       |
|                          | 480   | 23.0    | 3    | 1     | CFPS725G5XS  | М    | 222  | (101) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  | A Ref.   and Outle<br>  B                        | t             |                       |
|                          | 240   | 30.0    | 1    | 3     | CFPS732R10XS | М    | 226  | (103) | 51 (1294)                             | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  | 1                                                |               |                       |
|                          | 240   | 30.0    | 3    | 5     | CFPS732R3XS  | М    | 226  | (103) | 51 (1294)                             | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  | 1                                                |               |                       |
|                          | 480   | 30.0    | 1    | 3     | CFPS732R11XS | М    | 226  | (103) | 51 (1294)                             | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  |                                                  |               | 31                    |
|                          | 480   | 30.0    | 3    | 1     | CFPS732R5XS  | М    | 226  | (103) | 51 (1294)                             | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  |                                                  | Ĺ             | _ 1_(89<br>(2 F       |
|                          | 240   | 38.0    | 1    | 5     | CFPS740G10XS | М    | 290  | (132) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | 34-10 UNC 2B                                     | ∕ اـ          | - 8 <sup>3</sup> ⁄4 i |
|                          | 240   | 38.0    | 3    | 5     | CFPS740G3XS  | М    | 290  | (132) |                                       |                                | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | (Threads<br>(4 Places)                           |               | (222 n                |
|                          | 480   | 38.0    | 1    | 3     | CFPS740G11XS | М    | 290  | (132) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | (* * * * * * * * * * * * * * * * * * *           |               | \_1                   |
|                          | 480   | 38.0    | 3    | 1     | CFPS740G5XS  | М    | 290  | (132) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | · ·                                              |               | 1                     |
|                          | 240   | 45.0    | 1    | 5     | CFPS747R10XS | М    | 298  | (136) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | 4¾ in.<br>(121 mm)                               |               | 7                     |
|                          | 240   | 45.0    | 3    | 5     | CFPS747R3XS  | М    | 298  | (136) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | (1211111)                                        | •             |                       |
|                          | 480   | 45.0    | 1    | 3     | CFPS747R11XS | М    | 298  | (136) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |                                                  |               |                       |
|                          | 480   | 45.0    | 3    | 5     | CFPS747R5XS  | М    | 298  | (136) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) | -                                                |               |                       |
|                          | 240   | 63.0    | 3    | 5     | CFPS764G3XS  | М    | 360  | (164) | 93 (2361)                             | 73                             | (1854) | 66                             | (1676) |                                                  |               |                       |
|                          | 480   | 63.0    | 1    | 3     | CFPS764G11XS | М    | 360  | (164) | 93 (2361)                             | 73                             | (1854) | 66                             | (1676) |                                                  |               |                       |
|                          | 480   | 63.0    | 3    | 5     | CFPS764G5XS  | М    | 360  | (164) | 93 (2361)                             | 73                             | (1854) | 66                             | (1676) |                                                  |               |                       |
|                          | 240   | 75.0    | 3    | 5     | CFPS776R3XS  | М    | 368  | (167) | 93 (2361)                             | 73                             | (1854) | 66                             | (1676) |                                                  |               |                       |
|                          | 480   | 75.0    | 1    | 5     | CFPS776R11XS | М    | 368  | (167) | 93 (2361)                             | 73                             | (1854) | 66                             | (1676) |                                                  |               |                       |
|                          | 480   | 75.0    | 3    | 5     | CFPS776R5XS  | М    | 368  | (167) | 93 (2361)                             | 73                             | (1854) | 66                             | (1676) |                                                  |               |                       |
|                          |       |         |      |       |              |      |      |       |                                       |                                |        |                                |        |                                                  |               |                       |
| 6 inch - 150             | lb AN | SI Flan | ge ( | FIRE  | BAR)         |      |      |       |                                       |                                |        |                                |        |                                                  |               |                       |
| 30 W/in² ③               | 240   | 25.0    | 3    | 5     | CFPNF16J12S  | М    | 220  | (100) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |                                                  |               |                       |
| Steel Tank               | 480   | 25.0    | 3    | 5     | CFPNF16J13S  | М    | 220  | (100) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 201/2                          | (521)  | 17                             | (432)  |                                                  |               |                       |
| 15-Alloy 800<br>Elements | 240   | 32.0    | 3    | 5     | CFPNF19J12S  | М    | 223  | (102) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 201/2                          | (521)  | 17                             | (432)  |                                                  |               |                       |
| (4.7 W/cm²)              | 480   | 32.0    | 3    | 5     | CFPNF19J13S  | М    | 223  | (102) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |                                                  |               |                       |
| (,                       | 240   | 42.0    | 3    | 5     | CFPNF24J12S  | М    | 226  | (103) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 201/2                          | (521)  | 17                             | (432)  |                                                  |               |                       |
|                          | 480   | 42.0    | 3    | 5     | CFPNF24J13S  | М    | 226  | (103) | 40 <sup>1</sup> / <sub>2</sub> (1027) | 20 <sup>1</sup> /2             | (521)  | 17                             | (432)  |                                                  |               |                       |
|                          | 240   | 52.0    | 3    | 5     | CFPNF30A12S  | М    | 232  | (106) | 51 (1294)                             | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  |                                                  |               |                       |
|                          | 480   | 52.0    | 3    | 5     | CFPNF30A13S  | М    | 232  | (106) | 51 (1294)                             | 31                             | (787)  | 27 <sup>1</sup> / <sub>2</sub> | (699)  |                                                  |               |                       |
|                          | 240   | 64.0    | 3    | 5     | CFPNF35A12S  | М    | 236  | (107) | 51 (1294)                             | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  |                                                  |               |                       |
|                          | 480   | 64.0    | 3    | 5     | CFPNF35A13S  | М    | 236  | (107) | 51 (1294)                             | 31                             | (787)  | 27 <sup>1</sup> /2             | (699)  | 1                                                |               |                       |
|                          | 240   | 85.0    | 3    | 5     | CFPNF45J12S  | М    | 304  | (138) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |                                                  |               |                       |
|                          | 480   | 85.0    | 3    | 5     | CFPNF45J13S  | М    | 304  | (138) | 72 (1827)                             | 52                             | (1321) | 481/2                          | (1232) |                                                  |               |                       |
|                          | 480   | 110.0   | 3    | 5     | CFPNF56A13S  | М    | 314  | (143) | 72 (1827)                             | 52                             | (1321) | 48 <sup>1</sup> / <sub>2</sub> | (1232) |                                                  |               |                       |



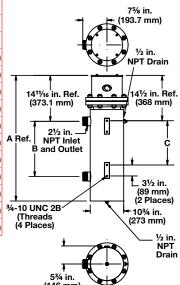
3 Wired for 3-phase operation only

Truck Shipment only

<sup>•</sup> M - Manufacturing lead times


#### **WATROD** and **FIREBAR Circulation Heaters**




#### **Application: Lightweight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                            |        |          |      | #     | Part        |      | Ship | Wt.   | "A" l                          | Dim.    | "B"                            | Dim.     | "C"                            | Dim.     | 6 i  | nch            | - 150         | lb A     | NSI FI     | ange            |
|----------------------------|--------|----------|------|-------|-------------|------|------|-------|--------------------------------|---------|--------------------------------|----------|--------------------------------|----------|------|----------------|---------------|----------|------------|-----------------|
| Description                | Volts  | kW       | Ph   | Circ. | Number      | Del. | lbs  | (kg)  | in.                            | (mm)    | in.                            | (mm)     | in.                            | (mm)     |      |                |               |          |            | 65% in. F       |
| 6 inch - 150               | lb AN  | ISI Fla  | nge  | (FIRE | BAR)        |      |      |       |                                |         |                                |          |                                |          |      |                |               |          | 2          | (168.3 m<br>\   |
| 23 W/in²                   | 240    | 19.0     | 3    | 5     | CFPNF16J20S | М    | 220  | (100) | 40 <sup>1</sup> / <sub>2</sub> | (1027)  | 20 <sup>1</sup> /2             | (521)    | 17                             | (432)    |      |                |               | 4        |            | 1/2 ii<br>NPT C |
| Steel Tank<br>15-Alloy 800 | 240    | 24.0     | 3    | 5     | CFPNF19J20S | М    | 223  | (102) | 40 <sup>1</sup> / <sub>2</sub> | (1027)  | 201/2                          | (521)    | 17                             | (432)    |      |                |               |          |            | / NPT C         |
| Elements                   | 240    | 32.0     | 3    | 5     | CFPNF24J20S | М    | 226  | (103) | 40 <sup>1</sup> / <sub>2</sub> | (1027)  | 20 <sup>1</sup> / <sub>2</sub> | (521)    | 17                             | (432)    | -    | 101            | ∱<br>⅓6 in. F | 2of      | 0          | 7               |
| (3.6 W/cm <sup>2</sup> )   | 480    | 32.0     | 3    | 5     | CFPNF24J19S | М    | 226  | (103) | 40 <sup>1</sup> / <sub>2</sub> | (1027)  | 20 <sup>1</sup> / <sub>2</sub> | (521)    | 17                             | (432)    |      | (32            | 22.3 mr       | n) [     | 000        | 147/16<br>(366  |
|                            | 240    | 40.0     | 3    | 5     | CFPNF30A20S | М    | 232  | (106) | 51                             | (1294)  | 31                             | (787)    | 27 <sup>1</sup> /2             | (699)    |      | +              |               | -9       | <br>       | <u>V</u>        |
|                            | 480    | 40.0     | 3    | 5     | CFPNF30A19S | М    | 232  | (106) | 51                             | (1294)  | 31                             | (787)    | 27 <sup>1</sup> /2             | (699)    |      |                | 2½ i<br>NPT I | nlet     |            |                 |
|                            | 240    | 48.0     | 3    | 5     | CFPNF35A20S | М    | 236  | (107) | 51                             | (1294)  | 31                             | (787)    | 27 <sup>1</sup> /2             | (699)    | Αİ   | Ref.           | and O         | utlet    |            |                 |
|                            | 480    | 48.0     | 3    | 5     | CFPNF35A19S | М    | 236  | (107) | 51                             | (1294)  | 31                             | (787)    | 27 <sup>1</sup> / <sub>2</sub> | (699)    |      | Ĭ              |               |          |            |                 |
|                            | 240    | 64.0     | 3    | 5     | CFPNF45J20S | М    | 304  | (138) | 72                             | (1827)  | 52                             | (1321)   | 48 <sup>1</sup> / <sub>2</sub> | (1232)   |      |                |               | _        |            | <u> </u>        |
|                            | 480    | 64.0     | 3    | 5     | CFPNF45J19S | М    | 304  | (138) | 72                             | (1827)  | 52                             | (1321)   | 48 <sup>1</sup> / <sub>2</sub> | (1232)   |      |                |               | _        | ∤1∐_       | <u></u> , ₃     |
|                            | 240    | 80.0     | 3    | 5     | CFPNF56A20S | М    | 314  | (143) | 72                             | (1827)  | 52                             | (1321)   | 48 <sup>1</sup> / <sub>2</sub> | (1232)   | ا    | •              |               | _        | <u></u>    | L(8:            |
|                            | 480    | 80.0     | 3    | 5     | CFPNF56A19S | М    | 314  | (143) | 72                             | (1827)  | 52                             | (1321)   | 48 <sup>1</sup> / <sub>2</sub> | (1232)   | 3/4- | -10 U<br>(Thre | NC 2B         | •        | 1 /        | 834<br>(222 r   |
|                            |        |          |      |       |             |      |      |       |                                |         |                                |          |                                |          |      | 4 Pla          |               |          | _          | ,               |
| 8 inch - 150               | lb AN  | ISI Flai | nge  | (WAT  | ROD)        |      |      |       |                                |         |                                |          |                                |          |      |                |               |          |            |                 |
| 23 W/in²                   | 240    | 30.0     | 1    | 3     | CFRS732N10S | М    | 370  | (168) | 55 <sup>1</sup> /4(            | 1402.0) | 32 <sup>3</sup> /4             | (830.0)  | 29 <sup>1</sup> / <sub>4</sub> | (741.0)  |      |                | 43/4          |          |            | 9               |
| Steel Tank<br>18-Steel     | 240    | 30.0     | 3    | 2     | CFRS732N3S  | М    | 370  | (168) | 55 <sup>1</sup> /4(            | 1402.0) | 32 <sup>3</sup> /4             | (830.0)  | 29 <sup>1</sup> / <sub>4</sub> | (741.0)  |      |                | (121 r        | nm)      | Т          |                 |
| Elements                   | 480    | 30.0     | 1    | 2     | CFRS732N11S | М    | 370  | (168) | 55 <sup>1</sup> /4(            | 1402.0) | 32 <sup>3</sup> /4             | (830.0)  | 29 <sup>1</sup> / <sub>4</sub> | (741.0)  |      |                |               |          |            |                 |
| (3.6 W/cm <sup>2</sup> )   | 480    | 30.0     | 3    | 1     | CFRS732N5S  | М    | 370  | (168) | 55 <sup>1</sup> /4(            | 1402.0) | 32 <sup>3</sup> /4             | (830.0)  | 29 <sup>1</sup> / <sub>4</sub> | (741.0)  | 8 i  | nch            | - 150         | lb A     | NSI FI     | ange            |
|                            | 240    | 40.0     | 3    | 3     | CFRS743E3S  | М    | 410  | (186) | 621/4(                         | 1580.0) | 39 <sup>3</sup> /4             | (1008.0) | 36 <sup>1</sup> /4             | (919.0)  |      |                |               |          |            | 75⁄8 in         |
|                            | 480    | 40.0     | 1    | 2     | CFRS743E11S | М    | 410  | (186) | 621/4(                         | 1580.0) | 39 <sup>3</sup> /4             | (1008.0) | 36 <sup>1</sup> /4             | (919.0)  |      |                |               | 7        |            | (193.7 m        |
|                            | 480    | 40.0     | 3    | 2     | CFRS743E5S  | М    | 410  | (186) | 621/4(                         | 1580.0) | 39 <sup>3</sup> /4             | (1008.0) | 36 <sup>1</sup> /4             | (919.0)  |      |                |               | 4        | ( <u> </u> | 7)              |
|                            | 240    | 50.0     | 3    | 3     | CFRS751M3S  | М    | 440  | (200) | 69 <sup>7</sup> /8(            | 1774.8) | 47 <sup>3</sup> /8             | (1203.3) | 43 <sup>7</sup> /8             | (1114.4) |      |                |               | 7        | <b>6</b>   | NPT E           |
|                            | 480    | 50.0     | 1    | 3     | CFRS751M11S | М    | 440  | (200) | 69 <sup>7</sup> /8(            | 1774.8) | 47 <sup>3</sup> /8             | (1203.3) | 43 <sup>7</sup> /8             | (1114.4) | 4    |                | 4             |          | $\vdash$   | <del>1</del>    |
|                            | 480    | 50.0     | 3    | 2     | CFRS751M5S  | М    | 440  | (200) | 69 <sup>7</sup> /8(            | 1774.8) | 47 <sup>3</sup> /8             | (1203.3) | 43 <sup>7</sup> /8             | (1114.4) |      |                | /16 in. R     |          | ္ကြ        | 141/2           |
|                            | 240    | 60.0     | 3    | 6     | CFRS762D3S  | М    | 480  | (218) | 79 <sup>3</sup> /8(            | 2016.1) | 56 <sup>7</sup> /8             | (1444.6) | 53 <sup>3</sup> /8             | (1355.7) |      | (37            | 3.1 mm        | i)       |            | (368            |
|                            | 480    | 60.0     | 1    | 3     | CFRS762D11S | М    | 480  | (218) | 79 <sup>3</sup> /8(            | 2016.1) | 56 <sup>7</sup> /8             | (1444.6) | 53 <sup>3</sup> /8             | (1355.7) |      | Ŧ              | 2½ in         | _        | ] []       | <b>†</b>        |
|                            | 480    | 60.0     | 3    | 2     | CFRS762D5S  | М    | 480  | (218) | 79 <sup>3</sup> /8(            | 2016.1) | 56 <sup>7</sup> /8             | (1444.6) | 53 <sup>3</sup> /8             | (1355.7) | AF   |                | NPT In        | let      | _          |                 |
|                            | 240    | 70.0     | 3    | 6     | CFRS770M3S  | М    | 530  | (241) | 88 <sup>3</sup> /8(            | 2244.7) | 65 <sup>7</sup> /8             | (1673.2) | 62 <sup>3</sup> /8             | (1584.3) |      | Ī              |               |          | · •        | <u> </u>        |
|                            | 480    | 70.0     | 1    | 6     | CFRS770M11S | М    | 530  | (241) | 88 <sup>3</sup> /8(            | 2244.7) | 65 <sup>7</sup> /8             | (1673.2) | 62 <sup>3</sup> /8             | (1584.3) |      | _              |               | - [      | -للرا      | +L 31           |
|                            | 480    | 70.0     | 3    | 2     | CFRS770M5S  | М    | 530  | (241) | 88 <sup>3</sup> /8(            | 2244.7) | 65 <sup>7</sup> /8             | (1673.2) | 62 <sup>3</sup> /8             | (1584.3) |      |                |               | $\angle$ |            | (89<br>(2 P     |
|                            | 240    | 80.0     | 3    | 6     | CFRS779M3S  | М    | 610  | (277) | 983/8(                         | 2498.7) | 75 <sup>7</sup> /8             | (1927.2) | 72 <sup>3</sup> /8             | (1838.3) | 3/4- | 10 UN<br>Threa | IC 2B         | -        |            | 103/4           |
|                            | 480    | 80.0     | 3    | 3     | CFRS779M5S  | М    | 610  | (277) | 98 <sup>3</sup> /8(            | 2498.7) | 75 <sup>7</sup> /8             | (1927.2) | 72 <sup>3</sup> /8             | (1838.3) | (    | 4 Plac         |               |          |            | (273 г          |
| • M - Manufa               | cturin | g lead t | time | S     |             |      |      |       |                                |         | Truc                           | ck Ship  | ment c                         | only     |      |                | <u> </u>      |          |            | <b>,</b>        |



SI Flange



#### WATROD and FIREBAR **Circulation Heaters**



(193.7 mm)

½ in. NPT Drain

> 14½ in. Ref. (368 mm)

3½ in. (89 mm) (2 Places)

-10¾ in. (273 mm)

½ in. NPT Drain

#### **Application: Lightweight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| Description            | Volts | kW      | Ph  | #<br>Circ. | Part<br>Number | Del. | Ship<br>lbs |       | "A" Dim.<br>in. (mm)       | "B" Dim.<br>in. (mm)        |                                | Dim.<br>(mm) | 8 inc    | :h - 150 lb                                | ANSI                | Ŭ                    |
|------------------------|-------|---------|-----|------------|----------------|------|-------------|-------|----------------------------|-----------------------------|--------------------------------|--------------|----------|--------------------------------------------|---------------------|----------------------|
| 8 inch - 150           | lb AN | SI Flai | nge | (WAT       | ROD)           |      |             |       |                            |                             |                                |              |          | -                                          |                     | 7% in.<br>+ (193.7 m |
| 23 W/in <sup>2</sup>   | 240   | 40.0    | 1   | 4          | CFRS733D10XS   | М    | 382         | (174) | 55 <sup>1</sup> /4(1402.0) | 323/4 (830.0)               | 29 <sup>1</sup> / <sub>4</sub> | (741.0)      |          |                                            | 2                   | <b>3</b> 2           |
| Steel Tank<br>24-Steel | 240   | 40.0    | 3   | 4          | CFRS733D3XS    | М    | 382         | (174) | 55 <sup>1</sup> /4(1402.0) | 323/4 (830.0)               | 29 <sup>1</sup> /4             | (741.0)      |          |                                            | <b>-</b> (( '       |                      |
| (3.6 W/cm²)            | 480   | 40.0    | 1   | 2          | CFRS733D11XS   | М    | 382         | (174) | 55 <sup>1</sup> /4(1402.0) | 32 <sup>3</sup> /4 (830.0)  | 29 <sup>1</sup> /4             | (741.0)      |          |                                            | <b>\\$</b>          | NPT D                |
| ,                      | 480   | 40.0    | 3   | 2          | CFRS733D5XS    | М    | 382         | (174) | 55 <sup>1</sup> /4(1402.0) | 323/4 (830.0)               | 29 <sup>1</sup> / <sub>4</sub> | (741.0)      | 1        | 1                                          |                     | $\overline{}$        |
|                        | 240   | 53.0    | 3   | 4          | CFRS743M3XS    | М    | 425         | (193) | 62 <sup>1</sup> /4(1580.0) | 39 <sup>3</sup> /4 (1008.0) | 36 <sup>1</sup> / <sub>4</sub> | (919.0)      |          | 4 <sup>11</sup> /16 in. Ref.<br>(373.1 mm) |                     | 14½ i                |
|                        | 480   | 53.0    | 1   | 3          | CFRS743M11XS   | М    | 425         |       | 62 <sup>1</sup> /4(1580.0) |                             |                                |              |          |                                            |                     |                      |
|                        | 480   | 53.0    | 3   | 2          | CFRS743M5XS    | М    | 425         | (193) | 62 <sup>1</sup> /4(1580.0) | 39 <sup>3</sup> /4 (1008.0) | 36 <sup>1</sup> /4             | (919.0)      | A Ref.   | 2½ in<br>NPT Inle                          | ∄ [                 |                      |
|                        | 240   | 67.0    | 3   | 4          | CFRS751M3XS    | М    | 457         |       | 69 <sup>7</sup> /8(1774.8) |                             |                                |              |          | B and Outle                                |                     |                      |
|                        | 480   | 67.0    | 1   | 3          | CFRS751M11XS   | М    | 457         | (208) | 69 <sup>7</sup> /8(1774.8) | 47 <sup>3</sup> /8 (1203.3) | 43 <sup>7</sup> /8             | (1114.4)     |          | 1                                          | _                   | _+*_                 |
|                        | 480   | 67.0    | 3   | 2          | CFRS751M5XS    | М    | 457         | (208) | 69 <sup>7</sup> /8(1774.8) | 47 <sup>3</sup> /8 (1203.3) | 43 <sup>7</sup> /8             | (1114.4)     | -        |                                            |                     | L 3½<br>(89          |
|                        | 240   | 80.0    | 3   | 8          | CFRS762D3XS    | М    | 461         | (209) | 79 <sup>3</sup> /8(2016.1) | 56 <sup>7</sup> /8 (1444.6) | 53 <sup>3</sup> /8             | (1355.7)     | 3/- 10 1 | UNC 2B                                     | $\leq$ $lacksquare$ | (2 PI                |
|                        | 480   | 80.0    | 1   | 4          | CFRS762D11XS   | М    | 461         | (209) | 79 <sup>3</sup> /8(2016.1) | 56 <sup>7</sup> /8 (1444.6) | 53 <sup>3</sup> /8             | (1355.7)     | (Th      | reads<br>laces)                            | -                   | 10¾<br>(273 r        |
|                        | 480   | 80.0    | 3   | 4          | CFRS762D5XS    | М    | 461         | (209) | 79 <sup>3</sup> /8(2016.1) | 56 <sup>7</sup> /8 (1444.6) | 53 <sup>3</sup> /8             | (1355.7)     |          | iaces)                                     |                     |                      |
|                        | 240   | 93.0    | 3   | 8          | CFRS770M3XS    | М    | 554         | (252) | 883/8(2244.7)              | 65 <sup>7</sup> /8 (1673.2) | 62 <sup>3</sup> /8             | (1584.3)     |          | 1                                          |                     |                      |
|                        | 480   | 93.0    | 1   | 6          | CFRS770M11XS   | М    | 554         | (252) | 883/8(2244.7)              | 65 <sup>7</sup> /8 (1673.2) | 62 <sup>3</sup> /8             | (1584.3)     |          | F3/-i-                                     | *                   |                      |
|                        | 480   | 93.0    | 3   | 4          | CFRS770M5XS    | М    | 554         | (252) | 883/8(2244.7)              | 65 <sup>7</sup> /8 (1673.2) | 62 <sup>3</sup> /8             | (1584.3)     |          | 5¾ in.<br>(146 mm                          | ) 🎾                 | •                    |
|                        | 240   | 107.0   | 3   | 8          | CFRS779M3XS    | М    | 636         | (289) | 983/8(2498.7)              | 75 <sup>7</sup> /8 (1927.2) | 72 <sup>3</sup> /8             | (1838.3)     |          |                                            |                     |                      |
|                        | 480   | 107.0   | 3   | 4          | CFRS779M5XS    | М    | 636         | (289) | 983/8(2498.7)              | 75 <sup>7</sup> /8 (1927.2) | 72 <sup>3</sup> /8             | (1838.3)     |          |                                            |                     |                      |



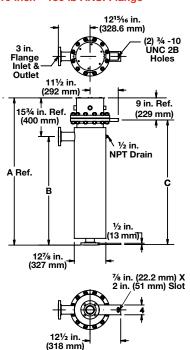
• M - Manufacturing lead times

Truck Shipment only

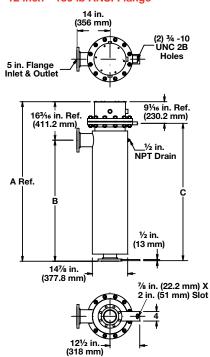
# WATROD and FIREBAR Circulation Heaters



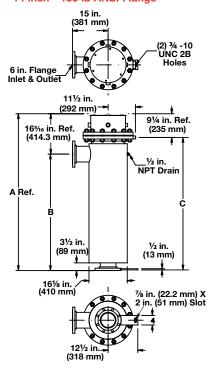
#### **Application: Lightweight Oils and Heat Transfer Oils**


- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                        |                                                     |          |     | #     | Part       |      | Shir | Wt.   | "A" Dim.                     | "B" Dim.                              | "C"                  | Dim.       |  |  |  |
|------------------------|-----------------------------------------------------|----------|-----|-------|------------|------|------|-------|------------------------------|---------------------------------------|----------------------|------------|--|--|--|
| Description            | Volts                                               | kW       | Ph  | Circ. | Number     | Del. |      |       |                              | in. (mm)                              |                      | (mm)       |  |  |  |
| 10 inch - 150          | lb AN                                               | ISI Flar | nge | (WATF | ROD)       |      |      |       |                              |                                       |                      |            |  |  |  |
| 23 W/in²               | 480                                                 | 90.0     | 3   | 3     | CFSS762E5S | М    | 540  | (245) | 91 <sup>1</sup> /4 (2316.0)  | 75 <sup>1</sup> /2(1916.0)            | 81 <sup>15</sup> /16 | (2081.2)   |  |  |  |
| Steel Tank<br>27-Steel | 480                                                 | 105.0    | 3   | 3     | CFSS770N5S | М    | 600  | (645) | 99 <sup>1</sup> /8 (2517.8)  | 83 <sup>3</sup> /8(2117.7)            | 89 <sup>13</sup> /16 | 6(2281.2)  |  |  |  |
| Elements               | 480                                                 | 120.0    | 3   | 3     | CFSS778N5S | М    | 645  | (293) | 106 <sup>5</sup> /8 (2708.3) | 907/8(2308.2)                         | 97 <sup>5</sup> /16  | (2471.7)   |  |  |  |
| (3.6 W/cm²)            |                                                     |          |     |       |            |      |      |       |                              |                                       |                      |            |  |  |  |
|                        |                                                     |          |     |       |            |      |      |       |                              |                                       |                      |            |  |  |  |
| 12 inch - 150          | 6 W/cm²)  inch - 150 lb ANSI Flange (WATROD)  W/in² |          |     |       |            |      |      |       |                              |                                       |                      |            |  |  |  |
| 23 W/in²               | 480                                                 | 140.0    | 3   | 4     | CFTS770L5S | М    | 650  | (295) | 99 (2515)                    | 82 <sup>7</sup> /8(2105.0)            | 895/8                | (2276.5)   |  |  |  |
| Steel Tank<br>36-Steel | 480                                                 | 160.0    | 3   | 4     | CFTS778L5S | М    | 700  | (318) | 106 <sup>1</sup> /2(2705)    | 903/8(2295.5)                         | 97 <sup>1</sup> /8   | (2467.0)   |  |  |  |
| Elements               |                                                     |          |     |       |            |      |      |       |                              |                                       |                      |            |  |  |  |
| (3.6 W/cm²)            |                                                     |          |     |       |            |      |      |       |                              |                                       |                      |            |  |  |  |
|                        |                                                     |          |     |       |            |      |      |       |                              |                                       |                      |            |  |  |  |
| 14 inch - 150          | lb AN                                               | ISI Flar | nae | (WATE | ROD)       |      |      |       |                              |                                       |                      |            |  |  |  |
| 23 W/in²               | 480                                                 | 150.0    | _   | 5     | CFWS762A5S | М    | 650  | (295) | 90 <sup>3</sup> /4 (2305)    | 74 <sup>1</sup> / <sub>2</sub> (1891) | 81 <sup>3</sup> /16  | (2062.2    |  |  |  |
| Steel Tank<br>45-Steel | 480                                                 | 175.0    | 3   | 5     | CFWS770J5S | М    | 700  | (318) | 98 <sup>1</sup> /4 (2496)    | 82 (2081)                             | 88 <sup>11</sup> /1  | 6 (2252.7) |  |  |  |
| 45-Steel<br>Elements   | 480                                                 | 200.0    | 3   | 5     | CFWS778J5S | М    | 780  | (354) | 105 <sup>3</sup> /4(2686)    | 89 <sup>1</sup> / <sub>2</sub> (2272) | 96 <sup>3</sup> /16  | (2443.2    |  |  |  |
| (3.6 W/cm²)            |                                                     |          |     |       |            |      |      |       |                              |                                       |                      |            |  |  |  |


• M - Manufacturing lead times

Truck Shipment only

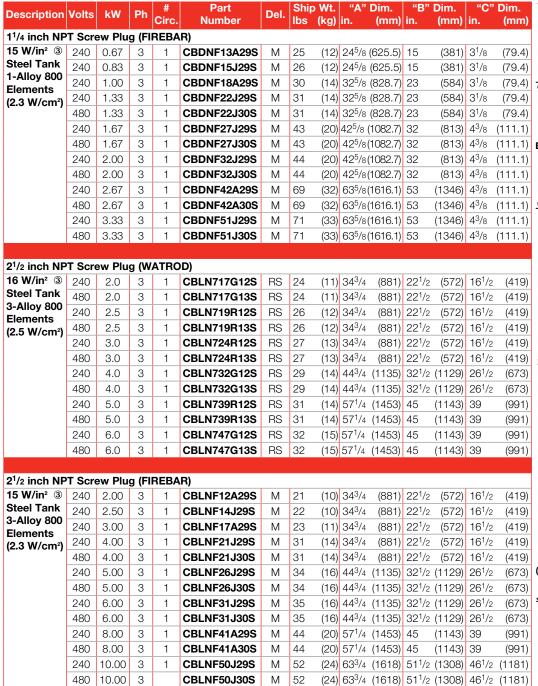

#### 10 inch - 150 lb ANSI Flange



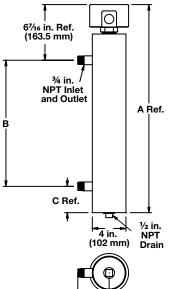
#### 12 inch - 150 lb ANSI Flange



#### 14 inch - 150 lb ANSI Flange

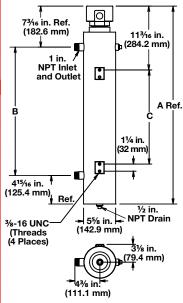



# WATROD and FIREBAR Circulation Heaters




#### **Application: Medium Weight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure








#### 21/2 inch NPT Screw Plug

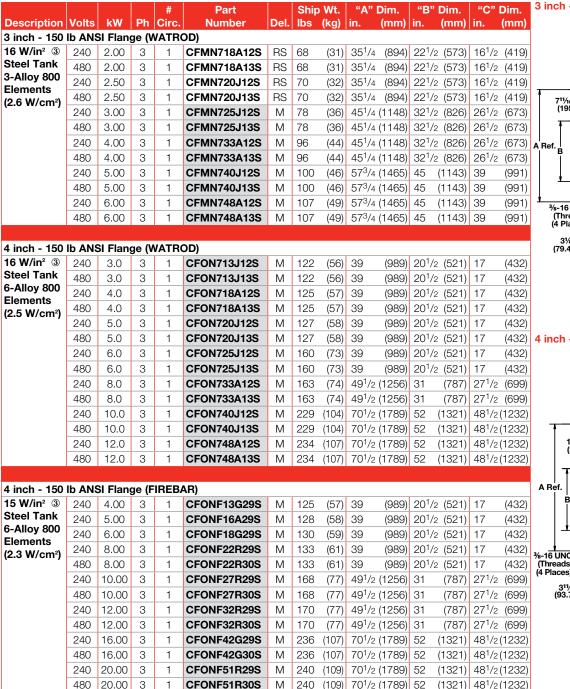
(95 mm)



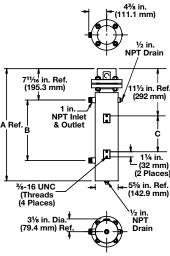


3 Wired for 3-phase operation only

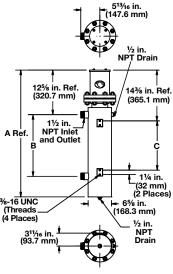
• **RS** - Next day shipment up to 5 pieces


<sup>•</sup> M - Manufacturing lead times

# WATROD and FIREBAR Circulation Heaters




#### **Application: Medium Weight Oils and Heat Transfer Oils**


- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure



#### 3 inch - 150 lb ANSI Flange



#### 4 inch - 150 lb ANSI Flange





• RS - Next day shipment up to 5 pieces • M - Manufacturing lead times

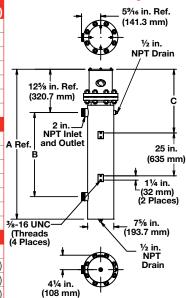
Truck Shipment only

Wired for 3-phase operation only

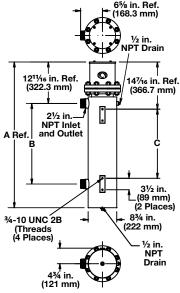
#### **WATROD** and **FIREBAR Circulation Heaters**



#### **Application: Medium Weight Oils and Heat Transfer Oils**


- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                          |         |              |       | #            | Part                         |     | Shi | p Wt. | "A"                            | Dim.                 | "B"                | Dim.               | "C"                | Dim.           | 5 inc           | ch - 150                | Ib ANS            | il Flan            | ıge      |
|--------------------------|---------|--------------|-------|--------------|------------------------------|-----|-----|-------|--------------------------------|----------------------|--------------------|--------------------|--------------------|----------------|-----------------|-------------------------|-------------------|--------------------|----------|
| Description              | Volts   | kW           | Ph    | Circ.        | Number                       | Del | lbs | (kg)  | in.                            | (mm)                 | in.                | (mm)               | in.                | (mm)           |                 |                         | <del></del>       | 5%                 |          |
| 5 inch - 150             | Ib AN   | SI Flar      | nge ( | (WATE        | ROD)                         |     |     |       |                                |                      |                    |                    |                    |                |                 |                         |                   | (14                | 1.3      |
| 16 W/in <sup>2</sup> ③   | 240     | 8.0          | 3     | 1            | CFNN733A12S                  | М   | 145 | (66)  | 491/4                          | (1249)               | 30                 | (762)              | 25 (6              | 33.0)          |                 |                         | ₹:                | <i>₹</i>           | 1        |
| Steel Tank               | 480     | 8.0          | 3     | 1            | CFNN733A13S                  | М   | 145 | (66)  | 491/4                          | (1249)               | 30                 | (762)              | 25 (6              | 633.0)         |                 |                         | <b>*</b>          | <b>~</b> 1         | NP       |
| 6-Alloy 800              | 240     | 10.0         | 3     | 1            | CFNN740J12S                  | М   | 167 |       |                                | (1427)               |                    | (940)              | 25 (6              | 633.0)         | <b>—</b>        |                         | <del></del>       | <del>-</del>       | +        |
| Elements                 | 480     | 10.0         | 3     | 1            | CFNN740J13S                  | М   | 167 | (76)  | 56 <sup>1</sup> / <sub>4</sub> | (1427)               | 37                 | (940)              | 25 (6              | 33.0)          | ]   ,           | <br> 25⁄8 in. Re        | <sub>f.</sub>   👁 |                    |          |
| (2.6 W/cm <sup>2</sup> ) | 240     | 12.0         | 3     | 1            | CFNN748A12S                  | М   | 180 | (82)  | 67 <sup>3</sup> /4             | (1719)               | 48 <sup>1</sup> /  | 2 (1232)           | 25 (6              | 33.0)          |                 | 320.7 mm                |                   |                    |          |
|                          | 480     | 12.0         | 3     | 1            | CFNN748A13S                  | М   | 180 | (82)  | 67 <sup>3</sup> /4             | 1 (1719)             | 48 <sup>1</sup> /2 | (1232)             | 25 (6              | 33.0)          | ]   .           | . •                     | - 📭               | <b>-</b>           |          |
| Final 450                | II- ANI | CL Els       |       | () A / A T F | 20D)                         |     |     |       |                                |                      |                    |                    |                    |                |                 | 2 in<br>NPT In          | f <br>let   []-   | $\bot$             | _        |
| 5 inch - 150             |         |              |       | 1            | 1                            | L   | 450 | (00)  | 401/                           | (4.0.40)             | 00                 | (700)              | 05 (               | 200.0\         | A Ref.          | and Out                 |                   |                    |          |
| 16 W/in² ③ Steel Tank    | 240     | 12.0         | 3     | 1            | CFNN733A12XS                 | M   | 150 | _ ,   |                                | (1249)               | 30                 | (762)              |                    | 33.0)          |                 | B                       |                   |                    |          |
| 9-Alloy 800              | 480     | 12.0         | 3     | 1            | CFNN733A13XS                 | M   | 150 | ()    |                                | (1249)               |                    | (762)              | ,                  | 33.0)          |                 |                         |                   |                    | ŧ        |
| Elements                 | 240     | 15.0         | 3     | 1            | CFNN740J12XS                 | M   | 173 |       |                                | (1427)               | 37                 | (940)              | ,                  | 33.0)          |                 | 1                       |                   |                    | Ł        |
| (2.6 W/cm²)              | 480     | 15.0         | 3     | 1            | CFNN740J13XS                 | M   | 173 |       |                                | (1427)               |                    | (940)              |                    | 33.0)          |                 | ·                       | - <b>,</b> ₽7     |                    | (        |
| (,                       | 240     | 18.0         | 3     | 1            | CFNN748A12XS                 | M   | 188 |       |                                | (1719)               | _                  | 2 (1232)           |                    | 33.0)          | <u> </u>        |                         | <u> </u>          | ╛                  |          |
|                          | 480     | 18.0         | 3     | 1            | CFNN748A13XS                 | M   | 188 | (86)  | 6/3/4                          | 1 (1719)             | 481/2              | 2 (1232)           | 25 (6              | 33.0)          | 3⁄8-16<br>(Thre |                         | 4                 | \ <del>-</del> (19 | 75<br>93 |
|                          |         |              |       |              |                              |     |     |       |                                |                      |                    |                    |                    |                | (4 Pla          |                         |                   | /,                 | _        |
| 6 inch - 150             |         |              | _     | •            |                              |     |     |       | 1.01/                          | (100=)               | 0.01/              | (= 0 t)            |                    | / 40.01        |                 | •                       | <del></del>       | <b>₽</b>           | -        |
| 16 W/in² ③               | 240     | 6.0          | 3     | 1            | CFPN713G12S                  | М   | 212 |       |                                | (1027)               | _                  | 2 (521)            | 17                 | (432)          |                 | 1                       | -€-•              | <del>}</del>       |          |
| Steel Tank               | 480     | 6.0          | 3     | 1            | CFPN713G13S                  | М   | 212 | (- /  | -                              | (1027)               |                    | 2 (521)            | 17                 | (432)          |                 | 41⁄4 in                 |                   | 0                  |          |
| 12-Alloy 800<br>Elements | 240     | 8.0          | 3     | 1            | CFPN717R12S                  | М   | 214 |       |                                | (1027)               |                    | 2 (521)            | 17                 | (432)          |                 | (108 mr                 | n) '              |                    |          |
| (2.6 W/cm²)              | 480     | 8.0          | 3     | 1            | CFPN717R13S                  | М   | 214 |       |                                | (1027)               |                    | 2 (521)            | 17                 | (432)          |                 |                         |                   |                    |          |
| (2.0 11/0111)            | 240     | 10.0         | 3     | 1            | CFPN720G12S                  | М   | 217 |       |                                | (1027)               |                    | 2 (521)            | 17                 | (432)          | 6 in            | ch - 150                | Ib ANS            | I Flan             | 10       |
|                          | 480     | 10.0         | 3     | 1            | CFPN720G13S                  | М   | 217 | (/    |                                | (1027)               | 201/               |                    | 17                 | (432)          |                 |                         |                   | . 65/8             | iı       |
|                          | 240     | 12.0         | 3     | 1            | CFPN725G12S                  | M   | 222 |       |                                | (1027)               |                    |                    | 17                 | (432)          |                 |                         | 7 .               | (168               |          |
|                          | 480     | 12.0         | 3     | 1            | CFPN725G13S                  | M   | 222 |       |                                | (1027)               | _                  | 2 (521)            | 17                 | (432)          |                 |                         |                   | 139                |          |
|                          | 240     | 16.0         | 3     | 1            | CFPN732R12S                  | M   | 226 | (103) |                                | (1294)               |                    | (787)              | 27 <sup>1</sup> /2 |                |                 |                         | Ŋ.                | N                  | Į<br>P   |
|                          | 480     | 16.0         | 3     | 1            | CFPN732R13S                  | M   | 226 | (103) |                                | (1294)               |                    | (787)              | 27 <sup>1</sup> /2 | , ,            |                 |                         |                   | <del> </del>       | Ĺ        |
|                          | 240     | 20.0         | 3     | 2            | CFPN740G12S                  | М   | 290 | (132) |                                | (1827)               |                    | (1321)             |                    | (1232)         | <b>│</b>        | 011/                    |                   |                    |          |
|                          | 480     | 20.0         | 3     | 1            | CFPN740G13S                  | M   | 290 | (132) |                                | (1827)               |                    | (1321)             |                    | (1232)         | 1               | 2¹⅓6 in. F<br>(322.3 mn | ა. <del>ლ</del>   | الطهب              | 14<br>(; |
|                          | 240     | 24.0         | 3     | 2            | CFPN747R12S                  | М   | 298 | (136) |                                | (1827)               | _                  | (1321)             |                    | (1232)         |                 | <u> </u>                | _                 |                    | ,        |
|                          | 480     | 24.0         | 3     | 1            | CFPN747R13S                  | M   | 298 | (136) | 72                             | (1827)               | 52                 | (1321)             | 48 <sup>1</sup> /2 | (1232)         |                 | 2½ i                    | n <b>7</b> /      | nf                 | _        |
| 6 inch - 150             | Ib AN   | CI Elor      |       | /\A/ A T E   | POD)                         |     |     |       |                                |                      |                    |                    |                    |                | A Re            | NPT I                   | nlet   '          | <b>Ы</b>           |          |
| 16 W/in <sup>2</sup> ③   | 240     | 7.50         | 3     | 1            | CFPN713G12XS                 | М   | 215 | (98)  | 401/                           | (1027)               | 201/               | 2 (521)            | 17                 | (432)          |                 | В                       |                   |                    |          |
| Steel Tank               | 480     | 7.50         | 3     | 1            | CFPN713G12XS                 | M   | 215 | /     |                                | (1027)               |                    | 2 (521)            | 17                 | . ,            | 1               |                         |                   |                    |          |
| 15-Alloy 800             |         | 10.0         | 3     | 1            | CFPN713G13XS                 | M   | 217 | . ,   | _                              | 2 (1027)<br>2 (1027) |                    | 2 (521)<br>2 (521) | 17                 | (432)          |                 | 1                       |                   |                    | ŧ        |
| Elements                 | 480     | 10.0         | 3     | 1            | CFPN717R12XS                 | -   | 217 |       |                                | (1027)               |                    | 2 (521)            | 17                 | (432)<br>(432) |                 |                         | -94               |                    | 1        |
| (2.6 W/cm²)              | 240     |              | 3     | 1            |                              | M   |     |       |                                | 2 (1027)<br>2 (1027) |                    | 2 (521)            | 17                 | . ,            | ┤╶╽             |                         | <u>/</u>  `       | '                  | Ľ        |
| •                        | 480     | 12.5<br>12.5 | 3     | 1            | CFPN720G12XS<br>CFPN720G13XS | M   | 223 |       | _                              |                      |                    | . ,                |                    | (432)<br>(432) | 3/4_10          | UNC 2B                  |                   | TL                 | 8        |
|                          |         |              | _     | _            |                              | M   |     |       |                                | (1027)               |                    | 2 (521)            | 17                 |                | (TI             | reads                   | -1                |                    | 22       |
|                          | 240     | 15.0         | 3     | 1            | CFPN725G12XS                 | M   | 226 |       |                                | (1027)               |                    | 2 (521)            |                    | (432)          | (4 1            | Places)                 |                   | <u>+</u> /         | _        |
|                          | 480     | 15.0         | 3     | 1            | CFPN725G13XS                 | _   | 226 |       |                                |                      |                    | (521)              |                    | (432)          | -               |                         |                   |                    | \        |
|                          | 240     | 20.0         | 3     | 5            | CFPN732R12XS                 | _   | 288 | (131) |                                | (1294)               |                    | (787)              |                    | (699)          | -               | 43/4 i                  | , <del>\</del>    | 7                  |          |
|                          | 480     | 20.0         | 3     | 1            | CFPN732R13XS                 | _   | 288 | (131) |                                | (1294)               |                    | (787)              |                    | (699)          | -               | (121 n                  |                   | 7                  |          |
|                          | 240     | 25.0         | 3     | 5            | CFPN740G12XS                 |     |     | (135) |                                | (1827)               |                    | (1321)             |                    | (1232)         | -               |                         |                   |                    |          |
|                          | 480     | 25.0         | 3     | 1            | CFPN740G13XS                 | M   | 296 | (135) |                                | (1827)               |                    | (1321)             |                    | (1232)         |                 |                         |                   |                    |          |
|                          | 240     | 30.0         | 3     | 5            | CFPN747R12XS                 | M   | 306 | (139) |                                | (1827)               |                    | (1321)             |                    | (1232)         | -               |                         |                   |                    |          |
|                          | 480     | 30.0         | 3     | 1            | CFPN747R13XS                 | M   | 306 | (139) | 72                             | (1827)               | 52                 | (1321)             | 481/2              | (1232)         |                 |                         |                   |                    |          |


<sup>•</sup> M - Manufacturing lead times

3 Wired for 3-phase operation only

Truck Shipment only



6 inch - 150 lb ANSI Flange



#### **WATROD** and **FIREBAR Circulation Heaters**



#### **Application: Medium Weight Oils and Heat Transfer Oils**

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                             |        |         |       | #     | Part         |       | Ship | Wt.    | "A"                            | Dim.      | "B"                            | Dim.                     | "C"                            | Dim.     | 6 inch               | - 150 lb                 | ANSI F        | lange                 |
|-----------------------------|--------|---------|-------|-------|--------------|-------|------|--------|--------------------------------|-----------|--------------------------------|--------------------------|--------------------------------|----------|----------------------|--------------------------|---------------|-----------------------|
| Description                 |        | kW      |       | Circ. | Number       | Del.  | lbs  | (kg)   | in.                            | (mm)      | in.                            | (mm)                     | in.                            | (mm)     |                      |                          |               | 65/s in. Ref.         |
| 6 inch - 150                |        | I Flang | e (F  | IREB/ |              |       |      |        |                                |           |                                |                          |                                |          |                      | -                        |               | (168.3 mm)            |
| 15 W/in² ③                  | 240    | 10.00   | 3     | 5     | CFPNF13G29S  | М     | 217  | (99)   | 40 <sup>1</sup> /2             | (1027)    | 20 <sup>1</sup> /:             | 2 (521)                  | 17                             | (432)    |                      | _                        |               | ½ in.                 |
| Steel Tank<br>15-Alloy 800  | 240    | 12.50   | 3     | 5     | CFPNF16A29S  | М     | 220  | (100)  | 40 <sup>1</sup> /2             | (1027)    | 20 <sup>1</sup> /:             | 2 (521)                  | 17                             | (432)    |                      |                          | <b>16</b>     | NPT Drain             |
| Elements                    | 240    | 15.00   | 3     | 5     | CFPNF18G29S  | М     | 223  | (102)  | 40 <sup>1</sup> /2             | (1027)    | 20 <sup>1</sup> /:             | 2 (521)                  | 17                             | (432)    | <del>-</del>         |                          | - <del></del> | 7 —                   |
| (2.3 W/cm <sup>2</sup> )    | 240    | 20.00   | 3     | 5     | CFPNF22R29S  | М     | 226  | (103)  | 40 <sup>1</sup> /2             | (1027)    | 20 <sup>1</sup> /:             | 2 (521)                  | 17                             | (432)    |                      | ու Ref.                  | 0             | 147/16 in. Re         |
|                             | 480    | 20.00   | 3     | 5     | CFPNF22R30S  | М     | 226  | (103)  | 40 <sup>1</sup> / <sub>2</sub> | (1027)    | 201/                           | 2 (521)                  | 17                             | (432)    | (32                  | 2.3 mm)                  | 9,00          | (366.7 mm             |
|                             | 240    | 25.00   | 3     | 5     | CFPNF27R29S  | М     | 232  | (106)  | 51                             | (1294)    | 31                             | (787)                    | 27 <sup>1</sup> / <sub>2</sub> | (699)    | 1 1                  | 2½ in.—                  | ¶ ⊩           | Dr V                  |
|                             | 480    | 25.00   | 3     | 5     | CFPNF27R30S  | М     | 232  | (106)  | 51                             | (1294)    | 31                             | (787)                    | 27 <sup>1</sup> / <sub>2</sub> | (699)    |                      | <b>NPT Inlet</b>         |               |                       |
|                             | 240    | 30.00   | 3     | 5     | CFPNF32R29S  | М     | 236  | (107)  | 51                             | (1294)    | 31                             | (787)                    | 27 <sup>1</sup> / <sub>2</sub> | (699)    | A Ref.               | and Outle                | t             | l c                   |
|                             | 480    | 30.00   | 3     | 5     | CFPNF32R30S  | М     | 236  | (107)  |                                | (1294)    | 31                             | (787)                    | 27 <sup>1</sup> / <sub>2</sub> | (699)    | Ī                    |                          |               |                       |
|                             | 240    | 40.00   | 3     | 5     | CFPNF42G29S  | М     | 304  | (138)  | 72                             | (1827)    | 52                             | (1321)                   | 48 <sup>1</sup> / <sub>2</sub> | (1232)   |                      |                          | _             | <b>,</b>              |
|                             | 480    | 40.00   | 3     | 5     | CFPNF42G30S  | М     | 304  | (138)  |                                | (1827)    | -                              | (1321)                   |                                | ,        | -                    |                          | ₽Œ            | 3½ in.                |
|                             | 240    | 50.00   | 3     | 5     | CFPNF51R29S  | М     | 314  | (143)  |                                | (1827)    |                                | (1321)                   |                                | ,        | <u> </u>             | /                        | <u></u>       | (89 mm)<br>(2 Places  |
|                             | 480    | 50.00   | 3     | 5     | CFPNF51R30S  | M     | 314  | (143)  |                                | (1827)    |                                | (1321)                   |                                | ,        | 34-10 UN             | IC 2B                    | 4             | - 8¾ in.              |
|                             | 400    | 30.00   | J     | J     | OF FIGURE    | IVI   | 014  | (140)  | 12                             | (1021)    | 52                             | (1021)                   | 40 /2                          | (1202)   | (Threa               | ads                      |               | (222 mm)              |
| 8 inch - 150                | IL ANG | l Flong | o /\A | /ATD/ | )D)          |       |      |        |                                |           |                                |                          |                                |          | (4 Flat              | ,es) <u>+</u>            |               | ✓ ½ in.<br>NPT        |
| 16 W/in <sup>2</sup> ③      | 240    | 17.00   | _     | 1     | CFRN725N12S  | L N 4 | 050  | (4.50) | CC1/                           | (1 400 0) | 003/                           | (830.0)                  | 001/                           | (7.44.0) |                      | 1                        |               | Drain                 |
| Steel Tank                  |        |         | 3     |       |              | M     | 350  | , ,    |                                | ,         |                                | , ,                      |                                | ,        |                      | 4¾ in.<br>(121 mm)       |               | 7                     |
| 18-Alloy 800                | 480    | 17.00   | 3     | 1     | CFRN725N13S  | M     | 350  |        |                                |           |                                | (830.0)                  |                                | . ,      |                      | (121 11111)              | '             |                       |
| Elements                    | 240    | 25.00   | 3     | 2     | CFRN735N12S  | М     | 380  |        |                                |           |                                | (1008.0)                 |                                |          | 8 inch               | - 150 lb                 | ANSI F        | lange                 |
| (2.6 W/cm <sup>2</sup> )    | 480    | 25.00   | 3     | 1     | CFRN735N13S  | М     | 380  |        |                                |           |                                | (1008.0)                 |                                |          | 0                    |                          |               | 75⁄8 in.              |
|                             | 240    | 33.00   | 3     | 2     | CFRN744E12S  | М     | 410  |        |                                |           |                                | (1203.3)                 |                                |          |                      | -                        |               | (193.7 mm)            |
|                             | 480    | 33.00   | 3     | 1     | CFRN744E13S  | М     | 410  | (186)  | 69 <sup>7</sup> /8(            | (1774.8)  | 47 <sup>3</sup> /8             | (1203.3)                 | 43 <sup>7</sup> /8 (           | (1114.4) |                      |                          |               |                       |
|                             | 240    | 42.00   | 3     | 3     | CFRN754M12S  | М     | 445  |        |                                |           |                                | (1444.6)                 |                                |          |                      | _                        | √, -          | ½ in.                 |
|                             | 480    | 42.00   | 3     | 2     | CFRN754M13S  | М     | 445  | (202)  | 79 <sup>3</sup> /8(            | (2016.1)  | 56 <sup>7</sup> /8             | (1444.6)                 | 53 <sup>3</sup> /8 (           | (1355.7) |                      |                          |               | NPT Drain             |
|                             | 480    | 50.00   | 3     | 2     | CFRN763M13S  | М     | 490  | (223)  | 883/8(                         | (2244.7)  | 65 <sup>7</sup> /8             | (1673.2)                 | 62 <sup>3</sup> /8 (           | (1584.3) | 1                    | 1                        |               |                       |
|                             | 480    | 58.00   | 3     | 2     | CFRN773D13S  | М     | 530  | (241)  | 98 <sup>3</sup> /8(            | (2498.7)  | 75 <sup>7</sup> /8             | (1927.2)                 | 72 <sup>3</sup> /8 (           | (1838.3) |                      | ∕₁₅ in. Ref.<br>'3.1 mm) | سمم           | 14½ in. Ro<br>(368 mm |
|                             | 480    | 67.00   | 3     | 2     | CFRN782M13S  | М     | 560  | (254)  | 983/8                          | (2498.7)  | 75 <sup>7</sup> /8             | (1927.2)                 | 72 <sup>3</sup> /8 (           | (1838.3) | (3)                  | J                        |               | <b>-</b>              |
|                             |        |         |       |       |              |       |      |        |                                |           |                                |                          |                                |          |                      | 2½ in                    | <b>y</b> ::   | 7                     |
| 8 inch - 150                | Ib ANS | I Flang | e (W  | /ATR  | OD)          |       |      |        |                                |           |                                |                          |                                |          | A Ref.               | NPT Inlet                |               |                       |
| 16 W/in² ③                  | 240    | 23.0    | 3     | 2     | CFRN726D12XS | М     | 358  | (163)  | 55 <sup>1</sup> /4(            | (1402.0)  | 32 <sup>3</sup> / <sub>4</sub> | (830.0)                  | 29 <sup>1</sup> / <sub>4</sub> | (741.0)  |                      | and Outle                | `   _         | , ↓                   |
| Steel Tank                  | 480    | 23.0    | 3     | 1     | CFRN726D13XS | М     | 358  | , ,    |                                | ,         |                                | (830.0)                  |                                | ,        | : I                  |                          |               | <del>_</del>          |
| 24-Alloy 800                | 240    | 33.0    | 3     | 2     | CFRN736D12XS | М     | 392  | , ,    |                                | ,         |                                | (1008.0)                 |                                | ,        |                      |                          |               | L 3½ in.<br>(89 mm)   |
| Elements<br>(2.6 W/cm²)     | 480    | 33.0    | 3     | 1     | CFRN736D13XS | M     | 392  | . ,    |                                | ,         |                                | (1008.0)                 |                                | . ,      | <u>↓</u><br>34-10 UN | IC 2B                    | <u>_</u>      | (2 Places             |
| (2.0 VV/CIII <sup>-</sup> ) | 240    | 44.0    | 3     | 4     | CFRN744M12XS |       | 425  | . ,    |                                | , ,       |                                | 3 (1203.3)               |                                | . ,      | (Threa               | ads                      | <b>→</b> `    | 10¾ in.<br>(273 mm)   |
|                             | 480    | 44.0    | 3     | 2     | CFRN744M12XS |       | 425  |        |                                |           |                                | s (1200.3)<br>s (1203.3) |                                |          | (4 Plac              | ces)                     |               | ½ i                   |
|                             | 240    | 56.0    | 3     | 4     |              |       | 463  | , ,    |                                | , ,       |                                | , ,                      |                                | , ,      |                      | <u>+</u>                 | T             | NP                    |
|                             |        |         | _     |       | CFRN754M12XS |       | _    |        |                                |           |                                | (1444.6)                 |                                |          |                      | <del></del>              |               | Dra                   |
|                             | 480    | 56.0    | 3     | 2     | CFRN754M13XS |       | 463  | , ,    |                                | ,         |                                | (1444.6)                 |                                | , ,      |                      | ₹<br>5¾ in.              | 1             | )                     |
|                             | 480    | 67.0    | 3     | 2     | CFRN763M13XS |       | 511  |        |                                |           |                                | (1673.2)                 |                                |          |                      | (146 mm)                 | 4             | -                     |
|                             | 480    | 77.0    | 3     | 2     | CFRN773D13XS | М     | 554  |        |                                |           |                                | (1927.2)                 |                                |          |                      |                          |               |                       |
|                             | 480    | 89.0    | 3     | 4     | CFRN782M13XS | М     | 587  | (267)  | 98 <sup>3</sup> /8(            | (2498.7)  | 75 <sup>7</sup> /8             | (1927.2)                 | 72 <sup>3</sup> /8             | (1838.3) |                      |                          |               |                       |

<sup>•</sup> M - Manufacturing lead times



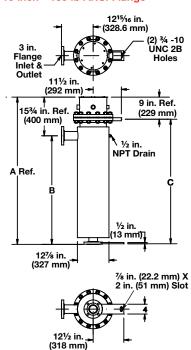
③ Wired for 3-phase operation only Truck Shipment only

#### **WATROD** and **FIREBAR Circulation Heaters**

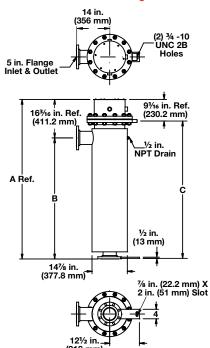


#### **Application: Medium Weight Oils and Heat Transfer Oils**

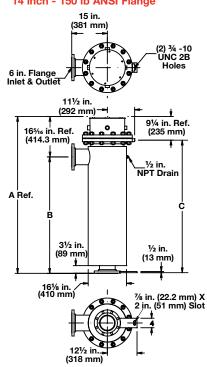
- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


|                            |                                                                                                                                              |          |       |       |             |      | - · · |       |                     |         |                    |          | <b>"</b>           |          |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|-------------|------|-------|-------|---------------------|---------|--------------------|----------|--------------------|----------|--|
| B                          | N/ - II -                                                                                                                                    | 1.347    |       | #     | Part        |      |       | Wt.   |                     | Dim.    |                    | Dim.     |                    | Dim.     |  |
| Description                |                                                                                                                                              |          |       | Circ. | Number      | Del. | IDS   | (kg)  | in.                 | (mm)    | in.                | (mm)     | in.                | (mm)     |  |
| 10 inch - 150              | ) lb AN                                                                                                                                      | ISI Flan | ıge ( | WATE  | ROD)        |      |       |       |                     |         |                    |          |                    |          |  |
| 16 W/in² ③                 | 480                                                                                                                                          | 75.0     | 3     | 3     | CFSN763N13S | М    | 540   | (245) | 91 <sup>3</sup> /16 | (2316)  | 75 <sup>7</sup> /- | 16(1916) | 81 <sup>15</sup> / | 16(2081) |  |
| Steel Tank<br>27-Alloy 800 | 480                                                                                                                                          | 87.0     | 3     | 3     | CFSN773E13S | М    | 600   | (273) | 106 <sup>9</sup> /1 | 6(2707) | 90 <sup>13</sup> / | 16(1037) | 97 <sup>5</sup> /1 | 6(2471)  |  |
| Elements<br>(2.6 W/cm²)    |                                                                                                                                              |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |
|                            |                                                                                                                                              |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |
| 12 inch - 150              | 2.6 W/cm²)  2 inch - 150 lb ANSI Flange (WATROD)  6 W/in² ③ 480 117.0 3 3 CFTN773C13S M 650 (295) 106¹/2 (2705) 90³/8(2295.5) 97³/16 (2468.6 |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |
| 16 W/in² ③                 | 2.6 W/cm²) 2 inch - 150 lb ANSI Flange (WATROD)                                                                                              |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |
|                            |                                                                                                                                              |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |
| Elements                   |                                                                                                                                              |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |
| (2.6 W/cm²)                |                                                                                                                                              |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |
|                            |                                                                                                                                              |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |
| 14 inch - 150              | lb AN                                                                                                                                        | ISI Flan | ıge ( | WATE  | ROD)        |      |       |       |                     |         |                    |          |                    |          |  |
| 16 W/in <sup>2</sup> ③     | 480                                                                                                                                          | 105.0    | 3     | 3     | CFWN754J13S | М    | 600   | (273) | 831/4               | (2115)  | 67                 | (1700)   | 7311/              | 16(1872) |  |
| Steel Tank<br>45-Alloy 800 | 480                                                                                                                                          | 125.0    | 3     | 5     | CFWN763J13S | М    | 650   | (295) | 90 <sup>3</sup> /4  | (2305)  | 74 <sup>1</sup> /2 | 2 (1891) | 81 <sup>3</sup> /1 | 6(2062)  |  |
| Elements<br>(2.6 W/cm²)    |                                                                                                                                              |          |       |       |             |      |       |       |                     |         |                    |          |                    |          |  |

• M - Manufacturing lead times


3 Wired for 3-phase operation only

Truck Shipment only


#### 10 inch - 150 lb ANSI Flange

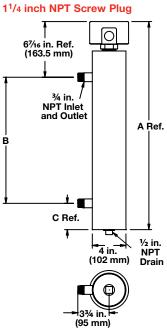






#### 14 inch - 150 lb ANSI Flange

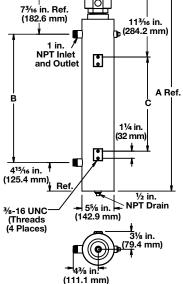



# WATROD and FIREBAR Circulation Heaters



#### Application: Bunker C, Asphalt and #6 Fuel Oil

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


| Description                           | Volts  | kW     | Ph            | #<br>Circ. | Part<br>Number           | Del. |      | Wt.<br>(kg) | "A" Dim.<br>in. (mm)       | "B"<br>in.         |         | "C"<br>in.          | Dim.<br>(mm) | 1  |
|---------------------------------------|--------|--------|---------------|------------|--------------------------|------|------|-------------|----------------------------|--------------------|---------|---------------------|--------------|----|
| 1 <sup>1</sup> / <sub>4</sub> inch NP |        |        |               |            | l contract of the second | 50   | 1.50 | (149)       | ()                         |                    | ()      |                     | ()           |    |
| 8 W/in² ③                             | 240    | 0.43   | 3             | 1          | CBDNF16G22S              | М    | 26   | (12)        | 24 <sup>5</sup> /8 (625.5) | 15                 | (381)   | 3 <sup>1</sup> /8   | (79.4)       |    |
| Steel Tank<br>1-Alloy 800             | 240    | 0.55   | 3             | 1          | CBDNF19G22S              | М    | 30   | (14)        | 32 <sup>5</sup> /8 (828.7) | 23                 | (584)   | 3 <sup>1</sup> /8   | (79.4)       | 7  |
| Element                               | 240    | 0.70   | 3             | 1          | CBDNF24L22S              | М    | 31   | (14)        | 32 <sup>5</sup> /8 (828.7) | 23                 | (584)   | 3 <sup>1</sup> /8   | (79.4)       | Ιĺ |
| (1.3 W/cm²)                           | 480    | 0.70   | 3             | 1          | CBDNF24L21S              | М    | 31   | (14)        | 32 <sup>5</sup> /8 (828.7) | 23                 | (584)   | 3 <sup>1</sup> /8   | (79.4)       |    |
|                                       | 240    | 0.88   | 3             | 1          | CBDNF29R22S              | М    | 43   | (20)        | 42 <sup>5</sup> /8(1082.7) | 32                 | (813)   | 4 <sup>3</sup> /8 ( | (111.1)      |    |
|                                       | 480    | 0.88   | 3             | 1          | CBDNF29R21S              | М    | 43   | (20)        | 42 <sup>5</sup> /8(1082.7) | 32                 | (813)   | 4 <sup>3</sup> /8 ( | (111.1)      | Ė  |
|                                       | 240    | 1.08   | 3             | 1          | CBDNF34R22S              | М    | 44   | (20)        | 42 <sup>5</sup> /8(1082.7) | 32                 | (813)   | 4 <sup>3</sup> /8 ( | (111.1)      |    |
|                                       | 480    | 1.08   | 3             | 1          | CBDNF34R21S              | М    | 44   | (20)        | 42 <sup>5</sup> /8(1082.7) | 32                 | (813)   | 4 <sup>3</sup> /8 ( | (111.1)      |    |
|                                       | 240    | 1.40   | 3             | 1          | CBDNF45G22S              | М    | 69   | (31)        | 63 <sup>5</sup> /8(1616.1) | 53                 | (1346)  | 4 <sup>3</sup> /8 ( | (111.1)      |    |
|                                       | 480    | 1.40   | 3             | 1          | CBDNF45G21S              | М    | 69   | (31)        | 63 <sup>5</sup> /8(1616.1) | 53                 | (1346)  | 4 <sup>3</sup> /8 ( | (111.1)      |    |
|                                       | 240    | 1.80   | 3             | 1          | CBDNF55R22S              | М    | 71   | (32)        | 63 <sup>5</sup> /8(1616.1) | 53                 | (1346)  | 4 <sup>3</sup> /8 ( | (111.1)      |    |
|                                       | 480    | 1.80   | 3             | 1          | CBDNF55R21S              | М    | 71   | (32)        | 63 <sup>5</sup> /8(1616.1) | 53                 | (1346)  | 4 <sup>3</sup> /8 ( | (111.1)      |    |
|                                       |        |        |               |            |                          |      |      |             |                            |                    |         |                     |              |    |
| 2 <sup>1</sup> / <sub>2</sub> inch NP | T Scre | w Plug | ) (W <i>A</i> | ATROI      | D)                       |      |      |             |                            |                    |         |                     |              |    |
| 8 W/in² ③                             | 240    | 2.0    | 3             | 1          | CBLS732E12S              | RS   | 29   | (14)        | 44 <sup>3</sup> /4 (1135)  | 32 <sup>1</sup> /2 | 2(1129) | 26 <sup>1</sup> /2  | (673)        |    |
| Steel Tank<br>3-Steel                 | 480    | 2.0    | 3             | 1          | CBLS732E13S              | RS   | 29   | (14)        | 44 <sup>3</sup> /4 (1135)  | 32 <sup>1</sup> /2 | 2(1129) | 26 <sup>1</sup> /2  | (673)        |    |
| Elements                              | 240    | 3.0    | 3             | 1          | CBLS747E12S              | RS   | 32   | (15)        | 57 <sup>1</sup> /4 (1453)  | 45                 | (1143)  | 39                  | (991)        |    |
| (1.3 W/cm²)                           | 480    | 3.0    | 3             | 1          | CBLS747E13S              | RS   | 32   | (15)        | 57 <sup>1</sup> /4 (1453)  | 45                 | (1143)  | 39                  | (991)        |    |
|                                       |        |        |               |            |                          |      |      |             |                            |                    |         |                     |              | 2  |



#### 2<sup>1</sup>/<sub>2</sub> inch NPT Screw Plug

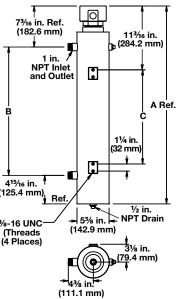
Wired for 3-phase operation only



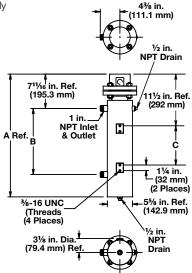


#### WATROD and FIREBAR **Circulation Heaters**




#### Application: Bunker C, Asphalt and #6 Fuel Oil

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


| Description               | Volts  | kW      | Ph    | #<br>Circ. | Part<br>Number | Del. | Ship<br>lbs |      |                                | Dim.<br>(mm) | "B"<br>in.         | Dim.<br>(mm) | -                  | Dim.<br>(mm) | 2½ inch NPT So                      |                  | Plug            |
|---------------------------|--------|---------|-------|------------|----------------|------|-------------|------|--------------------------------|--------------|--------------------|--------------|--------------------|--------------|-------------------------------------|------------------|-----------------|
| 2 <sup>1</sup> /2 inch NP | Γ Scre | w Plug  | (FIF  | REBAI      | ₹)             |      |             | . 0, |                                | `            |                    | • •          | •                  | ` '          | ∱<br>7³∕₁₅ in. Ref.                 |                  | ]               |
| 8 W/in² ③                 | 240    | 1.25    | 3     | 1          | CBLNF15C22S    | М    | 22          | (10) | 34 <sup>3</sup> / <sub>4</sub> | (881)        | 22 <sup>1</sup> /  | 2 (572)      | 16 <sup>1</sup> /2 | (419)        | (182.6 mm)<br>↓                     |                  | 1<br>(28        |
| Steel Tank                | 240    | 1.63    | 3     | 1          | CBLNF18C22S    | М    | 23          | (10) | 34 <sup>3</sup> / <sub>4</sub> | (881)        | 22 <sup>1</sup> /  | 2 (572)      | 16 <sup>1</sup> /2 | (419)        | 1 in.                               | }                | D (28           |
| 3-Alloy 800<br>Elements   | 240    | 2.13    | 3     | 1          | CBLNF23C22S    | М    | 31          | (14) | 34 <sup>3</sup> / <sub>4</sub> | (881)        | 22 <sup>1</sup> /  | 2 (572)      | 16 <sup>1</sup> /2 | (419)        | NPT Inlet                           |                  | ₩               |
| (1.3 W/cm²)               | 480    | 2.13    | 3     | 1          | CBLNF23C21S    | М    | 31          | (14) | 34 <sup>3</sup> / <sub>4</sub> | (881)        | 22 <sup>1</sup> /  | 2 (572)      | 16 <sup>1</sup> /2 | (419)        | and Outlet                          |                  |                 |
| •                         | 240    | 2.63    | 3     | 1          | CBLNF28L22S    | М    | 34          | (15) | 44 <sup>3</sup> / <sub>4</sub> | (1135)       | 32 <sup>1</sup> /  | 2(1129)      | 26 <sup>1</sup> /2 | (673)        |                                     |                  |                 |
|                           | 480    | 2.63    | 3     | 1          | CBLNF28L21S    | М    | 34          | (15) | 44 <sup>3</sup> /4             | (1135)       | 32 <sup>1</sup> /2 | (1129)       | 26 <sup>1</sup> /2 | (673)        | B<br>I                              |                  |                 |
|                           | 240    | 3.19    | 3     | 1          | CBLNF33L22S    | М    | 35          | (16) | 44 <sup>3</sup> /4             | (1135)       | 32 <sup>1</sup> /2 | (1129)       | 26 <sup>1</sup> /2 | (673)        |                                     |                  | 41/             |
|                           | 480    | 3.19    | 3     | 1          | CBLNF33L21S    | М    | 35          | (16) | 44 <sup>3</sup> / <sub>4</sub> | (1135)       | 32 <sup>1</sup> /2 | (1129)       | 26 <sup>1</sup> /2 | (673)        |                                     |                  | 11/4 i<br>(32 m |
|                           | 240    | 4.25    | 3     | 1          | CBLNF44C22S    | М    | 44          | (20) | 57 <sup>1</sup> /4             | (1453)       | 45                 | (1143)       | 39                 | (991)        | 1                                   | l r:⊏            | +               |
|                           | 480    | 4.25    | 3     | 1          | CBLNF44C21S    | М    | 44          | (20) | 57 <sup>1</sup> /4             | (1453)       | 45                 | (1143)       | 39                 | (991)        | 4 <sup>15</sup> / <sub>16</sub> in. | <b>)</b>         | 1               |
|                           | 240    | 5.38    | 3     | 1          | CBLNF54L22S    | М    | 52          | (24) | 63 <sup>3</sup> /4             | (1453)       | 51 <sup>1</sup> /  | 2(1308)      | 46 <sup>1</sup> /2 | (1181)       | (125.4 mm)<br>Ref./                 | ľ                |                 |
|                           | 480    | 5.38    | 3     | 1          | CBLNF54L21S    | М    | 52          | (24) | 63 <sup>3</sup> /4             | (1453)       | 51 <sup>1</sup> /  | 2(1308)      | 46 <sup>1</sup> /2 | (1181)       |                                     | -5/:             | <b>_</b>        |
|                           |        |         |       |            |                |      |             |      |                                |              |                    |              |                    |              | 3/8-16 UNC—/ (1)                    | 5% in.<br>42.9 m | m)              |
| 3 inch - 150              | lb ANS | SI Flan | ge (V | VATR       | OD)            |      |             |      |                                |              |                    |              |                    |              | (4 Places)                          |                  | 3               |
| 8 W/in <sup>2</sup> ③     | 240    | 2.0     | 3     | 1          | CFMS733A12S    | М    | 96          | (44) | 45 <sup>1</sup> /4             | (1148)       | 321/               | 2 (826)      | 26 <sup>1</sup> /2 | (673)        | ĮC.                                 | <b>(</b> (       | (79             |
| Steel Tank<br>3-Steel     | 480    | 2.0     | 3     | 1          | CFMS733A13S    | М    | 96          | (44) | 45 <sup>1</sup> / <sub>4</sub> | (1148)       | 32 <sup>1</sup> /  | 2 (826)      | 26 <sup>1</sup> /2 | (673)        | -=-/43                              | % in:            | ′ '             |
| ડ-કાeei<br>Elements       | 240    | 3.0     | 3     | 1          | CFMS748A12S    | М    | 107         | (49) | 57 <sup>3</sup> /4             | (1465)       | 45                 | (1143)       | 39                 | (991)        |                                     | /s in:<br>.1 mm) |                 |
| (1.3 W/cm²)               | 480    | 3.0     | 3     | 1          | CFMS748A13S    | М    | 107         | (49) | 57 <sup>3</sup> /4             | (1465)       | 45                 | (1143)       | 39                 | (991)        |                                     |                  |                 |
| _                         |        |         |       |            |                |      |             |      |                                |              |                    |              |                    |              | 3 inch - 150 lb                     | ANSI             | Flanç           |

<sup>•</sup> M - Manufacturing lead times

Wired for 3-phase operation only Truck Shipment only



3 inch - 150 lb ANSI Flange



# **WATROD and FIREBAR Circulation Heaters**



#### Application: Bunker C, Asphalt and #6 Fuel Oil

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| • General p                           | ou poc | 00 0110 | 1000 | ai C  |              |      |     |       |                                  |         |    |            |      |          |                    |              |                     |               |                                                                                   |                          |
|---------------------------------------|--------|---------|------|-------|--------------|------|-----|-------|----------------------------------|---------|----|------------|------|----------|--------------------|--------------|---------------------|---------------|-----------------------------------------------------------------------------------|--------------------------|
|                                       |        |         |      | #     | Part         |      | ·   | Wt.   | _                                | Dim.    |    | Dim.       |      | Dim.     | 4 in               | ch -         | 150 I               | b Al          | ISI FI                                                                            | ange                     |
| Description                           |        | kW      |      | Circ. | Number       | Del. | lbs | (kg)  | in.                              | (mm)    | in | (mm)       | in.  | (mm)     |                    |              |                     |               |                                                                                   | 5 <sup>13</sup> ⁄16 in.  |
| 4 inch - 150                          |        |         |      | 1     |              |      |     |       |                                  |         | 1  |            | 4 .  |          |                    |              |                     |               | (1                                                                                | 47.6 mm)                 |
| 8 W/in² ③                             | 240    | 5.00    | 3    | 1     | CFOS740J12S  | М    | 229 |       | 70 <sup>1</sup> / <sub>2</sub>   |         |    | (1321)     |      | 2 (1232) |                    |              |                     | -4            |                                                                                   | <u>}</u>                 |
| Steel Tank<br>6-Steel                 | 480    | 5.00    | 3    | 1     | CFOS740J13S  | М    | 229 | . ,   | 701/2                            |         |    | (1321)     |      | 2 (1232) |                    |              |                     | 7             | ${}^{\prime}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | ½ in.                    |
| Elements                              | 240    | 6.00    | 3    | 1     | CFOS748A12S  | М    | 234 |       | 701/2                            |         |    | (1321)     |      | 2 (1232) |                    |              |                     |               |                                                                                   | NPT Drain                |
| (1.3 W/cm <sup>2</sup> )              | 480    | 6.00    | 3    | 1     | CFOS748A13S  | М    | 234 |       | 701/2                            |         | -  | (1321)     |      | 2 (1232) | 7                  | •            | 1                   |               |                                                                                   |                          |
|                                       | 240    | 8.00    | 3    | 1     | CFOS764J12S  | М    | 298 |       | 91 <sup>1</sup> /2               | · · ·   | -  | (1854)     | 66   | (1676)   |                    | 12           | 25% in. I<br>20.7 m | Ref.          | O                                                                                 | 14¾ in. Ref              |
|                                       | 480    | 8.00    | 3    | 1     | CFOS764J13S  | М    | 298 |       | 91 <sup>1</sup> /2               |         |    | (1854)     |      | (1676)   |                    | ,            |                     | ····, ç       | <u> </u>                                                                          | ♯/ (365.1 mm)<br>↓       |
|                                       | 240    | 10.00   | 3    | 1     | CFOS777A12S  | М    | 306 | . ,   | 91 <sup>1</sup> /2               |         |    | (1854)     |      | (1676)   |                    | T            | 1½ i                | ¶             |                                                                                   | +                        |
|                                       | 480    | 10.00   | 3    | 1     | CFOS777A13S  | М    | 306 | (139) | 91 <sup>1</sup> /2               | (2326)  | 73 | (1854)     | 66   | (1676)   | A Re               | 1 1          | NPT In              |               |                                                                                   |                          |
|                                       |        |         |      |       |              |      |     |       |                                  |         |    |            |      |          |                    | B            |                     |               |                                                                                   | Ç                        |
| 4 inch - 150                          |        |         |      | 1     |              |      |     |       | T = -                            |         |    |            |      |          |                    |              |                     |               | m_                                                                                |                          |
| 8 W/in² ③                             | 240    | 2.50    | 3    | 1     | CFONF16J22S  | М    | 128 | (58)  |                                  |         |    | 2 (521)    |      | (432)    |                    | -            |                     | — Ę           |                                                                                   | 1½ in.<br>(32 mm)        |
| Steel Tank<br>6-Alloy 800             | 240    | 3.25    | 3    | 1     | CFONF19J22S  | М    | 130 | (59)  |                                  | _ ` ′   |    | 2 (521)    |      | (432)    | -<br>3∕8-16        | LINC         |                     | $\angle$      | لہا                                                                               | (2 Places)               |
| Elements                              | 240    | 4.25    | 3    | 1     | CFONF24J22S  | М    | 133 | (61)  |                                  | _ ` ′   |    | 2 (521)    |      | (432)    | (Thre              | eads.        | _/                  | •             | ' /                                                                               | ← 6% in.<br>(168.3 mm)   |
| (1.3 W/cm²)                           | 480    | 4.25    | 3    | 1     | CFONF24J21S  | М    | 133 | (61)  |                                  |         | _  | 2 (521)    |      | (432)    | (4 Pla             | •            |                     |               | _                                                                                 | ½ in.                    |
|                                       | 240    | 5.25    | 3    | 1     | CFONF30A22S  | М    | 168 | . ,   | 49 <sup>1</sup> / <sub>2</sub>   |         |    | (787)      |      |          |                    | 31½<br>93.7) | 6 in. —<br>mm)      | -             |                                                                                   | NPT<br>Drain             |
|                                       | 480    | 5.25    | 3    | 1     | CFONF30A21S  | М    | 168 |       | 49 <sup>1</sup> / <sub>2</sub>   |         |    | (787)      |      |          |                    |              | +                   | ٦             |                                                                                   | Ţ                        |
|                                       | 240    | 6.38    | 3    | 1     | CFONF35A22S  | М    | 170 |       | 491/2                            |         |    | (787)      |      |          |                    |              |                     |               | T                                                                                 |                          |
|                                       | 480    | 6.38    | 3    | 1     | CFONF35A21S  | М    | 170 |       | 491/2                            |         |    | (787)      |      | 2 (699)  |                    |              |                     |               |                                                                                   |                          |
|                                       | 240    | 8.50    | 3    | 1     | CFONF45J22S  | М    | 236 | . ,   | 701/2                            | · /     |    | (1321)     |      | 2 (1232) |                    | . 1.         | 450.1               |               |                                                                                   |                          |
|                                       | 480    | 8.50    | 3    | 1     | CFONF45J21S  | М    | 236 | , ,   | 701/2                            | ` '     |    | (1321)     |      | 2 (1232) | 5 in               | cn -         | 150 I               | b Ar          | ISI FI                                                                            | ange                     |
|                                       | 240    | 10.75   | 3    | 1     | CFONF56A22S  | М    | 240 |       | 701/2                            |         |    | (1321)     |      | 2 (1232) |                    |              |                     | ٦,            |                                                                                   | 5% in. Ref.<br>141.3 mm) |
|                                       | 480    | 10.75   | 3    | 1     | CFONF56A21S  | М    | 240 | (109) | 70 <sup>1</sup> /2               | (1789)  | 52 | (1321)     | 481/ | 2 (1232) |                    |              |                     |               | $\mathcal{J}$                                                                     | 141.0 11111              |
|                                       |        |         |      |       | <u>.</u>     |      |     |       |                                  |         |    |            |      |          |                    |              |                     | Q             |                                                                                   | ½ in.<br>NPT Drain       |
| 5 inch - 150                          |        |         |      |       | 1            |      |     |       |                                  |         |    |            |      |          |                    |              |                     |               | T<br>                                                                             |                          |
| 8 W/in <sup>2</sup> 3 Steel Tank      | 240    | 5.00    | 3    | 1     | CFNS740J12S  | М    | 167 |       |                                  |         |    | (940.0)    | 25   | (633.0)  | 1                  | 405/         | <u> </u>            | . Г           |                                                                                   | /                        |
| 6-Steel                               | 480    | 5.00    | 3    | 1     | CFNS740J13S  | М    | 167 | . ,   |                                  | . ,     |    | (940.0)    | 25   | (633.0)  |                    |              | in. Rei<br>7 mm)    | عم :          |                                                                                   | / [                      |
| Elements                              | 240    | 6.00    | 3    | 1     | CFNS748A12S  | М    | 180 |       | ,                                |         |    | 2(1232.0)  |      | (633.0)  |                    | _            | Ý                   | - <b>1</b>    | <b></b>                                                                           | C<br>                    |
| (1.3 W/cm <sup>2</sup> )              | 480    | 6.00    | 3    | 1     | CFNS748A13S  | М    | 180 |       |                                  |         |    | (1232.0)   |      | (633.0)  |                    | Î            | 2 in                | _7[           |                                                                                   |                          |
|                                       | 240    | 8.00    | 3    | 1     | CFNS764J12S  | М    | 195 |       |                                  |         | _  | в(1571.6)  |      | (633.0)  | A Ref              |              | IPT Inl<br>nd Out   |               |                                                                                   |                          |
|                                       | 480    | 8.00    | 3    | 1     | CFNS764J13S  | М    | 195 |       |                                  |         | -  | в(1571.6)  |      | (633.0)  |                    | В            |                     |               |                                                                                   | 25 in.<br>(635 mm)       |
|                                       | 240    | 10.00   | 3    | 1     | CFNS777A12S  | М    | 220 |       |                                  |         |    | (1902.0)   |      | (633.0)  |                    |              |                     |               |                                                                                   |                          |
|                                       | 480    | 10.00   | 3    | 1     | CFNS777A13S  | М    | 220 | (100) | 941/8(                           | 2390.8  | 75 | (1902.0)   | 25   | (633.0)  |                    | 1            |                     |               |                                                                                   | 1¼ in.<br>(32 mm)        |
|                                       |        |         |      |       |              |      |     |       |                                  |         |    |            |      |          |                    |              |                     |               |                                                                                   | (2 Places)               |
| 5 inch - 150<br>8 W/in <sup>2</sup> ③ |        |         | · •  |       |              |      | 170 | (70)  | FO1//                            | 4 407 0 | 07 | (0.40.0)   | 05   | (000.0)  | <u>√</u><br>3⁄8-16 | HIM          | /                   | _             | <b>.</b>                                                                          | 75∕s in.                 |
| Steel Tank                            | 240    | 7.5     | 3    | 1     | CFNS740J12XS | M    | 173 | _ ` ′ | 56 <sup>1</sup> /4(              |         |    | (940.0)    |      | (633.0)  | (Thr               | eads         |                     | =             | /-                                                                                | (193.7 mm)               |
| 9-Steel                               | 480    | 7.5     | 3    | 1     | CFNS740J13XS | M    | 173 |       | 56 <sup>1</sup> / <sub>4</sub> ( |         |    | (940.0)    |      | (633.0)  | (4 PI              | aces         | , <u>+</u>          |               | <u> </u>                                                                          | ½ in.                    |
| Elements                              | 240    | 9.0     | 3    | 1     | CFNS748A12XS | M    | 188 |       |                                  |         | _  | 2(1232.0)  |      | (633.0)  |                    |              |                     | $\mathcal{L}$ | $\mathcal{I}$                                                                     | NPT<br>Drain             |
| (1.3 W/cm²)                           | 480    | 9.0     | 3    | 1     | CFNS748A13XS | M    | 188 |       |                                  |         |    | 2 (1232.0) |      | (633.0)  |                    |              | 4¼ in.              | 1             |                                                                                   |                          |
|                                       | 240    | 12.0    | 3    | 1     | CFNS764J12XS | M    | 206 |       |                                  |         | _  | B(1571.6)  |      | (633.0)  |                    | (1           | 08 mn               | n)            | 1                                                                                 |                          |
|                                       | 480    | 12.0    | 3    | 1     | CFNS764J13XS | M    | 206 |       |                                  |         | _  | (1571.6)   |      | (633.0)  |                    |              |                     |               |                                                                                   |                          |
|                                       | 240    | 15.0    | 3    | 1     | CFNS777A12XS | M    | 233 |       |                                  |         | -  | (1902.0)   |      | (633.0)  |                    |              |                     |               |                                                                                   |                          |
|                                       | 480    | 15.0    | 3    | 1     | CFNS777A13XS | М    | 233 | (106) | 941/8(                           | 2390.8  | /5 | (1902.0)   | 25   | (633.0)  |                    |              |                     |               |                                                                                   |                          |

<sup>•</sup> M - Manufacturing lead times



Wired for 3-phase operation only
Truck Shipment only

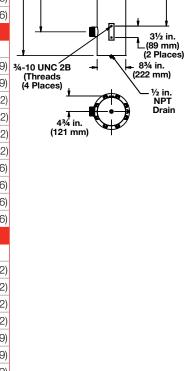
#### **WATROD** and **FIREBAR Circulation Heaters**



65/s in. Ref.

NPT Drain

147/16 in. Ref. (366.7 mm)


#### Application: Bunker C, Asphalt and #6 Fuel Oil

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

|                                  |        |          |       | #     | Part         |      |     | o Wt. | "A'               | ' Dim.   |                    | Dim.    | "C'               | ' Dim.               | 6 i | nch   | - 150 lb                          | ANSI F        | lange                                 |
|----------------------------------|--------|----------|-------|-------|--------------|------|-----|-------|-------------------|----------|--------------------|---------|-------------------|----------------------|-----|-------|-----------------------------------|---------------|---------------------------------------|
| Description                      |        |          |       | Circ. | Number       | Del. | lbs | (kg)  | in.               | (mm)     | in.                | (mm)    | in.               | (mm)                 |     |       |                                   |               | 65∕8 in. R                            |
| 6 inch - 150                     |        |          | i i   | VATRO | 1            |      |     |       |                   |          |                    |         |                   |                      |     |       | ٦                                 |               | 168.3 mi                              |
| 8 W/in <sup>2</sup> ③ Steel Tank | 240    | 8.00     | 3     | 1     | CFPS732R12S  | М    | 226 | (103) | 51                | (1294)   | 31                 |         |                   | <sup>'</sup> 2 (699) |     |       | 4                                 |               | ∯ ½ in                                |
| 12-Steel                         | 480    | 8.00     | 3     | 1     | CFPS732R13S  | М    | 226 | (103) | 51                | (1294)   | 31                 |         |                   | <sup>2</sup> (699)   |     |       |                                   |               | NPT D                                 |
| Elements                         | 240    | 10.00    | 3     | 1     | CFPS740G12S  | М    | 290 | (132) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | (1232)               | 1   |       | , <u>†</u>                        |               | 1                                     |
| (1.3 W/cm²)                      | 480    | 10.00    | 3     | 1     | CFPS740G13S  | М    | 290 | (132) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | (2(1232)             |     |       | ∕₁₅ in. Ref.<br>2.3 mm)           |               | 14 <sup>7</sup> / <sub>16</sub> (366. |
|                                  | 240    | 12.00    | 3     | 1     | CFPS747R12S  | М    | 298 | (136) | 72                | (1827)   |                    | (1321)  | 48 <sup>1</sup> / | (1232)               |     | _     | <u> </u>                          |               |                                       |
|                                  | 480    | 12.00    | 3     | 1     | CFPS747R13S  | М    | 298 | (136) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | (1232)               |     |       | 2½ in.—<br>NPT Inlet              | <i>!</i>   [] |                                       |
|                                  | 240    | 16.50    | 3     | 1     | CFPS764G12S  | М    | 360 | (164) | 93                | (2361)   | 73                 | (1854)  | 66                | (1676)               | ΑŖ  |       | and Outlet                        |               |                                       |
|                                  | 480    | 16.50    | 3     | 1     | CFPS764G13S  | М    | 360 | (164) | 93                | (2361)   | 73                 | (1854)  | 66                | (1676)               |     | В<br> |                                   |               |                                       |
|                                  | 480    | 20.00    | 3     | 1     | CFPS776R13S  | М    | 368 | (167) | 93                | (2361)   | 73                 | (1854)  | 66                | (1676)               |     |       |                                   | _             | ١.                                    |
|                                  |        |          |       |       |              |      |     |       |                   |          |                    |         |                   |                      |     |       |                                   |               | 31                                    |
| 6 inch - 150                     | Ib ANS | SI Flang | ge (V | VATRO | OD)          |      |     |       |                   |          |                    |         |                   |                      | 1   |       | _/                                |               | ∐ [89<br>(2 F                         |
| 8 W/in² ③                        | 240    | 10.00    | 3     | 1     | CFPS732R12XS | М    | 288 | (131) | 51                | (1294)   | 31                 | (787)   | 27 <sup>1</sup> / | <sup>′</sup> 2 (699) |     |       |                                   | 7 /           | - 8³⁄4 i<br>√ (222 m                  |
| Steel Tank<br>15-Steel           | 480    | 10.00    | 3     | 1     | CFPS732R13XS | М    | 288 | (131) | 51                | (1294)   | 31                 | (787)   | 27 <sup>1</sup> / | ′2 (699)             |     | Threa |                                   |               | /.                                    |
| Elements                         | 240    | 12.50    | 3     | 1     | CFPS740G12XS | М    | 296 | (135) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | <sup>/</sup> 2(1232) |     |       |                                   |               | √ ½                                   |
| (1.3 W/cm²)                      | 480    | 12.50    | 3     | 1     | CFPS740G13XS | М    | 296 | (135) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | (1232)               |     |       | 4 <sup>3</sup> / <sub>4</sub> in. | <b>♥∵</b>     |                                       |
|                                  | 240    | 15.00    | 3     | 1     | CFPS747R12XS | М    | 306 | (139) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | (1232)               |     |       | (121 mm)                          |               |                                       |
|                                  | 480    | 15.00    | 3     | 1     | CFPS747R13XS | М    | 306 | (139) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | (1232)               |     |       |                                   |               |                                       |
|                                  | 240    | 21.00    | 3     | 5     | CFPS764G12XS | М    | 370 | (168) | 93                | (2361)   | 73                 | (1854)  | 66                | (1676)               |     |       |                                   |               |                                       |
|                                  | 480    | 21.00    | 3     | 1     | CFPS764G13XS | М    | 370 | (168) | 93                | (2361)   | 73                 | (1854)  | 66                | (1676)               |     |       |                                   |               |                                       |
|                                  | 240    | 25.00    | 3     | 5     | CFPS776R12XS | М    | 381 | (173) | 93                | (2361)   | 73                 | (1854)  | 66                | (1676)               |     |       |                                   |               |                                       |
|                                  | 480    | 25.00    | 3     | 1     | CFPS776R13XS | М    | 381 | (173) | 93                | (2361)   | 73                 | (1854)  | 66                | (1676)               |     |       |                                   |               |                                       |
|                                  |        |          |       |       |              |      |     |       |                   |          |                    |         |                   |                      |     |       |                                   |               |                                       |
| 6 inch - 150                     | Ib ANS | SI Flan  | ge (F | IREB/ | AR)          |      |     |       |                   |          |                    |         |                   |                      |     |       |                                   |               |                                       |
| 8 W/in² ③                        | 240    | 6.3      | 3     | 5     | CFPNF16J22S  | М    | 220 | (100) | 401               | /2(1027) | 201/               | 2 (521) | 17                | (432)                |     |       |                                   |               |                                       |
| Steel Tank<br>15-Alloy 800       | 240    | 8.1      | 3     | 5     | CFPNF19J22S  | М    | 223 | (102) | 40 <sup>1</sup> . | /2(1027) | 201/               | 2 (521) | 17                | (432)                |     |       |                                   |               |                                       |
| Elements                         | 240    | 10.6     | 3     | 5     | CFPNF24J22S  | М    | 226 | (103) | 40 <sup>1</sup> . | /2(1027) | 201/               | 2 (521) | 17                | (432)                |     |       |                                   |               |                                       |
| (1.3 W/cm²)                      | 480    | 10.6     | 3     | 5     | CFPNF24J21S  | М    | 226 | (103) | 40 <sup>1</sup> . | /2(1027) | 20 <sup>1</sup> /: | 2 (521) | 17                | (432)                |     |       |                                   |               |                                       |
|                                  | 240    | 13.1     | 3     | 5     | CFPNF30A22S  | М    | 232 | (106) | 51                | (1294)   | 31                 | (787)   | 27 <sup>1</sup> / | <sup>/</sup> 2 (699) |     |       |                                   |               |                                       |
|                                  | 480    | 13.1     | 3     | 5     | CFPNF30A21S  | М    | 232 | (106) | 51                | (1294)   | 31                 | (787)   | 27 <sup>1</sup> / | <sup>/</sup> 2 (699) |     |       |                                   |               |                                       |
|                                  | 240    | 16.0     | 3     | 5     | CFPNF35A22S  | М    | 236 | (107) | 51                | (1294)   | 31                 | (787)   | 27 <sup>1</sup> / | <sup>/</sup> 2 (699) |     |       |                                   |               |                                       |
|                                  | 480    | 16.0     | 3     | 5     | CFPNF35A21S  | М    | 236 | (107) | 51                | (1294)   | 31                 | (787)   | 27 <sup>1</sup> / | <sup>'</sup> 2 (699) | 1   |       |                                   |               |                                       |
|                                  | 240    | 21.3     | 3     | 5     | CFPNF45J22S  | М    | 304 | (138) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | (1232)               |     |       |                                   |               |                                       |
|                                  | 480    | 21.3     | 3     | 5     | CFPNF45J21S  | М    | 304 | (138) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | <sup>'</sup> 2(1232) |     |       |                                   |               |                                       |
|                                  | 240    | 26.0     | 3     | 5     | CFPNF56A22S  | М    | 314 | (143) | 72                | (1827)   | _                  |         |                   | '2(1232)             |     |       |                                   |               |                                       |
|                                  | 480    | 26.0     | 3     | 5     | CFPNF56A21S  | М    | 314 | (143) | 72                | (1827)   | 52                 | (1321)  | 48 <sup>1</sup> / | '2(1232)             |     |       |                                   |               |                                       |
|                                  |        |          |       |       |              |      |     |       |                   |          |                    |         |                   |                      | 4   |       |                                   |               |                                       |

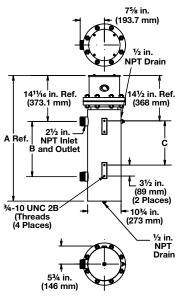
• M - Manufacturing lead times

3 Wired for 3-phase operation only Truck Shipment only

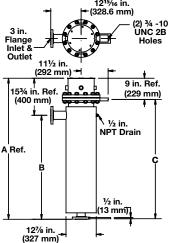


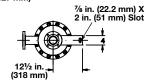
#### **WATROD** and **FIREBAR Circulation Heaters**




#### Application: Bunker C, Asphalt and #6 Fuel Oil

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure


|                         |         |         |       | #     | Part         |      | Shir | o Wt. | "A" Dim.                   | "B'                  | Dim.           | "C"                            | Dim.     | 81   | ncn             | - 150             | lb A           | NSI F                | lange             |
|-------------------------|---------|---------|-------|-------|--------------|------|------|-------|----------------------------|----------------------|----------------|--------------------------------|----------|------|-----------------|-------------------|----------------|----------------------|-------------------|
| Description             | Volts   | kW      | Ph    | Circ. | Number       | Del. | lbs  | (kg)  | in. (mm)                   | in.                  | (mm)           | in.                            | (mm)     |      |                 |                   |                |                      | 75∕s ir           |
| 8 inch - 150            | lb ANS  | SI Flar | ige   | (WATI | ROD)         |      |      |       |                            |                      |                |                                |          |      |                 |                   | 7/             |                      | 193.7 r           |
| 8 W/in² ③               | 240     | 12.5    | 3     | 1     | CFRS743E12S  | М    | 410  | (186) | 62 <sup>1</sup> /4(1580.0  | ) 39 <sup>3</sup> /4 | 4(1008.0)      | 36 <sup>1</sup> /4             | (919.0)  |      |                 |                   | 4              | <u>.   ,</u>         | <b>)</b>          |
| Steel Tank<br>18-Steel  | 480     | 12.5    | 3     | 1     | CFRS743E13S  | М    | 410  | (186) | 62 <sup>1</sup> /4(1580.0  | ) 39 <sup>3</sup> /4 | 4(1008.0)      | 36 <sup>1</sup> /4             | (919.0)  |      |                 |                   | 70             | <b>3</b>             | NPT               |
| Elements                | 240     | 16.5    | 3     | 1     | CFRS751M12S  | М    | 440  | (200) | 69 <sup>7</sup> /8(1774.8  | ) 47 <sup>3</sup> /8 | 3 (1203.3)     | 43 <sup>7</sup> /8             | (1114.4) | _    |                 | •                 | — <sub>F</sub> | <u> </u>             | <del>,</del>      |
| 1.3 W/cm <sup>2</sup> ) | 480     | 16.5    | 3     | 1     | CFRS751M13S  | М    | 440  | (200) | 69 <sup>7</sup> /8(1774.8  | ) 47 <sup>3</sup> /8 | 3(1203.3)      | 43 <sup>7</sup> /8             | (1114.4) |      |                 | <br>6 in. Re      |                | ,<br>O               | 141/2             |
|                         | 240     | 20.0    | 3     | 2     | CFRS762D12S  | М    | 480  | (218) | 79 <sup>3</sup> /8(2016.1  | ) 56 <sup>7</sup> /8 | 3(1444.6)      | 53 <sup>3</sup> /8             | (1355.7) |      | (373            | 3.1 mm)<br>       | ) 🖶            | <b>0</b> 0           | <b>∄</b> (36      |
|                         | 480     | 20.0    | 3     | 1     | CFRS762D13S  | М    | 480  | (218) | 79 <sup>3</sup> /8(2016.1  | ) 56 <sup>7</sup> /8 | 3(1444.6)      | 53 <sup>3</sup> /8             | (1355.7) |      | Ŧ               | ¥<br>2½ in.       | <b>-</b> ¶     |                      |                   |
|                         | 240     | 24.0    | 3     | 2     | CFRS770M12S  | М    | 530  | (241) | 88 <sup>3</sup> /8(2244.7  | ) 65 <sup>7</sup> /8 | 3(1673.2)      | 62 <sup>3</sup> /8             | (1584.3) | A Re |                 | NPT Ini<br>nd Out | let            | ت                    |                   |
|                         | 480     | 24.0    | 3     | 1     | CFRS770M13S  | М    | 530  | (241) | 88 <sup>3</sup> /8(2244.7  | ) 65 <sup>7</sup> /8 | 3(1673.2)      | 62 <sup>3</sup> /8             | (1584.3) |      | B a             | na Oui            | uet            | <b></b>              |                   |
|                         | 240     | 27.0    | 3     | 2     | CFRS779M12S  | М    | 610  | (277) | 983/8(2498.7               | ) 75 <sup>7</sup> /8 | з(1927.2)      | 72 <sup>3</sup> /8             | (1838.3) |      | _               |                   | <b>- d</b>     |                      | E                 |
|                         | 480     | 27.0    | 3     | 1     | CFRS779M13S  | М    | 610  | (277) | 98 <sup>3</sup> /8(2498.7  | ) 75 <sup>7</sup> /8 | 3(1927.2)      | 72 <sup>3</sup> /8             | (1838.3) |      |                 |                   | $\mathcal{A}$  |                      | (8                |
|                         |         |         |       |       |              |      |      |       |                            |                      |                |                                |          |      | 0 UNC           |                   |                | _                    | - 10 <sup>3</sup> |
| 3 inch - 150            | lb ANS  | SI Flar | ige i | (WATI | ROD)         |      |      |       |                            |                      |                |                                |          |      | Thread<br>Place |                   |                | `                    | (273              |
| W/in² ③                 | 240     | 17.0    | 3     | 1     | CFRS743M12XS | М    | 425  | (193) | 62 <sup>1</sup> /4(1580.0  | 393/                 | 4(1008.0)      | 36 <sup>1</sup> / <sub>4</sub> | (919.0)  |      |                 | <u> </u>          |                |                      | ` /               |
| teel Tank               | 480     | 17.0    | 3     | 1     | CFRS743M13XS | М    | 425  | (193) | 62 <sup>1</sup> /4(1580.0  | 393/                 | 4(1008.0)      | 36 <sup>1</sup> / <sub>4</sub> | (919.0)  |      |                 | _                 | _#             |                      | Á                 |
| 4-Steel<br>lements      | 240     | 22.0    | 3     | 2     | CFRS751M12XS | М    | 457  | (208) | 69 <sup>7</sup> /8(1774.8  | ) 47 <sup>3</sup> /8 | 3(1203.3)      | 43 <sup>7</sup> /8             | (1114.4) |      |                 | 5¾ in             |                |                      | 9                 |
| 1.3 W/cm²)              | 480     | 22.0    | 3     | 1     | CFRS751M13XS | М    | 457  | (208) | 69 <sup>7</sup> /8(1774.8  | ) 47 <sup>3</sup> /8 | 3(1203.3)      | 43 <sup>7</sup> /8             | (1114.4) |      | (               | (146 m            | m)             | 4                    |                   |
|                         | 240     | 27.0    | 3     | 2     | CFRS762D12XS | М    | 461  | (209) | 79 <sup>3</sup> /8(2016.1  | ) 56 <sup>7</sup> /8 | B(1444.6)      | 53 <sup>3</sup> /8             | (1355.7) |      |                 |                   |                |                      |                   |
|                         | 480     | 27.0    | 3     | 1     | CFRS762D13XS | М    | 461  | (209) | 79 <sup>3</sup> /8(2016.1  | ) 56 <sup>7</sup> /8 | B(1444.6)      | 53 <sup>3</sup> /8             | (1355.7) | 10   | incl            | า - 15            | iO lb          | ANSI                 | Flan              |
|                         | 240     | 32.0    | 3     | 2     | CFRS770M12XS | М    | 554  | (252) | 88 <sup>3</sup> /8(2244.7  | ) 65 <sup>7</sup> /8 | B(1673.2)      | 62 <sup>3</sup> /8             | (1584.3) |      |                 |                   |                | 12 <sup>15</sup> /16 | in                |
|                         | 480     | 32.0    | 3     | 1     | CFRS770M13XS | М    | 554  | (252) | 88 <sup>3</sup> /8(2244.7  | ) 65 <sup>7</sup> /8 | :<br>B(1673.2) | 62 <sup>3</sup> /8             | (1584.3) |      |                 | 7                 | 1              | (328.6               | mm)               |
|                         | 240     | 36.0    | 3     | 2     | CFRS779M12XS | М    | 636  | (289) | 98 <sup>3</sup> /8(2498.7  | 75 <sup>7</sup> /8   | :<br>B(1927.2) | 72 <sup>3</sup> /8             | (1838.3) | _3 i |                 | 1                 |                |                      | /— (2<br>U        |
|                         | 480     | 36.0    | 3     | 1     | CFRS779M13XS | М    | 636  | (289) | 98 <sup>3</sup> /8(2498.7  | 75 <sup>7</sup> /8   | :<br>B(1927.2) | 72 <sup>3</sup> /8             | (1838.3) | Flar | eť&−            | <b>7</b> F₹       |                |                      | ı                 |
|                         |         |         |       |       |              |      |      |       | `                          |                      | , ,            |                                | , ,      | Ou   |                 | 1½ in.            |                |                      |                   |
| 0 inch - 15             | 0 lb AN | ISI Fla | ınae  | (WAT  | (ROD)        |      |      |       |                            |                      |                |                                |          | 1    | Ť               | 92 mm             | 0              | <u>7</u> —           | 9 in              |
| W/in² ③                 | 240     | 30.0    | 3     | 3     | CFSS762E12S  | М    | 540  | (245) | 911/4(2316.0               | ) 75 <sup>1</sup> /2 | 2(1916.0)      | 821/4                          | (2088.0) |      | i¾ in.<br>400 m | . =               | 000            | <b>#</b> -           | (229              |
| teel Tank               | 480     | 30.0    | 3     | 1     | CFSS762E13S  | М    | 540  | . ,   | 911/4(2316.0               | _                    | . ,            |                                | ,        |      | ¥.,             | -                 |                | ٦                    |                   |
| 7-Steel<br>lements      | 240     | 35.0    | 3     | 3     | CFSS770N12S  | М    | 600  | . ,   | 99 <sup>1</sup> /8(2517.8  | _                    | . ,            |                                | , ,      |      |                 | . "               | Ì              | NPT                  | in.<br>Drain      |
| I.3 W/cm²)              | 480     | 35.0    | 3     | 1     | CFSS770N13S  | М    | 600  |       | 99 <sup>1</sup> /8(2517.8  |                      |                |                                |          | A Re | ef.             |                   | Ì              |                      |                   |
| •                       | 240     | 40.0    | 3     | 3     | CFSS778N12S  | М    | 645  | . ,   | 106 <sup>5</sup> /8(2708.3 | '                    | . ,            |                                | , ,      |      | E               | 3                 | Ì              |                      |                   |
|                         | 480     | 40.0    | 3     | 1     | CFSS778N13S  | M    | 645  | . ,   | 106 <sup>5</sup> /8(2708.3 | ,                    | . ,            |                                | . ,      |      | Ī               |                   | i              |                      |                   |


• M - Manufacturing lead times

3 Wired for 3-phase operation only Truck Shipment only



#### 10 inch - 150 lb ANSI Flange





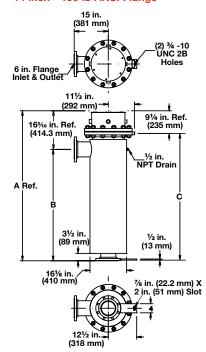
# WATROD and FIREBAR Circulation Heaters



#### Application: Bunker C, Asphalt and #6 Fuel Oil

- WATROD or FIREBAR elements
- Without thermostat
- General purpose enclosure

| Description            | Volts   | kW      | Ph   | #<br>Circ. | Part<br>Number | Del. | Ship<br>lbs | Wt.<br>(kg) | "A" Di<br>in. (ı      |       | "B"<br>in.         | Dim.<br>(mm) |                    | Dim.<br>(mm) |
|------------------------|---------|---------|------|------------|----------------|------|-------------|-------------|-----------------------|-------|--------------------|--------------|--------------------|--------------|
| 12 inch - 15           |         | ISI Fla | inge | (WAT       | ROD)           |      |             | ( 3)        | ,                     |       |                    | , ,          |                    | ,            |
| 8 W/in² ③              | 240     | 47.0    | 3    | 3          | CFTS770L12S    | М    | 700         | (318)       | 99 (2                 | 2515) | 82 <sup>7</sup> /8 | (2105.0)     | 89 <sup>5</sup> /8 | (2277)       |
| Steel Tank<br>36-Steel | 480     | 47.0    | 3    | 2          | CFTS770L13S    | М    | 700         | (318)       | 99 (2                 | 2515) | 82 <sup>7</sup> /8 | (2105.0)     | 89 <sup>5</sup> /8 | (2277)       |
| Elements               | 240     | 54.0    | 3    | 3          | CFTS778L12S    | М    | 750         | (341)       | 106 <sup>1</sup> /2(2 | 2705) | 903/8              | (2295.5)     | 97 <sup>1</sup> /8 | (2467)       |
| (1.3 W/cm²)            | 480     | 54.0    | 3    | 2          | CFTS778L13S    | М    | 750         | (341)       | 106 <sup>1</sup> /2(2 | 2705) | 90 <sup>3</sup> /8 | (2295.5)     | 97 <sup>1</sup> /8 | (2467)       |
|                        |         |         | ,    |            |                |      |             |             |                       |       |                    |              |                    |              |
|                        |         |         |      |            |                |      |             |             |                       |       |                    |              |                    |              |
| 14 inch - 15           | 0 lb AN | NSI Fla | inge | (WAT       | ROD)           |      |             |             |                       |       |                    |              |                    |              |
| 8 W/in² ③              | 240     | 60.0    | 3    | 3          | CFWS770J12S    | М    | 700         | (318)       | 981/4(2               | 496)  | 82                 | (2081)       | 8811/-             | 6 (2253)     |
| Steel Tank<br>45-Steel | 480     | 60.0    | 3    | 3          | CFWS770J13S    | М    | 700         | (318)       | 981/4(2               | 496)  | 82                 | (2081)       | 8811/-             | 6 (2253)     |
| Elements               | 240     | 67.0    | 3    | 5          | CFWS778J12S    | М    | 780         | (354)       | 105 <sup>3</sup> /4(2 | 686)  | 89 <sup>1</sup> /2 | (2272)       | 963/1              | 6 (2443)     |
| (1.3 W/cm²)            | 480     | 67.0    | 3    | 3          | CFWS778J13S    | М    | 780         | (354)       | 105 <sup>3</sup> /4(2 | 686)  | 89 <sup>1</sup> /2 | (2272)       | 963/1              | 6 (2443)     |
|                        |         |         |      |            |                |      |             |             |                       |       |                    |              |                    |              |


<sup>•</sup> M - Manufacturing lead times

Wired for 3-phase operation only
Truck Shipment only

#### 12 inch - 150 lb ANSI Flange



#### 14 inch - 150 lb ANSI Flange



# WATROD and FIREBAR Circulation Heaters

#### **Part Number**

Stock Plug or ANSI Flange Part Number Optional Terminal Enclosures

Optional Process Sensors Sheath Limit Sensors

#### Stock Plug or ANSI Flange Part Number

**Note:** Catalog part numbers include optional enclosures and process sensors. To order optional enclosures or sensors, substitute the appropriate suffix.

|     | Optional Terminal Enclosures           |  |  |  |  |  |  |  |  |
|-----|----------------------------------------|--|--|--|--|--|--|--|--|
| S = | General purpose enclosure              |  |  |  |  |  |  |  |  |
| W=  | Moisture resistant enclosure           |  |  |  |  |  |  |  |  |
| E = | Explosion resistant enclosure          |  |  |  |  |  |  |  |  |
| C = | Moisture/explosion resistant enclosure |  |  |  |  |  |  |  |  |

**Note:** Catalog listings include either a general purpose enclosure or moisture/explosion resistant enclosure. Substitute enclosure options are noted.

|       | Optional Process Sensors                                                 |
|-------|--------------------------------------------------------------------------|
| 2 =   | 30 to 250°F, (-1 to 121°C) SPST                                          |
| 3 =   | 175 to 550°F, (79 to 288°C) SPST                                         |
| 4 =   | 40 to 110°F, (-1 to 43°C) DPST                                           |
| 5A=   | 60 to 250°F, (16 to 121°C) DPST (FIREBAR)                                |
| 7A=   | 100 to 550°F, (38 to 288°C) DPST (FIREBAR)                               |
| J =   | Type J process thermocouple in thermowell                                |
| K =   | Type K process thermocouple in thermowell                                |
| Nista | The ware a test would now have a second in the The ware a test Oh and an |

**Note:** Thermostat part numbers are shown in the *Thermostat Chart* on page 537.

Example Part Number: CFONA18A10 S 5 HJ

|     | Sheath Limit Sensors                                       |
|-----|------------------------------------------------------------|
| HJ= | Type J high-limit thermocouple, horizontal mount           |
| TJ= | Type J high-limit thermocouple, vertical/housing at top    |
| BJ= | Type J high-limit thermocouple, vertical/housing at bottom |
| HK= | Type K high-limit thermocouple, horizontal mount           |
| TK= | Type K high-limit thermocouple, vertical/housing at top    |
| BK= | Type K high-limit thermocouple, vertical/housing at bottom |

**Note:** Heater orientation is critical to accurate sensing of limit conditions. Use the appropriate code to indicate heater mounting orientation.

#### WATROD and FIREBAR Heaters

#### **Booster Heaters**

Booster heaters are ideal for circulating applications requiring less kilowatts, including engine preheating.

Booster heaters are made from a steel or brass 1<sup>1</sup>/<sub>4</sub> in. (32 mm) NPT screw plug heater and insulated pressure vessel with 1 in. (25 mm) FNPT inlet and outlet. This assembly also contains an integral thermostat.

#### **Performance Capabilities**

- Watt densities up to 60 W/in<sup>2</sup> (9.3 W/cm<sup>2</sup>)
- Wattages up to 3 kilowatts
- Voltages up to 480VAC
- Steel sheath temperatures up to 750°F (400°C)
- Alloy 800 sheath temperatures up to 350°F (175°C)

#### **Features and Benefits**

#### **Dual voltages**

Simplifies stocking and wiring

#### Carbon steel, standard pipe wall vessel

Assures compatibility with many applications

## One inch thick (25 mm) fiberglass thermal insulation rated to 750°F (400°C)

Reduces heat loss

#### Steel jacket (shroud)

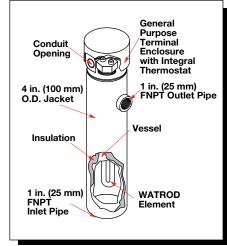
 Provides a fully welded and painted shroud to protect thermal insulation

#### Inlet and outlet nozzle connections

 Includes threaded FNPT connections to meet OEM standards

#### General purpose terminal enclosures


· Protects terminals and thermostat


# Integral thermostat controls process temperatures from: 60 to 160°F (15 to 70°C) on alloy 800 sheath elements and 175 to 550°F (80 to 290°C) on steel sheath elements

 Minimizes the amount of time that the heater operates while the engine is running

#### **Typical Applications**

- Stand by generators
- Peak power trimming generators
- Mobile generator sets
- Earth moving equipment
- Water heaters
- Lightweight oils





WATLOW<sup>®</sup> 377

#### **WATROD** and **FIREBAR** Heaters

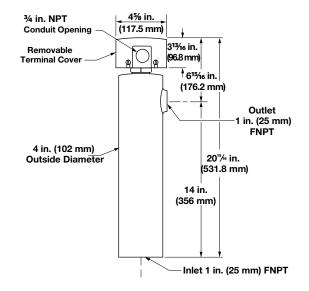
#### **Booster Heaters**

#### **Options**

#### **Terminal Enclosure**

General purpose terminal enclosures with integral thermostats are supplied on all Watlow booster heaters. Optional moisture resistant terminal enclosures protect wiring and thermostat from liquid contaminants. To order, request the **moisture resistant enclosure option**.

For explosion resistant and explosion/moisture resistant terminal enclosures, request the **explosion/moisture resistant option**.


| Description                    | kW   | Phase | Part<br>Number<br>120/240VAC |    | Ship.<br>Vt.<br>(kg) |  |  |  |  |
|--------------------------------|------|-------|------------------------------|----|----------------------|--|--|--|--|
| Application: Aqueous Solutions |      |       |                              |    |                      |  |  |  |  |
| 60 W/in²                       | 1.50 | 1     | CBEN8G6                      | 18 | (8.2)                |  |  |  |  |
| Brass Plug                     | 2.00 | 1     | CBEN10F6                     | 18 | (8.2)                |  |  |  |  |
| 2-Alloy 800                    | 2.50 | 1     | CBEN12F6                     | 18 | (8.2)                |  |  |  |  |
| (9.3 W/cm²)                    | 3.00 | 1     | CBEN15A6X                    | 18 | (8.2)                |  |  |  |  |

#### **Application: Lightweight Oils**

| 23 W/in²    | 0.50 | 1 | CBES7G6  | 18 | (8.2) |
|-------------|------|---|----------|----|-------|
| Steel Plug  | 0.75 | 1 | CBES10B6 | 18 | (8.2) |
| 2-Steel     | 1.00 | 1 | CBES12P6 | 18 | (8.2) |
| (3.6 W/cm²) |      |   |          |    |       |

<sup>•</sup> M - Manufacturing lead times

For optional housing adders, use circulation heater adders.



#### **WATROD** and **FIREBAR** Heaters

#### **Engine Preheaters**

Watlow engine preheaters help maintain a desired minimum engine temperature to make starting fast and easy. They also reduce engine wear caused by cold engine starting.

Engine preheaters mount conveniently on an engine or rail. The internal thermostat constantly adjusts to ambient temperature changes to keep engine coolant warm at all times.

An internal tank temperature sensor protects Watlow engine preheaters from dry-fire conditions caused by low coolant levels or blocked flow.

Installation is easy with just two mounting bolts and inlet and outlet hose connections.

#### **Performance Capabilities**

- Watt densities from 45 to 90 W/in<sup>2</sup> (7 to 14 W/cm<sup>2</sup>)
- Wattages up to 6 kilowatts
- UL® and CSA component recognition up to 480VAC and 600VAC respectively
- Thermostatically controlled from 60 to 160°F (15 to 70°C)
- Alloy 800 sheath temperatures up to 1600°F (870°C)

#### **Features and Benefits**

#### Alloy 800 sheath

 Minimizes the risk of premature failure in the event of a dry-fire condition

## Integral, prewired adjustable thermostat mounted in a general purpose terminal enclosure

· Provides a ready to install unit

## Easy installation with standard 1 in. (25 mm) diameter beaded inlet and outlet nozzles

 Provides rubber hose connections eliminating the need for threaded fittings and adapters

#### 120/240VAC or 240/480VAC dual voltages

- Makes field wiring flexible
- Minimizes stocking multiple voltages

#### Mounting bracket

• Isolates harmful engine vibration

#### Heavy-duty welded carbon steel tank

Resists corrosion and extends life

#### Optional oil pressure interconnect switch

• Disrupts power during engine operation



#### Integral check valve

- Assures proper coolant flow and correct thermostat operation. Check valve will not interfere with adequate thermo-siphoning
- UL® and CSA component
   Recognition under file numbers E52951 and 31388 respectively

#### **Typical Applications**

- Stand by generators
- Primary power generators
- Fire pump engines

#### **Options**

#### **Terminal Enclosure**

The following terminal enclosures are available:

- Standard, general purpose
- Moisture resistant
- Explosion resistant Class 1, Division 1 and 2, Groups B, C and D.

WATLOW® \_\_\_\_\_ 379

#### **WATROD** and **FIREBAR** Heaters

#### **Engine Preheaters**

#### **Application Hints**

- Mount engine preheaters in horizontal position only (as shown in Figures 1, 2 and 3). Contact your Watlow representative if vertical mounting is unavoidable.
- Mount the heater near or below the lowest point on the engine block. Keep outlet nozzle pointed up, as indicated on the tank.
- Estimate kilowatt requirements with the following formula. First determine the engine displacement, then multiply:

# English Cubic inches X 3 = estimated wattage Metric Liters X 183 = estimated wattage

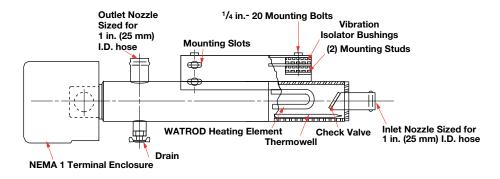
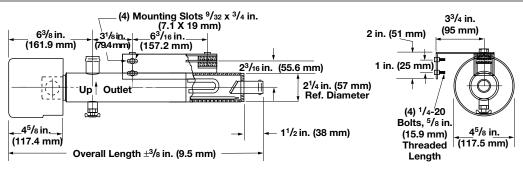




Figure 1

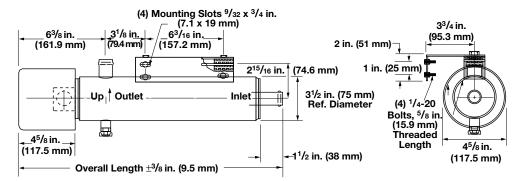
Overall



Est. Ship.

|        | l                    |         |               |                        |                        |                   |                       |          |            |
|--------|----------------------|---------|---------------|------------------------|------------------------|-------------------|-----------------------|----------|------------|
| kW     | Length<br>in. (mm)   |         | l . T         |                        | 120/240VAC<br>1-Phase  | 208VAC<br>1-Phase | 240/480VAC<br>1-Phase | W<br>Ibs | t.<br>(kg) |
| Applic | ation                | Ethyle  | ne Glycol/Eng | ine Coolant            |                        | ,                 |                       |          |            |
| 1.13   | 20 <sup>7</sup> /8   | (530.2) |               | CPBPL2S12 <sup>1</sup> |                        | 12                | (6)                   |          |            |
| 1.50   | 20 <sup>7</sup> /8   | (530.2) | CPBPB6S12     | CPBPB2S12 <sup>①</sup> |                        | 12                | (6)                   |          |            |
| 1.69   | 20 <sup>7</sup> /8   | (530.2) |               | CPBPM2S12 <sup>1</sup> |                        | 12                | (6)                   |          |            |
| 1.88   | 20 <sup>7</sup> /8   | (530.2) |               | CPBPN2S12 <sup>1</sup> |                        | 12                | (6)                   |          |            |
| 2.00   | 20 <sup>7</sup> /8   | (530.2) | CPBPC6S12     |                        |                        | 12                | (6)                   |          |            |
| 2.25   | 20 <sup>7</sup> /8   | (530.2) | CPBPD6S12     |                        |                        | 12                | (6)                   |          |            |
| 2.25   | 26 <sup>11</sup> /16 | 677.9)  |               | CPBPD2S12 <sup>1</sup> |                        | 15                | (7)                   |          |            |
| 2.50   | 20 <sup>7</sup> /8   | (530.2) | CPBPE6S12     |                        |                        | 12                | (6)                   |          |            |
| 3.00   | 26 <sup>11</sup> /16 | 677.9)  |               | CPBPF2S12 <sup>①</sup> | CPBPF7S12              | 15                | (7)                   |          |            |
| 3.75   | 26 <sup>11</sup> /16 | 677.9)  |               | CPBPG2S12 <sup>1</sup> |                        | 15                | (7)                   |          |            |
| 4.00   | 26 11/16             | 677.9)  |               |                        | CPBPH7S12              | 15                | (7)                   |          |            |
| 5.00   | 26 11/16             | 677.9)  |               |                        | CPBPJ7S12 <sup>1</sup> | 15                | (7)                   |          |            |

**Part Number** 




<sup>•</sup> ① - Manufacturing lead times

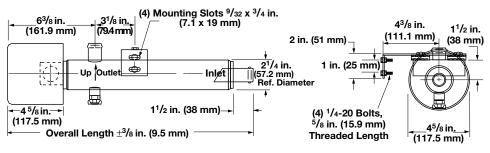
#### **WATROD** and **FIREBAR** Heaters

#### **Engine Preheaters**

Figure 2



|    | Overall  | Part Nu | Part Number |          |  |
|----|----------|---------|-------------|----------|--|
| kW | Length   | 277VAC  | 480VAC      | Wt.      |  |
|    | in. (mm) | 1-Phase | 3-Phase     | Ibs (kg) |  |


#### Application: Ethylene Glycol/Engine Coolant

| 1.50 | 20 <sup>7</sup> /8 (5 | 530.2) | CPCPB4S12 <sup>1</sup> | CPCPB13S12 <sup>1</sup> | 12 | (6) |
|------|-----------------------|--------|------------------------|-------------------------|----|-----|
| 2.00 | 20 <sup>7</sup> /8 (5 | 530.2) | CPCPC4S12 <sup>1</sup> | CPCPC13S12 <sup>1</sup> | 12 | (6) |
| 2.50 | 20 <sup>7</sup> /8 (5 | 530.2) | CPCPE4S12 <sup>1</sup> | CPCPE13S12 <sup>1</sup> | 12 | (6) |
| 3.75 | 20 <sup>7</sup> /8 (5 | 530.2) | CPCPG4S12 <sup>1</sup> | CPCPG13S12 <sup>1</sup> | 12 | (6) |
| 4.00 | 20 <sup>7</sup> /8 (5 | 530.2) | CPCPH4S12 <sup>1</sup> | CPCPH13S12              | 12 | (6) |
| 5.00 | 20 <sup>7</sup> /8 (5 | 530.2) | CPCPJ4S12 <sup>1</sup> | CPCPJ13S12              | 12 | (6) |

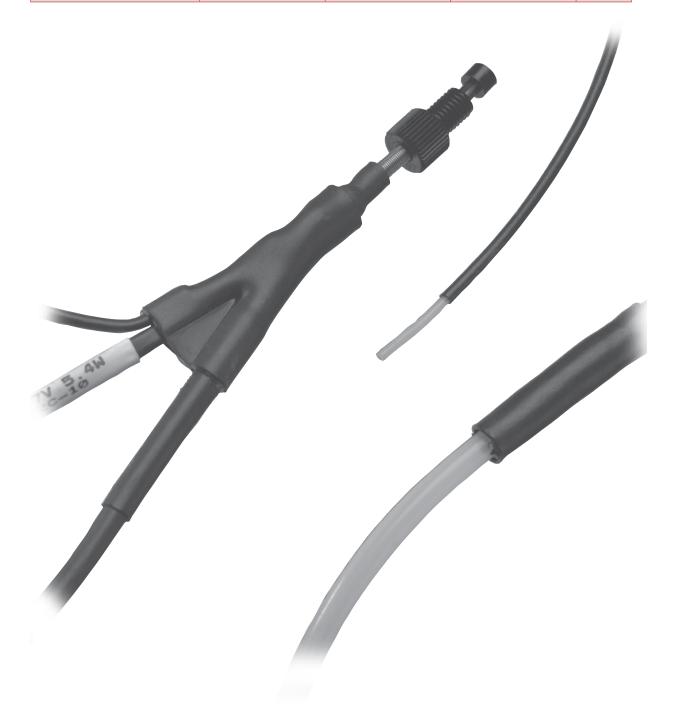


- Next day shipment up to 2 pieces
- 1 Manufacturing lead times

Figure 3



| Overall |                                             | Part Nu       | Est. Ship.            |                   |          |             |  |  |  |  |  |
|---------|---------------------------------------------|---------------|-----------------------|-------------------|----------|-------------|--|--|--|--|--|
| kW      | in.                                         | ength<br>(mm) | 120/240VAC<br>1-Phase | 208VAC<br>1-Phase | V<br>Ibs | Vt.<br>(kg) |  |  |  |  |  |
| Applic  | Application: Ethylene Glycol/Engine Coolant |               |                       |                   |          |             |  |  |  |  |  |
| 0.75    | 15 <sup>5</sup> /8                          | (396.9)       |                       | CPBPK2S12         | 9        | (4)         |  |  |  |  |  |
| 1.00    | 15 <sup>5</sup> /8                          | (396.9)       | CPBPA6S12             |                   | 9        | (4)         |  |  |  |  |  |


• M - Manufacturing lead times

WATLOW® \_\_\_\_\_\_ 381



## Fluid Delivery Heaters

| Fluid Delivery Heaters | Sheath Materials       |     | perating<br>ratures<br>°C |    | al Max.<br>ensities<br>W/cm² | Page |
|------------------------|------------------------|-----|---------------------------|----|------------------------------|------|
| FREEFLEX®              | Polymeric              | 212 | 100                       | 10 | 1.5                          | 385  |
| Syringe                | Polycarbonate laminate | 185 | 85                        | 2  | 0.3                          | 388  |



**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 383



## Fluid Delivery Heaters



# Extended Capabilities For FREEFLEX® Heaters

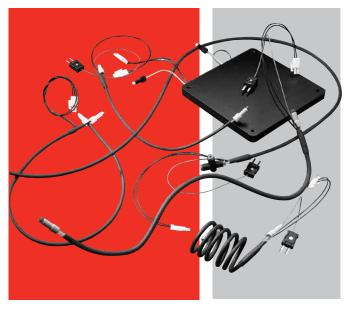
Watlow's miniature heated polymeric tubing assemblies provide a flexible heat-up and transport system for moving fluids within diameters as small as \$1/32\$ in. (0.8 mm). The FREEFLEX® heater heats fluids up to \$212°F (100°C) and maintains temperature during transfer from a reservoir to a point of use. In some applications, the tubing can actually serve as the reservoir for limited volumes of fluid, helping to reduce start-up times. For higher temperatures, contact your Watlow representative.

Watlow's innovative design places the heating element and sensor directly in contact with the perimeter of the tubing to produce efficient, responsive heating and temperature control of the tube contents. The element is evenly wound to ensure reliable, close contact for uniform heating along a portion or the entire length of the line. A flexible, durable jacket covers the wound element to let the tubing flex and move in a dynamic system. This allows for fluid delivery to multiple locations from a single supply source. In stationary applications, the FREEFLEX heated tubing is conveniently routed through available space or around other system components. This saves space and provides an uncomplicated retrofit in existing systems.

The FREEFLEX heater's efficient heating element design can incorporate an optional thermocouple, thermistor or resistance temperature detector (RTD) temperature sensor into the thermal package. Users can select leads to exit from one or both ends of the assembly. Typical standard PTFE tubing is available in <sup>1</sup>/<sub>32</sub>, <sup>1</sup>/<sub>16</sub>, <sup>1</sup>/<sub>8</sub> or <sup>3</sup>/<sub>16</sub> in. (0.8, 1.6, 3.2, 4.8 mm) inside diameters. Contact your Watlow representative for other sizes and materials.

#### **Features and Benefits**

#### Flexible heat-up and transport system


Eliminates the need for heated reservoir systems in many applications

## Direct contact between the heating element and tubing

• Provides fast, efficient, highly responsive heating

#### Available in three configurations

- FREEFLEX design allows tubing to flex, coil or bend around system components, enabling convenient retrofits
- Pre-formed design allows a longer tube length in a smaller volume
- Molded design provides a compact heating assembly for easy installation



#### Integral sensors

 Maintain close control of heater and fluid temperatures

#### Low voltage design

Ensures safety

## Miniature sizes as small as <sup>1</sup>/<sub>32</sub> in. (0.8 mm) inside diameter

Heats and transports fluids within tiny spaces

#### Convenient retrofit

 Allows for routing flexible tubing around system components and using existing control system

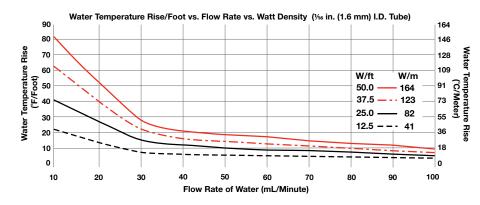
#### UL® recognition

Available on qualified designs by request

#### **Typical Applications**

- Medical: automated clinical analyzers, tissue processing equipment
- Analytical: sample preheating for LC and HPLC systems, breathalyzers
- Semiconductor processing: wafer drying equipment, DI water heating
- **Printing:** ink jet printers, rapid prototyping systems, photo lithography
- **General process:** wax/paraffin processing and non-combustible gas heating
- Water purification systems
- Precision cleaning equipment
- Aerospace
- Military

WATLOW<sup>®</sup> \_\_\_\_\_\_ 385






# **Extended Capabilities For FREEFLEX Heaters**

#### **Technical Data**

#### Water Temperature Rise/Length Versus Flow Rate Versus Watt Density



| Water Temperature Rise °F/Foot |    |    |    |     |  |  |  |  |  |  |
|--------------------------------|----|----|----|-----|--|--|--|--|--|--|
| Flow Rate (mL/minute)          |    |    |    |     |  |  |  |  |  |  |
| W/ft                           | 10 | 30 | 50 | 100 |  |  |  |  |  |  |
| 50.0                           | 82 | 29 | 19 | 10  |  |  |  |  |  |  |
| 37.5                           | 64 | 22 | 14 | 7   |  |  |  |  |  |  |
| 25.0                           | 41 | 16 | 10 | 5   |  |  |  |  |  |  |
| 12.5                           | 22 | 8  | 5  | 3   |  |  |  |  |  |  |

| Water Temperature Rise °C/Meter |     |    |    |     |  |
|---------------------------------|-----|----|----|-----|--|
| Flow Rate (mL/minute)           |     |    |    |     |  |
| W/m                             | 10  | 30 | 50 | 100 |  |
| 164                             | 149 | 52 | 35 | 18  |  |
| 123                             | 116 | 40 | 26 | 13  |  |
| 82                              | 75  | 29 | 18 | 9   |  |
| 41                              | 40  | 15 | 9  | 5   |  |

#### **FREEFLEX Outside Diameter Temperature Versus Watts/Length**



| W/ft | W/m | O.D | . Temp  | erature  |
|------|-----|-----|---------|----------|
|      |     | °C  | (°F) (A | Ambient) |
| 0    | 0   | 70  | (21)    |          |
| 5    | 1.5 | 140 | (60)    |          |
| 10   | 3.0 | 210 | (99)    |          |
| 15   | 4.6 | 265 | (129)   |          |
| 20   | 6.1 | 310 | (154)   |          |
| 25   | 7.6 | 340 | (171)   |          |
|      |     |     |         |          |

### Fluid Delivery Heaters



# Extended Capabilities For FREEFLEX Heaters

#### Typical Application Requirements

#### When requesting a quote please specify:

- Fluid Type
- Inlet Temperature
- Outlet Temperature
- Flow Rate
- Voltage Typically less than 36V
- Watts/ft See chart on previous page for typical values
- Maximum Allowable Outside Surface Temperature
- Tube Size
  - 1/32 in. (0.8 mm) I.D. x 1/16 in. (1.6 mm) O.D.
  - <sup>1</sup>/<sub>16</sub> in. (1.6 mm) I.D. x <sup>1</sup>/<sub>8</sub> in. (3.2 mm) O.D.
  - <sup>1</sup>/<sub>8</sub> in. (3.2 mm) I.D. x <sup>3</sup>/<sub>16</sub> in. (4.8 mm) O.D.
  - 3/16 in. (4.8 mm) I.D. x 1/4 in. (6 mm) O.D.
  - Other (specify size)
- Tube Material
  - PTFE standard
  - Silicone rubber
  - Others upon request
- Tube Length 12 to 120 in. (305 to 3048 mm) typical
  - Total
  - Heated
  - Unheated (specify)

#### • Tube Fittings

- No fittings (1 in. [25 mm] bare tubing each end)
- Other (specify)

#### Tube Flexing

- Static (to route around components in system)
- Dynamic (subject to more continuous flexing)
- Occasional, frequent or continuous

#### Note: Min. recommended flexing radius

- 1/32 in. (0.8 mm) I.D. x 1/16 in. (1.6 mm) O.D. PTFE 1 in. (25 mm)
- 1/16 in. (1.6 mm) I.D. x 1/8 in. (3.2 mm) O.D. PTFE 11/2 in. (38 mm)
- ¹/8 in. (3.2 mm) I.D. x ³/16 in. (4.8 mm) O.D. PTFE 2 in. (51 mm)
- <sup>3</sup>/<sub>16</sub> in. (4.8 mm) I.D. x <sup>1</sup>/<sub>4</sub> in. (6 mm) O.D. PTFE 3 in. (76 mm)

#### Heater Leads

- · One at each end
- Both at one end
- Standard lead insulation (UL<sup>®</sup> Style 1180 CSA white PTFE)
- Other insulation (specify)

#### **Heater Lead Length**

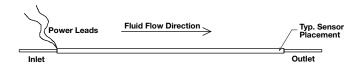
- Standard 12 in. (305 mm) w/customer end stripped/tinned <sup>1</sup>/<sub>2</sub> in. (13 mm)
- Other (specify)

#### **Heater Lead Exit Direction**

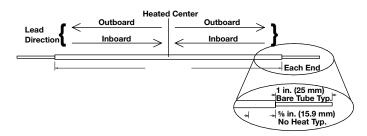
Inboard/outboard

#### **Temperature Sensor**

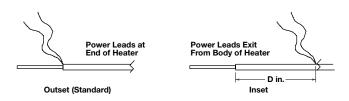
- Thermocouple (#30 AWG PFA Type J)
- Thermistor (specify) 10KΩ at 72°F (25°C) standard
- Other temperature sensors size/types (specify)
- Sense heater element or tube temperature


#### **Sensor Lead Exit Direction**

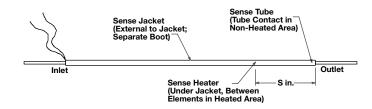
Inboard/outboard


#### **Temperature Sensor Lead Length**

- 12 in. (305 mm)
- Other (specify)


#### **Typical FREEFLEX Layout**




#### **Lead Orientation**



#### **Lead Location**



#### **Sensor Location/Mounting Description**



## **Fluid Delivery Heaters**



#### Extended Capabilities for Syringe Heaters

The Watlow syringe heater was developed to match the unique needs of medical injection applications. It produces consistent results by reducing temperature and viscosity variations. Fluid and drug delivery that maintain precise liquid temperatures and reduce fluid viscosity maximize patient comfort and reduce risk. Body temperature injections are more easily introduced, particularly for patients in a frail or distressed condition.

The Watlow syringe heater is available in two configuration types with an optional, repeatable temperature sensing controller. The silicone/wire configuration accommodates varying syringe size needs. The translucent, high-tech laminate construction of the polycarbonate/foil design enables fluid levels and air bubbles to be easily viewed and monitored. Both heater forms are designed to "snap" on to the syringe with one hand and hold firmly during a procedure.

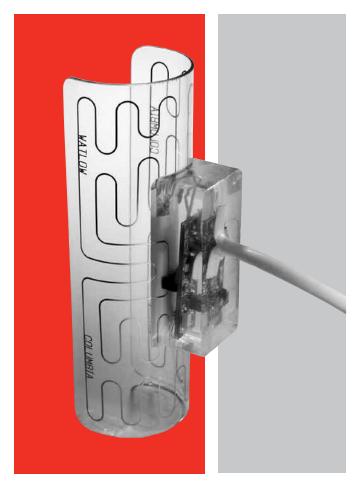
An overmold design houses the optional electronic controller and/or temperature sensor to allow trouble-free servicing and extend heater life. The overmold can be modified and color matched for seamless, integrated appearance.

#### **Features and Benefits**

#### Long operational life

- Improves system reliability
- Reduces equipment down time and minimizes the need to reschedule procedures

## Two heater configurations provide flexibility and adaptability


- Silicon wire enables maximum flexibility to accommodate various syringe sizes
- Polycarbonate/foil provides high tech appearance and functionality

#### **Customizable to most OEM requirements**

 Allows over-mold to be modified and color matched for a seamless, integrated appearance

## Optional precise, repeatable temperature sensing control

- Maximizes patient comfort
- Minimizes patient risk
- Increases the consistency of test results by eliminating temperature and viscosity variations
- Carries a longer product life than bimetal thermostats



#### **Specifications**

#### Silicone/Wire and Polycarbonate/Foil

- Length: 5 in. (127 mm) max.
- Formed heater diameter: formed to fit syringe.
   Typical diameter is 2 in. (50 mm) to 6 in. (150 mm)\*
- Voltage: dependent on application, over 48V may impact agency approvals
- Control accuracy: 5.4°F (±3°C)
- Max. operating surface temperature: 185°F (85°C)
- Approximate control pod dimensions: 1 x 1 x 2.75 in. (25 x 25 x 70 mm)\*
- Cord pull strength: Up to 89 N (20 lb<sub>F</sub>)\*
- \* Dependent on design requirements.

| Air Heaters             | Sheath Materials                      |             | perating<br>ratures<br>°C |     | al Max.<br>ensities<br>W/cm² | Page |
|-------------------------|---------------------------------------|-------------|---------------------------|-----|------------------------------|------|
| Duct Heaters            | 1                                     |             |                           | I   |                              |      |
| LDH SERIES and D SERIES | Alloy 840                             | 1200        | 650                       | 30  | 4.7                          | 391  |
| MDH SERIES              | Alloy 840                             | 1200        | 650                       | 26  | 4.0                          | 405  |
| Finned                  |                                       | ·           |                           |     |                              | ·    |
| 375 Finned Strip        | Aluminized steel                      | 1100        | 595                       | 33  | 5.1                          | 409  |
| FINBAR™ Single-Ended    | 304 stainless steel                   | 1200        | 650                       | 50  | 7.7                          | 415  |
| FIREROD® Cartridge      | Alloy 800                             | Application | n Specific                | 100 | 15.5                         | 416  |
| Enclosure Heaters       |                                       |             |                           |     |                              |      |
| WATROD™                 | Alloy 840                             | 390         | 200                       | 15  | 2.3                          | 417  |
| Silicone Rubber         | Fiberglass reinforced silicone rubber | 500         | 260                       | 5   | 0.8                          | 419  |



**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 389



#### **Duct Heaters**

#### LDH SERIES and D SERIES

Constructed of sturdy 0.430 in. (11 mm) diameter WATROD™ heating elements mounted to a <sup>1</sup>/<sub>4</sub> in. (6 mm) thick steel flange, duct heaters are easily adapted to many non-pressurized air-heating systems.

They are easily installed in applications requiring a wide range of temperature versus air flow combinations.

The modular duct heater offers increased reliability. The individual modules are removable through the housing of the assembly, which eliminates the need to pull the complete heater from the duct work. This reduces downtime costs because the heating elements can be replaced individually. Performance improvements include quicker response time and reduced infiltration from the air stream being heated into the electrical enclosure.

Watlow® duct heaters offer advantages over gas or oil fired and open coil electric units with:

- Installation flexibility—no flues or fuel lines
- 100 percent energy efficient—no energy loss up the flue
- Universal availability of electricity
- Resistance coil in sheath is protected from corrosive environments

#### **Performance Capabilities**

- Watt densities up to 40 W/in<sup>2</sup> (6.2 W/cm<sup>2</sup>)
- Recommended process temperatures from -20 to 1200°F (-29 to 650°C)
- Catalog P/N wattages up to 225kW
- Voltages up to 600VAC

#### **Features and Benefits**

#### Long life alloy 840 sheath

 Resists corrosion/oxidation while protecting resistance coils against contamination

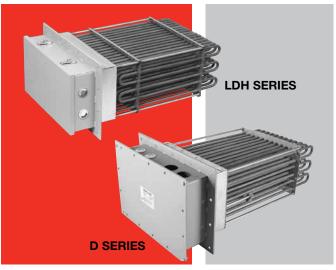
## MgO insulation filled elements compacted to rock hard density

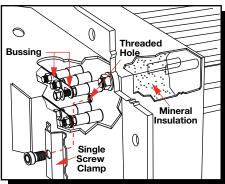
• Maximizes dielectric strength, heat transfer and life

#### Field replaceable heating elements

 Permits easy service and reduces downtime. Element change-out is made simple by a single screw clamp (D SERIES only)

#### 3<sup>1</sup>/<sub>2</sub> in. (90 mm) thick mineral insulation


· Keeps wiring cooler and reduces heat loss


#### Silicone resin seals rated to 221°F (105°C)

Protects elements against moisture and other contaminants

#### General purpose terminal enclosure

· Offers easy access to wiring





#### <sup>1</sup>/<sub>4</sub> in. (6 mm) inside diameter thermowell

 Accepts an optional Type J or K thermocouple for accurate sheath temperature sensing (D SERIES only)

#### Rigid stainless steel supports

Prevents element sagging or deformation in various mounting positions

## <sup>1</sup>/<sub>4</sub> in. (6 mm) thick steel flange with <sup>3</sup>/<sub>8</sub> in. (9.5 mm) diameter mounting holes

• Easily bolts to the duct wall

## WATROD hairpins are repressed (recompacted) after bending to assure MgO density

· Eliminates hot spots and electrical insulation voids

#### Stock heaters feature from 3 to 60 elements

· Meets a wide variety of kilowatt demands

#### One or three phase voltages

Meets local power supplies

#### Maximum 48 amperes per circuit

• Complies with National Electrical Code (NEC)

Duct heaters with general purpose enclosures meet UL® and CSA component recognition to 480 and 600VAC maximum respectively—UL® and CSA file numbers are E52951 and 31388

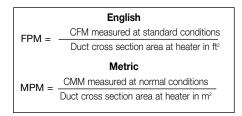
WATLOW® \_\_\_\_\_\_ 391

#### **Duct Heaters**

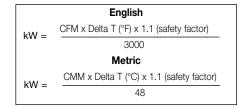
#### LDH SERIES and D SERIES

#### **Typical Applications**

- Drying ovens
- Autoclaves
- Furnaces
- Load banks
- Heat treating
- Reheating
- HVAC
- Paint drying


#### **Choosing a Duct Heater**

The English and metric graphs, shown on the following pages will help you to select the correct duct heater. These graphs include: Watt Density vs. Air Temperature/Velocity, Watt Density vs. Sheath Temperature and Pressure Drop vs. Air Velocity.


These graphs, with the quick formulas on this page, along with information specific to your application, will determine the correct duct heater specifications. However, if engineering assistance is needed, contact your Watlow representative.

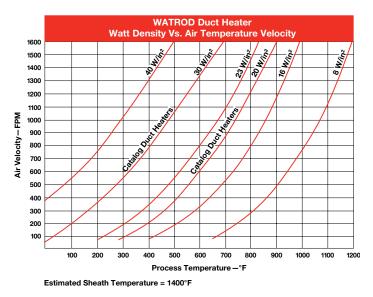
#### **Required Application Information**

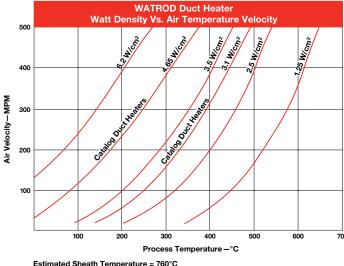
- Desired outlet air temperature
- Inlet air temperature
- Delta T—the temperature difference between inlet and desired outlet temperature
- Air volume (CFM/CMM) measured at both inlet temperature and pressure
- Air velocity in feet per minute (FPM); meters per minute (MPM) which equals:



 Minimum duct heater wattage (kW). This can be determined by:




**Note:** The duct heater, or combination of duct heaters, used for the process should be equal to or exceed the minimum wattage calculation.

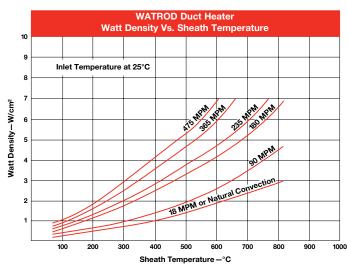

#### **Duct Heaters**

#### LDH SERIES and D SERIES

#### Watt Density vs. Air Temperature/Velocity

To decide watt density requirements, first determine the desired outlet air temperature and velocity in feet per minute. Then, follow the lines on the graph for velocity and process temperature to the watt density curve's intersecting point. This shows the recommended watt density based on a maximum sheath temperature of 1400°F (760°C). For longer heater life, lower watt densities should be chosen.



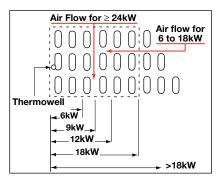

#### Estimated Sheath Temperature = 760°C

#### **Watt Density vs. Sheath Temperature**

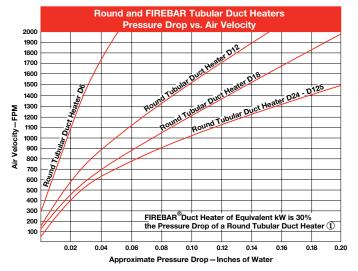
The Watt Density vs. Sheath Temperature graph shows the air velocity (FPM or MPM) required to operate a WATROD duct heater at specific watt densities or sheath temperatures. Also depicted is the appropriate watt density vs. sheath temperature at a specified air flow.

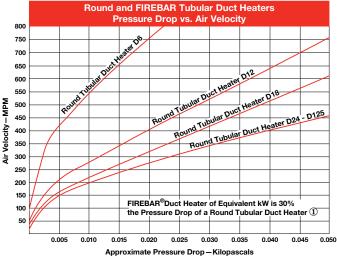





#### **Duct Heaters**

#### LDH SERIES and D SERIES


#### **Pressure Drop vs. Air Velocity**


The rate at which pressure drops through the duct heater is critical for properly sizing blowers and pumps. *The Pressure Drop vs. Air Velocity* graph gives recommended maximum velocities in feet per minute and meters per minute according to the air velocity and duct heater size.

To determine the pressure drop through the duct heater, follow the air velocity (FPM or MPM) over to the appropriate curve, which identifies the duct heater size. Then, take the intersecting point down to the approximate pressure drop value.



**Note**: Viewing from the element ends—the recommended air flow direction through element bundle changes at >18kW.





① FIREBAR® flat tubular element duct heaters are available as extended capabilities to enhance your application output or performance. Although duct heaters are not normally constructed with FIREBAR elements, the pressure drop reduction using FIREBAR as a distinct advantage is shown above.

#### **Options**

#### Wattages/Voltages

To meet specific application needs, voltage and wattage combinations outside stock product parameters are available.

For more information about this option, contact your Watlow representative.

#### **Duct Heaters**

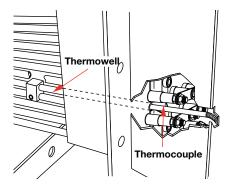
#### LDH SERIES and D SERIES

**Options** (Continued)

#### **Terminal Enclosures**

In addition to the standard, general purpose terminal enclosure, Watlow offers a moisture resistant optional terminal enclosure to meet specific application requirements.

#### **Thermocouples**


**Type J** or **K** thermocouples, inserted in the thermowell, accurately sense element sheath temperature for over-temperature conditions.

To sense process temperature, the sensing element should be located downstream from the duct heater. This will eliminate incorrect sensing caused by radiant heat.

Thermocouples are supplied with 120 in. (3050 mm) leads, longer lead lengths are available (this applies to "D" SERIES only). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the *Thermocouple Types* chart.

Using a thermocouple requires an appropriate temperature and power controller. These must be purchased separately. Watlow offers a wide variety of temperature and power controllers to meet virtually all applications. Temperature controllers can be configured to accept process variable inputs, too. Contact your Watlow representative for details.

To order a thermocouple, add the appropriate suffix letter to the duct heater's base part number, as indicated on the *Ordering Information* chart on page 404.



Duct heater thermowell holds thermocouple for sensing sheath temperature.

#### **Thermocouple Types**

| ASTM | Conductor Characteristics |                |           | nmended <sup>①</sup><br>ature Range |
|------|---------------------------|----------------|-----------|-------------------------------------|
| Туре | Positive                  | Negative       | °F        | (°C)                                |
| J    | Iron                      | Constantan     | 0 to 1000 | (-20 to 540)                        |
|      | (Magnetic)                | (Non-magnetic) |           |                                     |
| K    | Chromel®                  | Alumel®        | 0 to 2000 | (-20 to 1100)                       |
|      | (Non-magnetic)            | (Magnetic)     |           |                                     |

①Type J and Type K thermocouples are rated 32 to 1382°F and 32 to 2282°F (0-750°C and 0-1250°C), respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.

#### **Application Hints**

- Mount duct heaters horizontally to lower enclosure temperatures and promote unit life.
- Orient heating elements as per the air flow illustration on page 394.
- Promote heater life by keeping sheath temperature below the 1400°F (760°C) maximum.
- Measure process temperature in the outlet stream, away from the heater.
- Maintain wiring integrity by keeping enclosure temperature below 400°F (205°C).
- Thermal cycling can cause terminations to loosen.
   Periodically check and tighten all electrical connections.
- Size power feeder wires in accordance with NEC and other applicable codes.
- Protect employees against electrical shock by properly grounding the unit per NEC specifications.

WATLOW® \_\_\_\_\_\_ 395



#### **Extended Capabilities For Duct Heaters**

#### LDH SERIES and D SERIES

#### **Performance Capabilities**

• Wattages to 2.2 megawatts

#### **Features and Benefits**

#### Ceramic fiber insulation available

• Keeps wiring cooler and reduces heat loss

## Greater than <sup>1</sup>/<sub>4</sub> in. (6 mm) with 304 or 316 stainless steel flange material

• Easily bolts to the duct wall

#### 60 plus element designs available

• Meets a wide variety of kilowatt demands

#### **Options**

#### **Sheath Material**

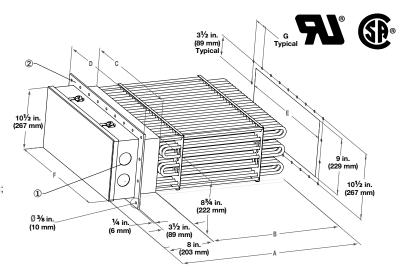
Watlow duct heaters can be made with the following sheath materials:

- 304, 316, 321 SS
- Alloy 800, 840
- Laminated alloy 600 (hi-temp)
- Hastelloy C276

Contact your Watlow representative for details and availability.

#### **Terminal Enclosures**

In addition to the standard, general purpose terminal enclosure, Watlow offers the following optional terminal enclosures to meet specific application requirements:


- Explosion resistant (contact your Watlow representative)
- High-temperature stand-off enclosures

## **Duct Heaters**

## **LDH SERIES**

# **Application: High Temperature Air** 800°F (427°C)

- Welded alloy 840 WATROD elements
- Without thermostat
- General purpose enclosure
- Steel flange
- ① 3 and 6 element heaters have (1) 1 inch NPT conduit opening; 9, 12 and 15 element heaters have (2) 1 inch NPT conduit openings; 18 element heaters have (2) 1½ inch NPT conduit openings; 21 element (B= 20½ in.) heaters have (2) 1½ inch NPT conduit openings; remaining 21 and 24 element heaters have (3) 1½ inch NPT conduit openings
- 2 All flanges are 12 inches wide

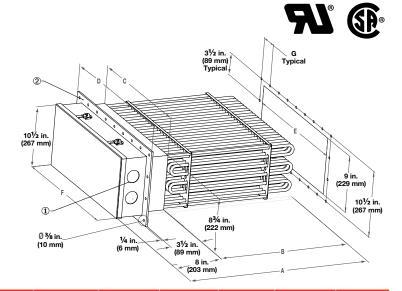


| # of |         |        |                | #    | Part       |      | Ship | Wt.   | "A"                            | Dim.   | "B"                            | Dim.   | "C"                            | Dim.  | "D"                            | Dim.  | "E" | Dim.  | "F"                | Dim.    | "G" | Dim. |
|------|---------|--------|----------------|------|------------|------|------|-------|--------------------------------|--------|--------------------------------|--------|--------------------------------|-------|--------------------------------|-------|-----|-------|--------------------|---------|-----|------|
|      | Volts   |        |                | Circ | Number     | Del. | lbs  | (kg)  | in.                            | (mm)   | in.                            | (mm)   | in.                            | (mm)  | in.                            | (mm)  | in. | (mm)  | in.                | (mm)    | in. | (mm) |
| 20 W | /in² (3 | .1 W/c | m <sup>2</sup> | )    |            |      | 1    |       | ı                              |        |                                |        | 1                              |       |                                |       | 1   |       | ,                  |         |     |      |
| 3    | 240     | 9.0    | 1              | 1    | LDH9S10S   | М    | 55   | (25)  | 281/4                          | (718)  | 201/4                          | (514)  | 33/4                           | (95)  |                                | (191) | 4   | (102) | 45/8               | (117.5) | 3   | (76) |
| 3    | 240     | 9.0    | 3              | 1    | LDH9S3S    | М    | 55   | (25)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 33/4                           | (95)  | 7 <sup>1</sup> /2              | (191) | 4   | , ,   |                    | (117.5) |     | (76) |
| 3    | 480     | 9.0    | 1              | 1    | LDH9S11S   | М    | 55   | (25)  | 281/4                          | (718)  | 201/4                          | (514)  | 33/4                           | (95)  | 71/2                           | (191) | 4   | (102) | 4 <sup>5</sup> /8  | (117.5) | 3   | (76) |
| 3    | 480     | 9.0    | 3              | 1    | LDH9S5S    | М    | 55   | (25)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 33/4                           | (95)  | 7 <sup>1</sup> /2              | (191) | 4   | (102) | 4 <sup>5</sup> /8  | (117.5) | 3   | (76) |
| 6    | 240     | 18.0   | 1              | 2    | LDH18S10S  | М    | 65   | (30)  | 281/4                          | (718)  | 201/4                          | (514)  | 63/4                           | (171) | 10 <sup>1</sup> / <sub>2</sub> | (267) | 7   | (178) | 7 <sup>5</sup> /8  | (193.7) | 3   | (76) |
| 6    | 240     | 18.0   | 3              | 1    | LDH18S3S   | М    | 65   | (30)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 6 <sup>3</sup> / <sub>4</sub>  | (171) | 10 <sup>1</sup> /2             | (267) | 7   | (178) | 7 <sup>5</sup> /8  | (193.7) | 3   | (76) |
| 6    | 480     | 18.0   | 1              | 1    | LDH18S11S  | М    | 65   | (30)  | 281/4                          | (718)  | 201/4                          | (514)  | 63/4                           | (171) | 10 <sup>1</sup> / <sub>2</sub> | (267) | 7   | (178) | 7 <sup>5</sup> /8  | (193.7) | 3   | (76) |
| 6    | 480     | 18.0   | 3              | 1    | LDH18S5S   | М    | 65   | (30)  | 281/4                          | (718)  | 201/4                          | (514)  | 63/4                           | (171) | 10 <sup>1</sup> / <sub>2</sub> | (267) | 7   | (178) | 75/8               | (193.7) | 3   | (76) |
| 9    | 240     | 27.0   | 1              | 3    | LDH27S10S  | М    | 120  | (55)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 93/4                           | (248) | 13 <sup>1</sup> /2             | (343) | 10  | (254) | 10 <sup>5</sup> /8 | (269.9) | 3   | (76) |
| 9    | 240     | 27.0   | 3              | 3    | LDH27S3S   | М    | 120  | (55)  | 281/4                          | (718)  | 201/4                          | (514)  | 93/4                           | (248) | 13 <sup>1</sup> / <sub>2</sub> | (343) | 10  | (254) | 10 <sup>5</sup> /8 | (269.9) | 3   | (76) |
| 9    | 480     | 27.0   | 1              | 3    | LDH27S11S  | М    | 120  | (55)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 93/4                           | (248) | 13 <sup>1</sup> /2             | (343) | 10  | (254) | 10 <sup>5</sup> /8 | (269.9) | 3   | (76) |
| 9    | 480     | 27.0   | 3              | 1    | LDH27S5S   | М    | 120  | (55)  | 281/4                          | (718)  | 201/4                          | (514)  | 93/4                           | (248) | 13 <sup>1</sup> / <sub>2</sub> | (343) | 10  | , ,   |                    | (269.9) |     | (76) |
| 12   | 240     | 36.0   | 1              | 4    | LDH36S10S  | М    | 135  | (62)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 12 <sup>3</sup> /4             | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 13 <sup>5</sup> /8 | (346.1) | 3   | (76) |
| 12   | 240     | 36.0   | 3              | 2    | LDH36S3S   | М    | 135  | (62)  | 281/4                          | (718)  | 201/4                          | (514)  | 12 <sup>3</sup> / <sub>4</sub> | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 13 <sup>5</sup> /8 | (346.1) | 3   | (76) |
| 12   | 480     | 36.0   | 1              | 2    | LDH36S11S  | М    | 135  | (62)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 12 <sup>3</sup> /4             | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 13 <sup>5</sup> /8 | (346.1) | 3   | (76) |
| 12   | 480     | 36.0   | 3              | 1    | LDH36S5S   | М    | 135  | (62)  | 281/4                          | (718)  | 201/4                          | (514)  | 12 <sup>3</sup> / <sub>4</sub> | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 13 <sup>5</sup> /8 | (346.1) | 3   | (76) |
| 15   | 240     | 45.0   | 3              | 5    | LDH45S3S   | М    | 195  | (89)  | 281/4                          | (718)  | 201/4                          | (514)  | 15 <sup>3</sup> / <sub>4</sub> | (400) | 19 <sup>1</sup> / <sub>2</sub> | (495) | 16  | , ,   |                    | (454.0) |     | (76) |
| 15   | 480     | 45.0   | 1              | 3    | LDH45S11S  | М    | 195  | (89)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 15 <sup>3</sup> / <sub>4</sub> | (400) | 19 <sup>1</sup> /2             | (495) | 16  | (406) | 17 <sup>7</sup> /8 | (454.0) | 3   | (76) |
| 15   | 480     | 45.0   | 3              | 5    | LDH45S5S   | М    | 195  | (89)  | 281/4                          | (718)  | 201/4                          | (514)  | 15 <sup>3</sup> / <sub>4</sub> | (400) | 19 <sup>1</sup> / <sub>2</sub> | (495) | 16  | (406) | 17 <sup>7</sup> /8 | (454.0) | 3   | (76) |
| 18   | 240     | 54.0   | 3              | 3    | LDH54S3S   | М    | 205  | (93)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 18 <sup>3</sup> / <sub>4</sub> | (476) | 22 <sup>1</sup> / <sub>2</sub> | (572) | 19  | (483) | 20 <sup>7</sup> /8 | (530.2) | 3   | (76) |
| 18   | 480     | 54.0   | 1              | 3    | LDH54S11S  | М    | 205  | (93)  | 281/4                          | (718)  | 201/4                          | (514)  | 18 <sup>3</sup> / <sub>4</sub> | (476) | 221/2                          | (572) | 19  | (483) | 20 <sup>7</sup> /8 | (530.2) | 3   | (76) |
| 18   | 480     | 54.0   | 3              | 2    | LDH54S5S   | М    | 205  | (93)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 18 <sup>3</sup> / <sub>4</sub> | (476) | 22 <sup>1</sup> / <sub>2</sub> | (572) | 19  | (483) | 20 <sup>7</sup> /8 | (530.2) | 3   | (76) |
| 21   | 240     | 63.0   | 3              | 7    | LDH63S3S   | М    | 235  | (107) | 281/4                          | (718)  | 201/4                          | (514)  | 21 <sup>3</sup> / <sub>4</sub> | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  |       | _                  | (606.4) | 3   | (76) |
| 21   | 480     | 63.0   | 1              | 3    | LDH63S11S  | М    | 235  | (107) | 281/4                          | (718)  | 201/4                          | (514)  | 21 <sup>3</sup> / <sub>4</sub> | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480     | 63.0   | 3              | 7    | LDH63S5S   | М    | 235  | (107) | 281/4                          | (718)  | 201/4                          | (514)  | 21 <sup>3</sup> / <sub>4</sub> | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  | , ,   | -                  | (606.4) | 3   | (76) |
| 21   | 240     | 79.0   | 3              | 7    | LDH79S3S   | М    | 260  | (118) | 33                             | (838)  | 25                             | (635)  | 21 <sup>3</sup> / <sub>4</sub> | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480     | 79.0   | 1              | 7    | LDH79S11S  | М    | 260  | (118) | 33                             | (838)  | 25                             | (635)  | 21 <sup>3</sup> /4             | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  | , ,   | -                  | (606.4) | 3   | (76) |
| 21   | 480     | 79.0   | 3              | 7    | LDH79S5S   | М    | 260  | (118) | 33                             | (838)  | 25                             | (635)  |                                | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  | , ,   | -                  | (606.4) | 3   | (76) |
| 21   | 240     | 105.0  | 3              | 7    | LDH105S3S  | М    | 290  | (132) | 401/2                          | (1029) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 21 <sup>3</sup> /4             | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480     | 105.0  | 1              | 7    | LDH105S11S | М    | 290  | (132) |                                | (1029) | 321/2                          | (826)  | 21 <sup>3</sup> / <sub>4</sub> | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480     | 105.0  | 3              | 7    | LDH105S5S  | М    | 290  | (132) | 401/2                          | (1029) | 32 <sup>1</sup> / <sub>2</sub> | (826)  | 21 <sup>3</sup> / <sub>4</sub> | (552) | 25 <sup>1</sup> / <sub>2</sub> | (848) | 22  |       |                    | (606.4) | 3   | (76) |
| 21   | 480     | 131.0  | 3              | 7    | LDH131S5S  | М    | 310  | (141) | 491/2                          | (1257) | 41 <sup>1</sup> / <sub>2</sub> | (1054) | 21 <sup>3</sup> / <sub>4</sub> | (552) | 251/2                          | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 24   | 480     | 150.0  | 3              | 4    | LDH150S5S  | М    | 330  | (150) | 491/2                          | (1257) | 41 <sup>1</sup> / <sub>2</sub> | (1054) | 243/4                          | (629) | 281/2                          | (724) | 25  | (635) | 26 <sup>7</sup> /8 | (682.6) | 3   | (76) |

• M - Manufacturing lead times

Truck Shipment only

#### Notes


• See Watt Density vs. Air Temperature/Velocity charts on page 393 to confirm suitability in the application.

## **Duct Heaters**

## **LDH SERIES**

# **Application: Medium Temperature Air** 750°F (399°C)

- Welded alloy 840 WATROD elements
- Without thermostat
- General purpose enclosure
- Steel flange
- ① 3 and 6 element heaters have (1) 1 inch NPT conduit opening; 9, 12 and 15 element heaters have (2) 1 inch NPT conduit openings; 18 element heaters have (2) 1<sup>1</sup>/<sub>2</sub> inch NPT conduit openings; 21 element (B= 20<sup>1</sup>/<sub>4</sub> in.) heaters have (2) 1<sup>1</sup>/<sub>2</sub> inch NPT conduit openings; remaining 21 and 24 element heaters have (3) 1<sup>1</sup>/<sub>2</sub> inch NPT conduit openings
- 2 All flanges are 12 inches wide



| # of |                     |        |     | # | Part        |      | Ship | Wt.   | "A" l                          | Dim.   | "B"                            | Dim.   | "C"                             | Dim.  | "D"                            | Dim.  | "E" | Dim.  | "F"                | Dim.    | "G" | Dim. |
|------|---------------------|--------|-----|---|-------------|------|------|-------|--------------------------------|--------|--------------------------------|--------|---------------------------------|-------|--------------------------------|-------|-----|-------|--------------------|---------|-----|------|
|      |                     | kW     |     |   | Number      | Del. | lbs. | (kg)  | in.                            | (mm)   | in.                            | (mm)   | in.                             | (mm)  | in.                            | (mm)  | in. | (mm)  | in.                | (mm)    | in. | (mm) |
| 30 W | /in <sup>2</sup> (4 | .7 W/c | :m² | ) |             |      |      |       |                                |        |                                |        |                                 |       |                                |       |     |       |                    |         |     |      |
| 3    | 240                 | 14.0   | 1   | 3 | LDH14SX10S  | М    | 55   | (25)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 3 <sup>3</sup> /4               | (95)  | 71/2                           | (191) | 4   | (102) | 4 <sup>5</sup> /8  | (117.5) | 3   | (76) |
| 3    | 240                 | 14.0   | 3   | 1 | LDH14SX3S   | М    | 55   | (25)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> /4             | (514)  | 3 <sup>3</sup> /4               | (95)  | 7 <sup>1</sup> /2              | (191) | 4   | (102) | 4 <sup>5</sup> /8  | (117.5) | 3   | (76) |
| 3    | 480                 | 14.0   | 1   | 1 | LDH14SX11S  | М    | 55   | (25)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 33/4                            | (95)  | 71/2                           | (191) | 4   | (102) | 4 <sup>5</sup> /8  | (117.5) | 3   | (76) |
| 3    | 480                 | 14.0   | 3   | 1 | LDH14SX5S   | М    | 55   | (25)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 33/4                            | (95)  | 71/2                           | (191) | 4   | (102) | 4 <sup>5</sup> /8  | (117.5) | 3   | (76) |
| 6    | 240                 | 27.0   | 1   | 3 | LDH27SX10S  | М    | 65   | (30)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 63/4                            | (171) | 10 <sup>1</sup> /2             | (267) | 7   | (178) | 7 <sup>5</sup> /8  | (193.7) | 3   | (76) |
| 6    | 240                 | 27.0   | 3   | 2 | LDH27SX3X   | М    | 65   | (30)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 63/4                            | (171) | 10 <sup>1</sup> /2             | (267) | 7   | (178) | 7 <sup>5</sup> /8  | (193.7) | 3   | (76) |
| 6    | 480                 | 27.0   | 1   | 2 | LDH27SX11S  | М    | 65   | (30)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> /4             | (514)  | 6 <sup>3</sup> /4               | (171) | 10 <sup>1</sup> /2             | (267) | 7   | (178) | 7 <sup>5</sup> /8  | (193.7) | 3   | (76) |
| 6    | 480                 | 27.0   | 3   | 1 | LDH27SX5S   | М    | 65   | (30)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 63/4                            | (171) | 10 <sup>1</sup> /2             | (267) | 7   | (178) | 7 <sup>5</sup> /8  | (193.7) | 3   | (76) |
| 9    | 240                 | 41.0   | 3   | 3 | LDH41SX3S   | М    | 120  | (55)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> /4             | (514)  | 9 <sup>3</sup> /4               | (248) | 13 <sup>1</sup> /2             | (343) | 10  | (254) | 10 <sup>5</sup> /8 | (269.9) | 3   | (76) |
| 9    | 480                 | 41.0   | 1   | 3 | LDH41SX11S  | М    | 120  | (55)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 93/4                            | (248) | 13 <sup>1</sup> /2             | (343) | 10  | (254) | 10 <sup>5</sup> /8 | (269.9) | 3   | (76) |
| 9    | 480                 | 41.0   | 3   | 3 | LDH41SX5S   | М    | 120  | (55)  | 28 <sup>1</sup> /4             | (718)  | 20 <sup>1</sup> /4             | (514)  | 9 <sup>3</sup> /4               | (248) | 13 <sup>1</sup> /2             | (343) | 10  | (254) | 10 <sup>5</sup> /8 | (269.9) | 3   | (76) |
| 12   | 240                 | 54.0   | 3   | 4 | LDH54SX3S   | М    | 135  | (62)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 12 <sup>3</sup> /4              | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 13 <sup>5</sup> /8 | (346.1) | 3   | (76) |
| 12   | 480                 | 54.0   | 1   | 3 | LDH54SX11S  | М    | 135  | (62)  | 28 <sup>1</sup> /4             | (718)  | 20 <sup>1</sup> /4             | (514)  | 12 <sup>3</sup> /4              | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 13 <sup>5</sup> /8 | (346.1) | 3   | (76) |
| 12   | 480                 | 54.0   | 3   | 2 | LDH54SX5S   | М    | 135  | (62)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 12 <sup>3</sup> /4              | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 13 <sup>5</sup> /8 | (346.1) | 3   | (76) |
| 15   | 240                 | 68.0   | 3   | 5 | LDH68SX3S   | М    | 195  | (89)  | 28 <sup>1</sup> /4             | (718)  | 20 <sup>1</sup> /4             | (514)  | 15 <sup>3</sup> /4              | (400) | 19 <sup>1</sup> /2             | (495) | 16  | (406) | 17 <sup>7</sup> /8 | (454.0) | 3   | (76) |
| 15   | 480                 | 68.0   | 1   | 3 | LDH68SX11S  | М    | 195  | (89)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 15 <sup>3</sup> /4              | (400) | 19 <sup>1</sup> /2             | (495) | 16  | (406) | 17 <sup>7</sup> /8 | (454.0) | 3   | (76) |
| 15   | 480                 | 68.0   | 3   | 5 | LDH68SX5S   | М    | 195  | (89)  | 28 <sup>1</sup> /4             | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 15 <sup>3</sup> /4              | (400) | 19 <sup>1</sup> /2             | (495) | 16  | (406) | 17 <sup>7</sup> /8 | (454.0) | 3   | (76) |
| 18   | 240                 | 80.0   | 3   | 6 | LDH80SX3S   | М    | 205  | (93)  | 28 <sup>1</sup> /4             | (718)  | 201/4                          | (514)  | 18 <sup>3</sup> /4              | (476) | 22 <sup>1</sup> /2             | (572) | 19  | (483) | 20 <sup>7</sup> /8 | (530.2) | 3   | (76) |
| 18   | 480                 | 80.0   | 1   | 6 | LDH80SX11S  | М    | 205  | (93)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 201/4                          | (514)  | 18 <sup>3</sup> /4              | (476) | 22 <sup>1</sup> /2             | (572) | 19  | (483) | 20 <sup>7</sup> /8 | (530.2) | 3   | (76) |
| 18   | 480                 | 80.0   | 3   | 3 | LDH80SX5S   | М    | 205  | (93)  | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 18¾                             | (476) | 22 <sup>1</sup> /2             | (572) | 19  | (483) | 20 <sup>7</sup> /8 | (530.2) | 3   | (76) |
| 21   | 240                 | 95.0   | 3   | 7 | LDH95SX3S   | М    | 235  | (107) | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 21 <sup>3</sup> /4              | (552) | 25 <sup>1</sup> /2             | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480                 | 95.0   | 1   | 7 | LDH95SX11S  | М    | 235  | (107) | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> /4             | (514)  | 21 <sup>3</sup> /4              | (552) | 25 <sup>1</sup> /2             | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480                 | 95.0   | 3   | 7 | LDH95SX5S   | М    | 235  | (107) | 28 <sup>1</sup> / <sub>4</sub> | (718)  | 20 <sup>1</sup> / <sub>4</sub> | (514)  | 21 <sup>3</sup> /4              | (552) | 25 <sup>1</sup> /2             | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 240                 | 120.0  | 3   | 7 | LDH120SX3S  | М    | 260  | (118) | 33                             | (838)  | 25                             | (635)  | 21 <sup>3</sup> /4              | (552) | 25 <sup>1</sup> /2             | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480                 | 120.0  | 1   | 7 | LDH120SX11S | М    | 260  | (118) | 33                             | (838)  | 25                             | (635)  | 21 <sup>3</sup> /4              | (552) | 25 <sup>1</sup> /2             | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480                 | 120.0  | 3   | 7 | LDH120SX5S  | М    | 260  | (118) | 33                             | (838)  | 25                             | (635)  | 21 <sup>3</sup> /4              | (552) | 25 <sup>1</sup> /2             | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480                 | 160.0  | 3   | 7 | LDH160SX5S  | М    | 290  | (132) | 40 <sup>1</sup> / <sub>2</sub> | (1029) | 321/2                          | (826)  | 21 <sup>3</sup> /4              | (552) | 25 <sup>1</sup> /2             | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 21   | 480                 | 200.0  | 3   | 7 | LDH200SX5S  | М    | 310  | (141) | 49 <sup>1</sup> / <sub>2</sub> | (1257) | 41 <sup>1</sup> /2             | (1054) | 21 <sup>3</sup> /4              | (552) | 25 <sup>1</sup> /2             | (848) | 22  | (559) | 23 <sup>7</sup> /8 | (606.4) | 3   | (76) |
| 24   | 480                 | 225.0  | 3   | 8 | LDH225SX5S  | М    | 330  | (150) | 49 <sup>1</sup> / <sub>2</sub> | (1257) | 41 <sup>1</sup> /2             | (1054) | 2 <mark>4<sup>3</sup>/</mark> 4 | (629) | 28 <sup>1</sup> / <sub>2</sub> | (724) | 25  | (635) | 26 <sup>7</sup> /8 | (682.6) | 3   | (76) |

 $\bullet$   $\, M$  - Manufacturing lead times

Truck Shipment only

#### Notes:

• See Watt Density vs. Air Temperature/Velocity charts on page 393 to confirm suitability in the application.

■ WATLOW®

## **Duct Heaters**

## **D SERIES**

# **Application: High Temperature Air** 800°F (427°C)

- Removable alloy 840 WATROD elements
- Without thermostat
- General purpose enclosure
- Steel flange
- ① 6 and 12 element heaters have (1) 1 inch NPT conduit opening; 18, 24, 30 and 42 element heaters have (2) 1 inch NPT conduit openings; 36, 48, 54 and 60 element heaters have (2) 1 inch NPT and (2) 1<sup>1</sup>/<sub>4</sub> inch conduit openings
- 2 All flanges are 12 inches wide



(222 mm)

3½ in.

1/4 in. (6 mm) .7% in. (200 mm)

| # of |                      |        |                  | #    | Part    |      |      | Wt.  | "A" I              |       | "B" | Dim.  | "C"                           | Dim.  | "D"                           | Dim.  | "E" | Dim.  | "F"                | Dim.  | "G" [             |      |
|------|----------------------|--------|------------------|------|---------|------|------|------|--------------------|-------|-----|-------|-------------------------------|-------|-------------------------------|-------|-----|-------|--------------------|-------|-------------------|------|
|      | Volts                |        |                  | Circ | Number  | Del. | lbs. | (kg) | in.                | (mm)  | in. | (mm)  | in.                           | (mm)  | in.                           | (mm)  | in. | (mm)  | in.                | (mm)  | in. (r            | nm)  |
| 20 W | /in <sup>2</sup> (3. | 1 W/cn | 1 <sup>2</sup> ) |      |         |      |      |      |                    |       | 1   |       |                               |       |                               |       |     |       |                    |       |                   |      |
| 6    | 240                  | 6.0    | 1                | 1    | D6S10S  | М    | 50   | (23) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 2 <sup>3</sup> /4             | (70)  | 6 <sup>1</sup> /2             | (165) | 3   | (76)  | 5 <sup>3</sup> /4  | (146) | 2 <sup>1</sup> /2 | (64) |
| 6    | 240                  | 6.0    | 3                | 1    | D6S3S   | М    | 50   | (23) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 2 <sup>3</sup> /4             | (70)  | 6 <sup>1</sup> /2             | (165) | 3   | (76)  | 5 <sup>3</sup> /4  | (146) | 2 <sup>1</sup> /2 | (64) |
| 6    | 480                  | 6.0    | 1                | 1    | D6S11S  | М    | 50   | (23) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 23/4                          | (70)  | 6 <sup>1</sup> /2             | (165) | 3   | (76)  | 5 <sup>3</sup> /4  | (146) | 21/2              | (64) |
| 6    | 480                  | 6.0    | 3                | 1    | D6S5S   | М    | 50   | (23) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 2 <sup>3</sup> / <sub>4</sub> | (70)  | 6 <sup>1</sup> /2             | (165) | 3   | (76)  | 5 <sup>3</sup> /4  | (146) | 21/2              | (64) |
| 12   | 240                  | 12.0   | 1                | 1    | D12S10S | М    | 55   | (25) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 43/4                          | (121) | 8 <sup>1</sup> / <sub>2</sub> | (215) | 5   | (127) | 73/4               | (197) | 31/2              | (89) |
| 12   | 240                  | 12.0   | 3                | 1    | D12S3S  | М    | 55   | (25) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 43/4                          | (121) | 8 <sup>1</sup> / <sub>2</sub> | (215) | 5   | (127) | 73/4               | (197) | 31/2              | (89) |
| 12   | 480                  | 12.0   | 1                | 1    | D12S11S | М    | 55   | (25) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 43/4                          | (121) | 8 <sup>1</sup> / <sub>2</sub> | (215) | 5   | (127) | 73/4               | (197) | 31/2              | (89) |
| 12   | 480                  | 12.0   | 3                | 1    | D12S5S  | М    | 55   | (25) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 43/4                          | (121) | 8 <sup>1</sup> / <sub>2</sub> | (215) | 5   | (127) | 73/4               | (197) | 31/2              | (89) |
| 18   | 240                  | 18.0   | 1                | 2    | D18S10S | М    | 65   | (30) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 63/4                          | (171) | 10 <sup>1</sup> /2            | (267) | 7   | (178) | 93/4               | (248) | 3                 | (76) |
| 18   | 240                  | 18.0   | 3                | 1    | D18S3S  | М    | 65   | (30) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 63/4                          | (171) | 10 <sup>1</sup> /2            | (267) | 7   | (178) | 93/4               | (248) | 3                 | (76) |
| 18   | 480                  | 18.0   | 1                | 1    | D18S11S | М    | 65   | (30) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 63/4                          | (171) | 10 <sup>1</sup> /2            | (267) | 7   | (178) | 93/4               | (248) | 3                 | (76) |
| 18   | 480                  | 18.0   | 3                | 1    | D18S5S  | М    | 65   | (30) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 63/4                          | (171) | 10 <sup>1</sup> /2            | (267) | 7   | (178) | 93/4               | (248) | 3                 | (76) |
| 24   | 240                  | 24.0   | 1                | 2    | D24S10S | М    | 95   | (43) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 83/4                          | (222) | 12 <sup>1</sup> /2            | (318) | 9   | (229) | 11 <sup>3</sup> /4 | (298) | 23/4              | (70) |
| 24   | 240                  | 24.0   | 3                | 2    | D24S3S  | М    | 95   | (43) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 83/4                          | (222) | 12 <sup>1</sup> /2            | (318) | 9   | (229) | 11 <sup>3</sup> /4 | (298) | 23/4              | (70) |
| 24   | 480                  | 24.0   | 1                | 1    | D24S11S | М    | 95   | (43) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 83/4                          | (222) | 12 <sup>1</sup> /2            | (318) | 9   | (229) | 11 <sup>3</sup> /4 | (298) | 23/4              | (70) |
| 24   | 480                  | 24.0   | 3                | 1    | D24S5S  | М    | 95   | (43) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 83/4                          | (222) | 12 <sup>1</sup> /2            | (318) | 9   | (229) | 11 <sup>3</sup> /4 | (298) | 23/4              | (70) |
| 30   | 240                  | 30.0   | 3                | 2    | D30S3S  | М    | 120  | (55) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 10 <sup>3</sup> /4            | (273) | 14 <sup>1</sup> /2            | (368) | 11  | (279) | 13 <sup>3</sup> /4 | (349) | 31/4              | (83) |
| 30   | 480                  | 30.0   | 1                | 2    | D30S11S | М    | 120  | (55) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 10 <sup>3</sup> /4            | (273) | 14 <sup>1</sup> /2            | (368) | 11  | (279) | 13 <sup>3</sup> /4 | (349) | 31/4              | (83) |
| 30   | 480                  | 30.0   | 3                | 1    | D30S5S  | М    | 120  | (55) | 27 <sup>7</sup> /8 | (708) | 20  | (508) | 10 <sup>3</sup> /4            | (273) | 14 <sup>1</sup> /2            | (368) | 11  | (279) | 13 <sup>3</sup> /4 | (349) | 31/4              | (83) |

3/8 in. (10 mm) Diameter

**CONTINUED** 

**71**° (R°

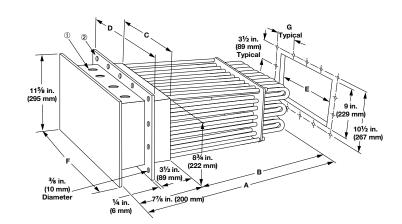
• M - Manufacturing lead times

Truck Shipment only

#### Notes

• See Watt Density vs. Air Temperature/Velocity charts on page 393 to confirm suitability in the application.

WATLOW<sup>®</sup> 399


## **Duct Heaters**

## **D SERIES**

# **71**®

# Application: High Temperature Air 800°F (427°C)

- Removable alloy 840 WATROD elements
- Without thermostat
- General purpose enclosure
- Steel flange
- ① 6 and 12 element heaters have (1) 1 inch NPT conduit opening; 18, 24, 30 and 42 element heaters have (2) 1 inch NPT conduit openings; 36, 48, 54, and 60 element heaters have (2) 1 inch NPT and (2) 11/4 inch conduit openings
- 2 All flanges are 12 inches wide

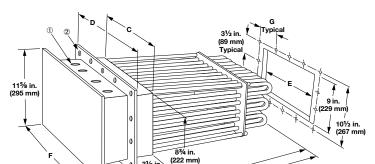


| # of | Volts | kW     | Ph | #<br>Circ | Part<br>Number | Del. | Ship<br>lbs. |       | "A" Dim.<br>in. (mm)       | "B"<br>in.                     | Dim.<br>(mm) | "C" Dim.<br>in. (mm)                 | "D" Dim.<br>in. (mm)                 | "E" Dim.<br>in. (mm) | "F" Dim.<br>in. (mm)                 | "G" Dim.<br>in. (mm)    |
|------|-------|--------|----|-----------|----------------|------|--------------|-------|----------------------------|--------------------------------|--------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|-------------------------|
|      |       | 1 W/cm |    | one       | Number         | Dei. | 103.         | (Kg)  | 111. (11111)               |                                | (11111)      | , iii. (iiiiii)                      | III. (IIIII)                         | iii. (iiiiii)        | III. (IIIII)                         | (11111)                 |
| 36   | 240   | 36.0   | 3  | 2         | D36S3S         | М    | 135          | (62)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 12 <sup>3</sup> /4 (324)             | 16 <sup>1</sup> / <sub>2</sub> (419) | 13 (330)             | 15 <sup>3</sup> / <sub>4</sub> (400) | 3 <sup>3</sup> /4 (95)  |
| 36   | 480   | 36.0   | 1  | 2         | D36S11S        | М    | 135          | (62)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 12 <sup>3</sup> /4 (324)             | 16 <sup>1</sup> /2 (419)             | 13 (330)             | 15 <sup>3</sup> /4 (400)             | 3 <sup>3</sup> /4 (95)  |
| 36   | 480   | 36.0   | 3  | 1         | D36S5S         | М    | 135          | (62)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 12 <sup>3</sup> /4 (324)             | 16 <sup>1</sup> /2 (419)             | 13 (330)             | 15 <sup>3</sup> /4 (400)             | 3 <sup>3</sup> /4 (95)  |
| 42   | 240   | 42.0   | 3  | 2         | D42S3S         | М    | 155          | (71)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 14 <sup>3</sup> /4 (375)             | 18 <sup>1</sup> / <sub>2</sub> (470) | 15 (381)             | 17 <sup>3</sup> /4 (451)             | 4 <sup>1</sup> /4 (108) |
| 42   | 480   | 42.0   | 1  | 2         | D42S11S        | М    | 155          | (71)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 14 <sup>3</sup> /4 (375)             | 18 <sup>1</sup> / <sub>2</sub> (470) | 15 (381)             | 17 <sup>3</sup> /4 (451)             | 4 <sup>1</sup> /4 (108) |
| 42   | 480   | 42.0   | 3  | 2         | D42S5S         | М    | 155          | (71)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 14 <sup>3</sup> /4 (375)             | 18 <sup>1</sup> / <sub>2</sub> (470) | 15 (381)             | 17 <sup>3</sup> /4 (451)             | 4 <sup>1</sup> /4 (108) |
| 48   | 240   | 48.0   | 3  | 4         | D48S3S         | М    | 195          | (89)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 16 <sup>3</sup> /4 (425)             | 20 <sup>1</sup> / <sub>2</sub> (521) | 17 (432)             | 19 <sup>3</sup> /4 (502)             | 4 <sup>3</sup> /4 (121) |
| 48   | 480   | 48.0   | 1  | 2         | D48S11S        | М    | 195          | (89)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 16 <sup>3</sup> /4 (425)             | 20 <sup>1</sup> / <sub>2</sub> (521) | 17 (432)             | 19 <sup>3</sup> /4 (502)             | 4 <sup>3</sup> /4 (121) |
| 48   | 480   | 48.0   | 3  | 2         | D48S5S         | М    | 195          | (89)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 16 <sup>3</sup> /4 (425)             | 20 <sup>1</sup> /2 (521)             | 17 (432)             | 19 <sup>3</sup> /4 (502)             | 4 <sup>3</sup> /4 (121) |
| 54   | 240   | 54.0   | 3  | 3         | D54S3S         | М    | 205          | (93)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 18 <sup>3</sup> /4 (476)             | 22 <sup>1</sup> /2 (572)             | 19 (483)             | 21 <sup>3</sup> /4 (552)             | 5 <sup>1</sup> /4 (133) |
| 54   | 480   | 54.0   | 1  | 3         | D54S11S        | М    | 205          | (93)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 18 <sup>3</sup> /4 (476)             | 22 <sup>1</sup> /2 (572)             | 19 (483)             | 21 <sup>3</sup> /4 (552)             | 5 <sup>1</sup> /4 (133) |
| 54   | 480   | 54.0   | 3  | 2         | D54S5S         | М    | 205          | (93)  | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 18 <sup>3</sup> /4 (476)             | 22 <sup>1</sup> /2 (572)             | 19 (483)             | 21 <sup>3</sup> /4 (552)             | 5 <sup>1</sup> /4 (133) |
| 60   | 240   | 60.0   | 3  | 4         | D60S3S         | М    | 235          | (107) | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 203/4 (527)                          | 24 <sup>1</sup> / <sub>2</sub> (622) | 21 (533)             | 23 <sup>3</sup> /4 (603)             | 5 <sup>3</sup> /4 (146) |
| 60   | 480   | 60.0   | 1  | 4         | D60S11S        | М    | 235          | (107) | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 203/4 (527)                          | 24 <sup>1</sup> / <sub>2</sub> (622) | 21 (533)             | 23 <sup>3</sup> /4 (603)             | 5 <sup>3</sup> /4 (146) |
| 60   | 480   | 60.0   | 3  | 2         | D60S5S         | М    | 235          | (107) | 27 <sup>7</sup> /8 (708.0) | 20                             | (508)        | 203/4 (527)                          | 24 <sup>1</sup> / <sub>2</sub> (622) | 21 (533)             | 23 <sup>3</sup> /4 (603)             | 5 <sup>3</sup> /4 (146) |
| 60   | 240   | 75.0   | 3  | 4         | D75S3S         | М    | 260          | (118) | 32 <sup>7</sup> /8 (835.0) | 25                             | (635)        | 20 <sup>3</sup> /4 (527)             | 24 <sup>1</sup> /2 (622)             | 21 (533)             | 23 <sup>3</sup> /4 (603)             | 5 <sup>3</sup> /4 (146) |
| 60   | 480   | 75.0   | 1  | 4         | D75S11S        | М    | 260          | (118) | 32 <sup>7</sup> /8 (835.0) | 25                             | (635)        | 20 <sup>3</sup> /4 (527)             | 24 <sup>1</sup> /2 (622)             | 21 (533)             | 23 <sup>3</sup> /4 (603)             | 5 <sup>3</sup> /4 (146) |
| 60   | 480   | 75.0   | 3  | 2         | D75S5S         | М    | 260          | (118) | 32 <sup>7</sup> /8 (835.0) | 25                             | (635)        | 20 <sup>3</sup> /4 (527)             | 24 <sup>1</sup> /2 (622)             | 21 (533)             | 23 <sup>3</sup> /4 (603)             | 5 <sup>3</sup> /4 (146) |
| 60   | 480   | 100.0  | 3  | 4         | D100S5S        | М    | 290          | (132) | 40 <sup>3</sup> /8(1025.5) | 32 <sup>1</sup> / <sub>2</sub> | (826)        | 20 <sup>3</sup> /4 (527)             | 24 <sup>1</sup> / <sub>2</sub> (622) | 21 (533)             | 23 <sup>3</sup> /4 (603)             | 5 <sup>3</sup> /4 (146) |
| 60   | 480   | 125.0  | 3  | 4         | D125S5S        | М    | 310          | (141) | 49 <sup>3</sup> /8(1254.1) | 41 <sup>1</sup> /2             | (1054)       | 20 <sup>3</sup> / <sub>4</sub> (527) | 24 <sup>1</sup> / <sub>2</sub> (622) | 21 (533)             | 23 <sup>3</sup> /4 (603)             | 5 <sup>3</sup> /4 (146) |

- M Manufacturing lead times
- Truck Shipment only

#### Notes:

• See Watt Density vs. Air Temperature/Velocity charts on page 393 to confirm suitability in the application.


400 WATLOW<sup>®</sup>

## **Duct Heaters**

## **D SERIES**

## **Application: Medium Temperature Air** 750°F (399°C)

- Removable alloy 840 WATROD elements
- Without thermostat
- General purpose enclosure
- Steel flange
- ① 6 and 12 element heaters have (1) 1 inch NPT conduit opening; 18, 24, 30 and 42 element heaters have (2) 1 inch NPT conduit openings; 36, 48, 54, and 60 element heaters have (2) 1 inch NPT and (2) 11/4 inch conduit openings
- ② All flanges are 12 inches wide



31/2 in.

.7% in. (200 mm)

| # of<br>Elem. | Volts | kW   | Ph | #<br>Circ | Part<br>Number | Del. |     | Wt.<br>(kg) | "A" Dim.<br>in. (mm)     |    | Dim.<br>(mm) | 1.                            | Dim.<br>(mm) | I                             | Dim.<br>(mm) | l . | Dim.<br>(mm) | "F"<br>in.         | Dim.<br>(mm) | "G" I<br>in. (ı |      |
|---------------|-------|------|----|-----------|----------------|------|-----|-------------|--------------------------|----|--------------|-------------------------------|--------------|-------------------------------|--------------|-----|--------------|--------------------|--------------|-----------------|------|
| 30 W/         |       |      |    |           |                |      |     | (9)         | (,                       |    | ()           |                               | ()           |                               | ()           |     | ()           |                    | ()           |                 | ,    |
| 6             | 240   | 9.0  | 1  | 1         | D6SX10S        | М    | 50  | (23)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 23/4                          | (70)         | 6 <sup>1</sup> / <sub>2</sub> | (165)        | 3   | (76)         | 5 <sup>3</sup> /4  | (146)        | 21/2            | (64) |
| 6             | 240   | 9.0  | 3  | 1         | D6SX3S         | М    | 50  | (23)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 2 <sup>3</sup> /4             | (70)         | 6 <sup>1</sup> /2             | (165)        | 3   | (76)         | 5 <sup>3</sup> /4  | (146)        | 21/2            | (64) |
| 6             | 480   | 9.0  | 1  | 1         | D6SX11S        | М    | 50  | (23)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 2 <sup>3</sup> /4             | (70)         | 6 <sup>1</sup> /2             | (165)        | 3   | (76)         | 5 <sup>3</sup> /4  | (146)        | $2^{1/2}$       | (64) |
| 6             | 480   | 9.0  | 3  | 1         | D6SX5S         | М    | 50  | (23)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 2 <sup>3</sup> /4             | (70)         | 6 <sup>1</sup> /2             | (165)        | 3   | (76)         | 5 <sup>3</sup> /4  | (146)        | $2^{1/2}$       | (64) |
| 12            | 240   | 18.0 | 1  | 2         | D12SX10S       | М    | 55  | (25)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 4 <sup>3</sup> / <sub>4</sub> | (121)        | 8 <sup>1</sup> / <sub>2</sub> | (215)        | 5   | (127)        | 73/4               | (197)        | 31/2            | (89) |
| 12            | 240   | 18.0 | 3  | 1         | D12SX3S        | М    | 55  | (25)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 4 <sup>3</sup> / <sub>4</sub> | (121)        | 8 <sup>1</sup> /2             | (215)        | 5   | (127)        | 73/4               | (197)        | 31/2            | (89) |
| 12            | 480   | 18.0 | 1  | 1         | D12SX11S       | М    | 55  | (25)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 4 <sup>3</sup> / <sub>4</sub> | (121)        | 8 <sup>1</sup> /2             | (215)        | 5   | (127)        | 73/4               | (197)        | 31/2            | (89) |
| 12            | 480   | 18.0 | 3  | 1         | D12SX5S        | М    | 55  | (25)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 4 <sup>3</sup> / <sub>4</sub> | (121)        | 8 <sup>1</sup> / <sub>2</sub> | (215)        | 5   | (127)        | 73/4               | (197)        | 31/2            | (89) |
| 18            | 240   | 27.0 | 1  | 3         | D18SX10S       | М    | 65  | (30)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 6 <sup>3</sup> /4             | (171)        | 10 <sup>1</sup> /2            | (267)        | 7   | (178)        | 93/4               | (248)        | 3               | (76) |
| 18            | 240   | 27.0 | 3  | 2         | D18SX3S        | М    | 65  | (30)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 6 <sup>3</sup> /4             | (171)        | 10 <sup>1</sup> /2            | (267)        | 7   | (178)        | 9 <sup>3</sup> /4  | (248)        | 3               | (76) |
| 18            | 480   | 27.0 | 1  | 2         | D18SX11S       | М    | 65  | (30)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 6 <sup>3</sup> /4             | (171)        | 10 <sup>1</sup> /2            | (267)        | 7   | (178)        | 9 <sup>3</sup> /4  | (248)        | 3               | (76) |
| 18            | 480   | 27.0 | 3  | 1         | D18SX5S        | М    | 65  | (30)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 6 <sup>3</sup> /4             | (171)        | 10 <sup>1</sup> /2            | (267)        | 7   | (178)        | 9 <sup>3</sup> /4  | (248)        | 3               | (76) |
| 24            | 240   | 36.0 | 1  | 4         | D24SX10S       | М    | 95  | (43)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 83/4                          | (222)        | 12 <sup>1</sup> /2            | (318)        | 9   | (229)        | 11 <sup>3</sup> /4 | (298)        | $2^{3}/4$       | (70) |
| 24            | 240   | 36.0 | 3  | 2         | D24SX3S        | М    | 95  | (43)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 83/4                          | (222)        | 12 <sup>1</sup> /2            | (318)        | 9   | (229)        | 11 <sup>3</sup> /4 | (298)        | 23/4            | (70) |
| 24            | 480   | 36.0 | 1  | 2         | D24SX11S       | М    | 95  | (43)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 83/4                          | (222)        | 12 <sup>1</sup> /2            | (318)        | 9   | (229)        | 11 <sup>3</sup> /4 | (298)        | $2^{3}/4$       | (70) |
| 24            | 480   | 36.0 | 3  | 1         | D24SX5S        | М    | 95  | (43)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 83/4                          | (222)        | 12 <sup>1</sup> /2            | (318)        | 9   | (229)        | 11 <sup>3</sup> /4 | (298)        | $2^{3}/4$       | (70) |
| 30            | 240   | 45.0 | 3  | 5         | D30SX3S        | М    | 120 | (55)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 10 <sup>3</sup> /4            | (273)        | 14 <sup>1</sup> /2            | (368)        | 11  | (279)        | 13 <sup>3</sup> /4 | (349)        | 31/4            | (83) |
| 30            | 480   | 45.0 | 1  | 2         | D30SX11S       | М    | 120 | (55)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 10 <sup>3</sup> /4            | (273)        | 14 <sup>1</sup> /2            | (368)        | 11  | (279)        | 13 <sup>3</sup> /4 | (349)        | 31/4            | (83) |
| 30            | 480   | 45.0 | 3  | 2         | D30SX5S        | М    | 120 | (55)        | 27 <sup>7</sup> /8 (708) | 20 | (508)        | 10 <sup>3</sup> /4            | (273)        | 14 <sup>1</sup> /2            | (368)        | 11  | (279)        | 13 <sup>3</sup> /4 | (349)        | 31/4            | (83) |
|               |       |      |    |           |                |      |     |             |                          |    |              |                               |              |                               |              |     |              |                    | C            | ONTIN           | UED  |

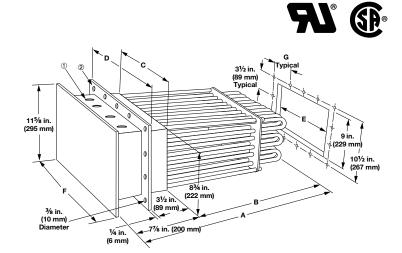
3/8 in. (10 mm) Diameter

• M - Manufacturing lead times

Truck Shipment only

• See Watt Density vs. Air Temperature/Velocity charts on page 393 to confirm suitability in the application.






## **Duct Heaters**

## **D SERIES**

# Application: Medium Temperature Air 750°F (399°C)

- Removable alloy 840 WATROD elements
- Without thermostat
- General purpose enclosure
- Steel flange
- ① 6 and 12 element heaters have (1) 1 inch NPT conduit opening; 18, 24, 30 and 42 element heaters have (2) 1 inch NPT conduit openings; 36, 48, 54, and 60 element heaters have (2) 1 inch NPT and (2) 11/4 inch conduit openings
- ② All flanges are 12 inches. wide



| # of  |          |       |     | #    | Part     |      | Shi  | o Wt. | "A"                | Dim.     | "B"                | Dim.   | "C"                | Dim.  | "D"                            | Dim.  | "E" | Dim.  | "F"                | Dim.  | "G" Di                        | im.  |
|-------|----------|-------|-----|------|----------|------|------|-------|--------------------|----------|--------------------|--------|--------------------|-------|--------------------------------|-------|-----|-------|--------------------|-------|-------------------------------|------|
| Elem. | Volts    | kW    | Ph  | Circ | Number   | Del. | lbs. | (kg)  | in.                | (mm)     | in.                | (mm)   | in.                | (mm)  | in.                            | (mm)  | in. | (mm)  | in.                | (mm)  | in. (m                        | m)   |
| 30 W  | 'in² (4. | 7 W/c | m²) |      |          |      |      |       |                    |          |                    |        |                    |       |                                |       |     |       |                    |       |                               |      |
| 36    | 240      | 54.0  | 3   | 3    | D36SX3S  | М    | 135  | (62)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 12 <sup>3</sup> /4 | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 15 <sup>3</sup> /4 | (400) | 3 <sup>3</sup> /4             | (95) |
| 36    | 480      | 54.0  | 1   | 3    | D36SX11S | М    | 135  | (62)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 12 <sup>3</sup> /4 | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 15 <sup>3</sup> /4 | (400) | 3 <sup>3</sup> / <sub>4</sub> | (95) |
| 36    | 480      | 54.0  | 3   | 2    | D36SX5S  | М    | 135  | (62)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 12 <sup>3</sup> /4 | (324) | 16 <sup>1</sup> /2             | (419) | 13  | (330) | 15 <sup>3</sup> /4 | (400) | $3^{3}/_{4}$                  | (95) |
| 42    | 240      | 63.0  | 3   | 7    | D42SX3S  | М    | 155  | (71)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 14 <sup>3</sup> /4 | (375) | 18 <sup>1</sup> /2             | (470) | 15  | (381) | 17 <sup>3</sup> /4 | (451) | 4 <sup>1</sup> /4 (1          | 108) |
| 42    | 480      | 63.0  | 1   | 3    | D42SX11S | М    | 155  | (71)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 14 <sup>3</sup> /4 | (375) | 18 <sup>1</sup> /2             | (470) | 15  | (381) | 17 <sup>3</sup> /4 | (451) | 4 <sup>1</sup> /4 (1          | 108) |
| 42    | 480      | 63.0  | 3   | 2    | D42SX5S  | М    | 155  | (71)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 14 <sup>3</sup> /4 | (375) | 18 <sup>1</sup> /2             | (470) | 15  | (381) | 17 <sup>3</sup> /4 | (451) | 4 <sup>1</sup> /4 (1          | 108) |
| 48    | 240      | 72.0  | 3   | 4    | D48SX3S  | М    | 195  | (89)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 16 <sup>3</sup> /4 | (425) | 20 <sup>1</sup> /2             | (521) | 17  | (432) | 19 <sup>3</sup> /4 | (502) | 4 <sup>3</sup> /4 (1          | 121) |
| 48    | 480      | 72.0  | 1   | 4    | D48SX11S | М    | 195  | (89)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 16 <sup>3</sup> /4 | (425) | 20 <sup>1</sup> /2             | (521) | 17  | (432) | 19 <sup>3</sup> /4 | (502) | 4 <sup>3</sup> /4 (1          | 121) |
| 48    | 480      | 72.0  | 3   | 2    | D48SX5S  | М    | 195  | (89)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 16 <sup>3</sup> /4 | (425) | 20 <sup>1</sup> /2             | (521) | 17  | (432) | 19 <sup>3</sup> /4 | (502) | 4 <sup>3</sup> /4 (1          | 121) |
| 54    | 240      | 81.0  | 3   | 6    | D54SX3S  | М    | 205  | (93)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 18 <sup>3</sup> /4 | (476) | 22 <sup>1</sup> /2             | (572) | 19  | (483) | 21 <sup>3</sup> /4 | (552) | 5 <sup>1</sup> /4 (1          | 133) |
| 54    | 480      | 81.0  | 1   | 6    | D54SX11S | М    | 205  | (93)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 18 <sup>3</sup> /4 | (476) | 22 <sup>1</sup> /2             | (572) | 19  | (483) | 21 <sup>3</sup> /4 | (552) | 5 <sup>1</sup> /4 (1          | 133) |
| 54    | 480      | 81.0  | 3   | 3    | D54SX5S  | М    | 205  | (93)  | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 18 <sup>3</sup> /4 | (476) | 22 <sup>1</sup> /2             | (572) | 19  | (483) | 21 <sup>3</sup> /4 | (552) | 5 <sup>1</sup> /4 (1          | 133) |
| 60    | 240      | 90.0  | 3   | 5    | D60SX3S  | М    | 235  | (107) | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 20 <sup>3</sup> /4 | (527) | 24 <sup>1</sup> / <sub>2</sub> | (622) | 21  | (533) | 23 <sup>3</sup> /4 | (603) | 5 <sup>3</sup> /4 (1          | 146) |
| 60    | 480      | 90.0  | 1   | 4    | D60SX11S | М    | 235  | (107) | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 20 <sup>3</sup> /4 | (527) | 24 <sup>1</sup> / <sub>2</sub> | (622) | 21  | (533) | 23 <sup>3</sup> /4 | (603) | 5 <sup>3</sup> /4 (1          | 146) |
| 60    | 480      | 90.0  | 3   | 4    | D60SX5S  | М    | 235  | (107) | 27 <sup>7</sup> /8 | (708.0)  | 20                 | (508)  | 20 <sup>3</sup> /4 | (527) | 24 <sup>1</sup> / <sub>2</sub> | (622) | 21  | (533) | 23 <sup>3</sup> /4 | (603) | 5 <sup>3</sup> /4 (1          | 146) |
| 60    | 240      | 115.0 | 3   | 10   | D75SX3S  | М    | 260  | (118) | 32 <sup>7</sup> /8 | (835.0)  | 25                 | (635)  | 20 <sup>3</sup> /4 | (527) | 24 <sup>1</sup> / <sub>2</sub> | (622) | 21  | (533) | 23 <sup>3</sup> /4 | (603) | 5 <sup>3</sup> /4 (1          | 146) |
| 60    | 480      | 115.0 | 1   | 5    | D75SX11S | М    | 260  | (118) | 32 <sup>7</sup> /8 | (835.0)  | 25                 | (635)  | 20 <sup>3</sup> /4 | (527) | 24 <sup>1</sup> / <sub>2</sub> | (622) | 21  | (533) | 23 <sup>3</sup> /4 | (603) | 5 <sup>3</sup> /4 (1          | 146) |
| 60    | 480      | 115.0 | 3   | 4    | D75SX5S  | М    | 260  | (118) | 32 <sup>7</sup> /8 | (835.0)  | 25                 | (635)  | 20 <sup>3</sup> /4 | (527) | 241/2                          | (622) | 21  | (533) | 23 <sup>3</sup> /4 | (603) | 5 <sup>3</sup> /4 (1          | 146) |
| 60    | 480      | 150.0 | 3   | 4    | D100SX5S | М    | 290  | (132) | 40 <sup>3</sup> /8 | (1025.5) | 321/2              | (826)  | 20 <sup>3</sup> /4 | (527) | 241/2                          | (622) | 21  | (533) | 23 <sup>3</sup> /4 | (603) | 5 <sup>3</sup> /4 (1          | 146) |
| 60    | 480      | 190.0 | 3   | 5    | D125SX5S | М    | 310  | (141) | 49 <sup>3</sup> /8 | (1254.1) | 41 <sup>1</sup> /2 | (1054) | 20 <sup>3</sup> /4 | (527) | 24 <sup>1</sup> / <sub>2</sub> | (622) | 21  | (533) | 23 <sup>3</sup> /4 | (603) | 5 <sup>3</sup> /4 (1          | 146) |

• M - Manufacturing lead times

Truck Shipment only

#### Notes:

• See Watt Density vs. Air Temperature/Velocity charts on page 393 to confirm suitability in the application.

## **Duct Heaters**

## LDH SERIES and D SERIES

## **Replacement Elements**

Replaceable heating elements provide easy field service and reduce downtime. Element change-out is made simple by a single screw clamp. To order replacement elements, specify the **replacement element part number** (from the table) that corresponds to the original Watlow duct heater part number. Then, specify **quantity.** 

## **Replacement Elements**

| Original<br>Duct Heater                       |       | cement<br>ment | Dim                | A<br>ension | Replacement<br>Element |          | Est. Ne | t Wt. |
|-----------------------------------------------|-------|----------------|--------------------|-------------|------------------------|----------|---------|-------|
| Part Numbers                                  | Volts | Watts          | in.                | (mm)        | Part Number            | Delivery | lbs     | (kg)  |
| 20 W/in <sup>2</sup> (3.1 W/cm <sup>2</sup> ) |       |                |                    |             |                        |          |         |       |
| D6S3 to D60S3                                 | 240   | 1000           | 27 <sup>7</sup> /8 | (708.0)     | D6240                  | М        | 1.0     | (0.5) |
| D6S5 to D60S5                                 | 480   | 1000           | 27 <sup>7</sup> /8 | (708.0)     | D6480                  | М        | 1.0     | (0.5) |
| D75S3                                         | 240   | 1250           | 32 <sup>7</sup> /8 | (835.0)     | D75240                 | М        | 1.0     | (0.5) |
| D75S5                                         | 480   | 1250           | 32 <sup>7</sup> /8 | (835.0)     | D75480                 | М        | 1.0     | (0.5) |
| D100S5                                        | 480   | 1667           | 40 <sup>3</sup> /8 | (1025.5)    | D100480                | М        | 1.4     | (0.7) |
| D125S5                                        | 480   | 2083           | 49 <sup>3</sup> /8 | (1254.1)    | D125480                | М        | 1.7     | (0.8) |
| 30 W/in <sup>2</sup> (4.7 W/cm <sup>2</sup> ) |       |                |                    |             |                        |          |         |       |
| D6SX3 to D60SX3                               | 240   | 1500           | 27 <sup>7</sup> /8 | (708.0)     | D6X240                 | М        | 1.0     | (0.5) |
| D6SX5 to D60SX5                               | 480   | 1500           | 27 <sup>7</sup> /8 | (708.0)     | D6X480                 | М        | 1.0     | (0.5) |
| D75SX3                                        | 240   | 1917           | 32 <sup>7</sup> /8 | (835.0)     | D75X240                | М        | 1.0     | (0.5) |
| D75SX5                                        | 480   | 1917           | 32 <sup>7</sup> /8 | (835.0)     | D75X480                | М        | 1.0     | (0.5) |
| D100SX5                                       | 480   | 2500           | 40 <sup>3</sup> /8 | (1025.5)    | D100X480               | М        | 1.4     | (0.7) |
| D125SX5                                       | 480   | 3167           | 49 <sup>3</sup> /8 | (1254.1)    | D125X480               | М        | 1.7     | (0.8) |

<sup>•</sup> M - Manufacturing lead times

**WATLOW**<sup>®</sup> 403

## **Duct Heaters**

## LDH SERIES and D SERIES

#### **Part Number**

Stock Duct
Part Number

Optional
Terminal
Enclosures

Optional
Process
Limit
Sensors
Sensors

#### **Stock Duct Part Number**

**Note:** Catalog part numbers include optional enclosures. To order optional enclosures or sensors, substitute the appropriate suffix.

|     | Optional Terminal Enclosures                                                                                                      |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| S = | General purpose enclosure                                                                                                         |  |  |  |  |  |  |  |
| W=  | W= Moisture resistant enclosure                                                                                                   |  |  |  |  |  |  |  |
|     | W =   Moisture resistant enclosure  Note: Catalog listing is a general purpose enclosure. Substitute enclosure options are noted. |  |  |  |  |  |  |  |

|      | Optional Process Sensors                  |
|------|-------------------------------------------|
| PJ = | Type J process thermocouple in thermowell |
| PK=  | Type K process thermocouple in thermowell |

|     | Sheath Limit Sensors           |
|-----|--------------------------------|
| HJ= | Type J high-limit thermocouple |
| HK= | Type K high-limit thermocouple |

Example Part Number: D6SX10 S J HJ

## **Duct Heaters**

## **MDH SERIES**

Watlow has developed a line of process air heaters offering improved performance and increased versatility in medium to low temperature applications.

The duct heaters are modular and consist of two parts. The first is a 6 kilowatt heater available in either 240 or 480 volts, single- or three-phase.

The second part of the heater consists of the electrical housing protecting each module's termination area and a main flange that bolts into the user's ductwork. The heater modules are installed in the housing and main flange via rectangular slots in the main flange. The range of modules that can be accommodated in various duct heater assemblies, range from 1-10 modules. A range of 6 to 60 kilowatts, in 6 kilowatt increments is achieved.

The new design of the modular duct heater offers increased reliability. The individual modules are removable through the housing of the assembly, which eliminates the need to pull the complete heater from the ductwork. This reduces downtime and costs because the heating elements can be replaced individually.

Performance improvements include quicker response time and reduced infiltration from the air stream being heated into the electrical enclosure.

#### **Features and Benefits**

#### Individual modules removable through housing

• Reduces downtime for replacement of module

#### Smaller diameter elements (0.315 inch)

 Results in a 25 percent lower energy usage on initial heat-up

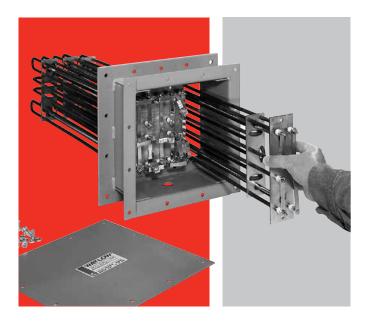
# 27 percent reduction in heat-up time as compared to traditional 0.430 inch diameter duct heater elements

Results in faster response time

## 31 percent lighter weight than traditional tubular duct heaters

Reduces shipping costs and increases worker safety

## Greater free cross sectional area


Results in lower pressure drop

## Improved seal between element and electrical housing

• Results in lower electrical housing temperature

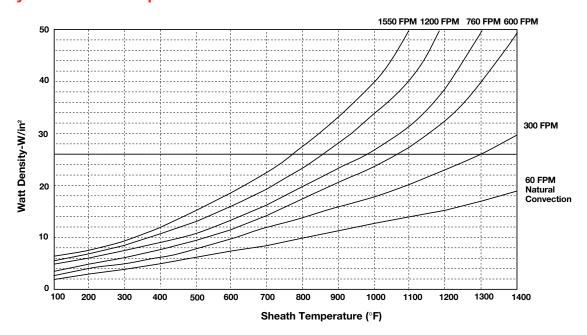
#### Flexible module wiring

Allows user to sequentially stage modules



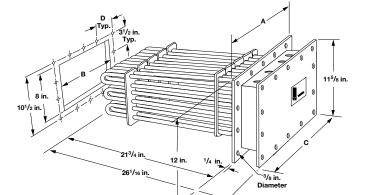

## **Typical Applications**

- Low temperature ovens
- Parts drying
- Semiconductor clean room environmental heating
- Plastic curing
- Load banks
- Heated air knives
- Food dehydration
- · Heat shrink tunnels


## **Duct Heaters**

## **MDH SERIES**

## **Velocity vs. Process Temperature**




## **Watt Density vs. Sheath Temperature**



## **Duct Heaters**

## **MDH SERIES**





Application: Air Heating - Maximum outlet temperature - 750°F (399°C)

| Watt<br>Density   |    |       |       | No. of | No. of  | Est.<br>Shipping Wt. |      | Part     |       | Dimen<br>ir |       |      |
|-------------------|----|-------|-------|--------|---------|----------------------|------|----------|-------|-------------|-------|------|
| W/in <sup>2</sup> | kW | Volts | Phase |        | Modules | lbs                  | Del. | Number   | Α     | В "         | . с   | D    |
| 26                | 6  | 240   | 1     | 1      | 1       | 35                   | М    | MDH6SI0  | 6.50  | 2.50        | 5.75  | 2.50 |
| 26                | 6  | 240   | 3     | 1      | 1       | 35                   | М    | MDH6S3   | 6.50  | 2.50        | 5.75  | 2.50 |
| 26                | 6  | 480   | 1     | 1      | 1       | 35                   | М    | MDH6S11  | 6.50  | 2.50        | 5.75  | 2.50 |
| 26                | 6  | 480   | 3     | 1      | 1       | 35                   | М    | MDH6S5   | 6.50  | 2.50        | 5.75  | 2.50 |
| 26                | 12 | 240   | 1     | 2      | 2       | 39                   | М    | MDH12SI0 | 8.50  | 4.75        | 7.75  | 3.50 |
| 26                | 12 | 240   | 3     | 1      | 2       | 39                   | М    | MDH12S3  | 8.50  | 4.75        | 7.75  | 3.50 |
| 26                | 12 | 480   | 1     | 1      | 2       | 39                   | М    | MDH12S11 | 8.50  | 4.75        | 7.75  | 3.50 |
| 26                | 12 | 480   | 3     | 1      | 2       | 39                   | М    | MDH12S5  | 8.50  | 4.75        | 7.75  | 3.50 |
| 26                | 18 | 240   | 1     | 3      | 3       | 46                   | М    | MDH18SI0 | 10.50 | 7.00        | 9.75  | 3.00 |
| 26                | 18 | 240   | 3     | 1      | 3       | 46                   | М    | MDH18S3  | 10.50 | 7.00        | 9.75  | 3.00 |
| 26                | 18 | 480   | 1     | 1      | 3       | 46                   | М    | MDH18S11 | 10.50 | 7.00        | 9.75  | 3.00 |
| 26                | 18 | 480   | 3     | 1      | 3       | 46                   | М    | MDH18S5  | 10.50 | 7.00        | 9.75  | 3.00 |
| 26                | 24 | 240   | 1     | 4      | 4       | 67                   | М    | MDH24S10 | 12.50 | 9.25        | 11.75 | 2.75 |
| 26                | 24 | 240   | 3     | 2      | 4       | 67                   | М    | MDH24S3  | 12.50 | 9.25        | 11.75 | 2.75 |
| 26                | 24 | 480   | 1     | 2      | 4       | 67                   | М    | MDH24S11 | 12.50 | 9.25        | 11.75 | 2.75 |
| 26                | 24 | 480   | 3     | 1      | 4       | 67                   | М    | MDH24S5  | 12.50 | 9.25        | 11.75 | 2.75 |
| 26                | 30 | 240   | 3     | 2      | 5       | 84                   | М    | MDH30S3  | 15.75 | 11.50       | 15.00 | 3.56 |
| 26                | 30 | 480   | 1     | 2      | 5       | 84                   | М    | MDH30S11 | 15.75 | 11.50       | 15.00 | 3.56 |
| 26                | 30 | 480   | 3     | 1      | 5       | 84                   | М    | MDH30S5  | 15.75 | 11.50       | 15.00 | 3.56 |
| 26                | 36 | 240   | 3     | 2      | 6       | 95                   | М    | MDH36S3  | 18.00 | 13.75       | 17.25 | 4.13 |
| 26                | 36 | 480   | 1     | 2      | 6       | 95                   | М    | MDH36S11 | 18.00 | 13.75       | 17.25 | 4.13 |
| 26                | 36 | 480   | 3     | 1      | 6       | 95                   | М    | MDH36S5  | 18.00 | 13.75       | 17.25 | 4.13 |
| 26                | 42 | 240   | 3     | 3      | 7       | 109                  | М    | MDH42S3  | 20.25 | 16.00       | 19.50 | 4.69 |
| 26                | 42 | 480   | 1     | 3      | 7       | 109                  | М    | MDH42S11 | 20.25 | 16.00       | 19.50 | 4.69 |
| 26                | 42 | 480   | 3     | 2      | 7       | 109                  | М    | MDH42S5  | 20.25 | 16.00       | 19.50 | 4.69 |
| 26                | 48 | 240   | 3     | 4      | 8       | 137                  | М    | MDH48S3  | 22.50 | 18.25       | 21.75 | 5.25 |
| 26                | 48 | 480   | 1     | 3      | 8       | 137                  | М    | MDH48S11 | 22.50 | 18.25       | 21.75 | 5.25 |
| 26                | 48 | 480   | 3     | 2      | 8       | 137                  | М    | MDH48S5  | 22.50 | 18.25       | 21.75 | 5.25 |
| 26                | 54 | 240   | 3     | 3      | 9       | 144                  | М    | MDH54S3  | 24.75 | 20.50       | 24.00 | 5.81 |
| 26                | 54 | 480   | 1     | 3      | 9       | 144                  | М    | MDH54S11 | 24.75 | 20.50       | 24.00 | 5.81 |
| 26                | 54 | 480   | 3     | 2      | 9       | 144                  | М    | MDH54S5  | 24.75 | 20.50       | 24.00 | 5.81 |
| 26                | 60 | 240   | 3     | 4      | 10      | 165                  | М    | MDH60S3  | 27.00 | 22.75       | 26.25 | 6.38 |
| 26                | 60 | 480   | 1     | 4      | 10      | 165                  | М    | MDH6OS11 | 27.00 | 22.75       | 26.25 | 6.38 |
| 26                | 60 | 480   | 3     | 2      | 10      | 165                  | M    | MDH60S5  | 27.00 | 22.75       | 26.25 | 6.38 |

<sup>•</sup> M - Manufacturing lead times

Truck Shipment only

Options include individual modules with optional general purpose housing, high-temperature thermocouple kit and blank flange modules.

Modular duct heaters with 1 and 2 modules have conduit openings for one, 1 inch NPT fitting.

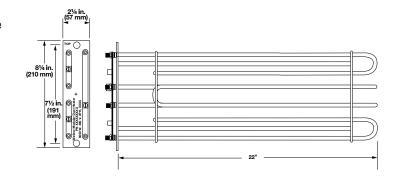
Modular duct heaters with  $\bf 3, 4, 5,$  and  $\bf 7$  modules have conduit openings for  $\bf two$ , 1 inch NPT fittings.

Modular duct heaters with 6, 8, 9, and 10 modules have conduit openings for two,  $1^{1}/4$  inch NPT and two, 1 inch NPT fittings.

WATLOW® \_\_\_\_\_\_ 407

## **Duct Heaters**

## **MDH SERIES**


## **Individual Module Dimensions**

## **Specifications**

- Module rating 240 or 480VAC, 6kW, three-phase or one-phase
- Watt density 26 W/in<sup>2</sup>
- Elements 0.315 inch dia. alloy 840 elements
- High-limit thermocouple installed by drilling premarked hole in flange
- 6-60kW range when mounted in duct heater assembly



- Maximum sheath temperature = 1200°F (649°C)
- Maximum outlet temperature = 750°F (399°C)



## **Options**

## **Terminal Enclosures**

Terminal enclosures are available in general purpose and moisture resistant configurations.

## **High-Limit Thermocouples**

High-limit thermocouples can be supplied on specified modules or shipped as a kit. Available thermocouples are Types J and K.

## **Blank Module Covers**

Module covers are available for covering blank slots on the main flange. This allows for adding heater module at a later time to allow higher wattage outputs.

| Watlow<br>Part Number | Description        |
|-----------------------|--------------------|
| Replacement Mod       | ules               |
| M63                   | 6kW, 240V, 3 phase |
| M610                  | 6kW, 240V, 1 phase |
| M65                   | 6kW, 480V, 3 phase |
| M611                  | 6kW, 480V, 1 phase |
| High Limit Thermo     | couple Kits        |
| MTCJ                  | Type J (0-1000°F)  |

| IVITOJ             | Type 3 (0-1000 F) |
|--------------------|-------------------|
| MTCK               | Type K (0-2000°F) |
| Blank Module Cover | s                 |

| Blank Module Covers |                            |  |  |  |  |  |  |
|---------------------|----------------------------|--|--|--|--|--|--|
| MBLK                | Cover slots in main flange |  |  |  |  |  |  |

408 WATLOW<sup>®</sup>

## **Finned Heaters**

## 375 Finned Strip Heaters

Watlow's 375 finned strip heater is constructed of highly-compacted magnesium oxide (MgO) based insulation, which conducts heat efficiently from the nickel chromium element wire to the sheath. Two-inch wide (51 mm) nickel plated fins are attached to maximize surface contact allowing heat to transfer into the air faster. Lower sheath temperature and element life are maximized by this finned construction.

## **Performance Capabilities**

- Aluminized steel sheath temperatures up to 1100°F (595°C)
- Watt density up to 33 W/in<sup>2</sup> (5.1 W/cm<sup>2</sup>)
- UL® approved up to 240VAC (File No. E52951)
- CSA approved up to 480VAC (File No. LR7392)

#### **Features and Benefits**

## Nickel chromium element wire is centered in the heater

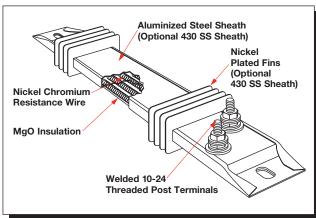
Ensures temperature uniformity

## Aluminized steel sheath

- Operates at higher temperatures
- Resists corrosion more effectively than iron-sheathed heaters

#### Optional 430 stainless steel sheath

Provides a durable solution for highly-corrosive environments


## Welded post terminals

• Produces strong, trouble-free connections

## Available lengths from $5^{1/2}$ to 48 in. (140 to 1220 mm)

• Fits a variety of application needs





## **Typical Applications**

- Enclosure heating
- Load bank resistors
- Shrink tunnels
- Duct heaters
- Space heaters
- Drying ovens
- Incubators
- Air heating
- Heat curing
- Ink drying
- Food warmers
- Moisture protection
- Dehumidifiers
- Stress relieving ovens

WATLOW® \_\_\_\_\_\_ 409

## **Finned Heaters**

## 375 Finned Strip Heaters

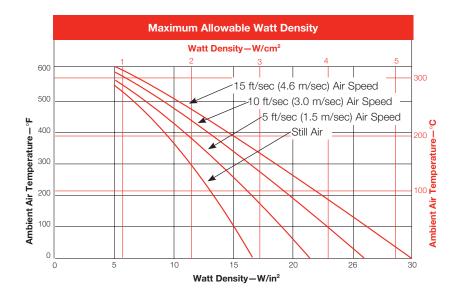
## **Applications and Technical Data**

## **Calculating Watt Density**

Use the graph and formulas to ensure that the maximum allowable watt density for the heater is not exceeded in the application.

Open air watt density is calculated for the total heated surface area.

## **Formulas**

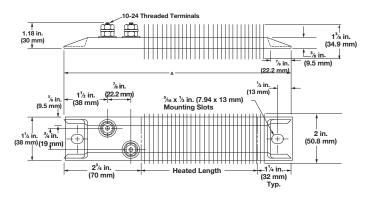

Heated Area

Heated Area

$$(Parallel Terminals) = [Overall Length (A) - 3.12 in.] \\ \times 3.75 in. \\ = [Overall Length (A) - 79.3 mm] \\ \times 95.3 mm$$

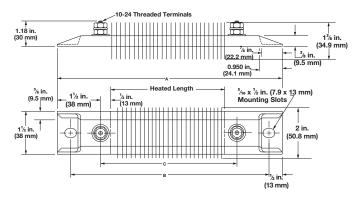
Heated Area

(One-on-One Terminals) = [Overall Length (A) - 4.25 in.] 
$$\times$$
 3.75 in. = [Overall Length (A) - 108 mm]  $\times$  95.3 mm



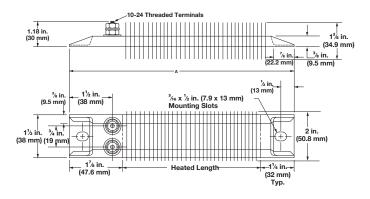

## **Finned Heaters**

## 375 Finned Strip Heaters


## **Termination Options**

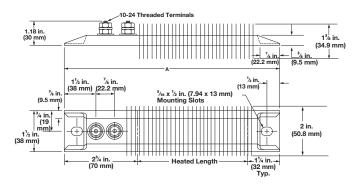
## **Offset Terminals**




Two 10-24 threaded post terminals are offset from each other on the same end.

## **One-on-One Terminals**




Two 10-24 threaded post terminals are placed one on each end.

## **Parallel Terminals**

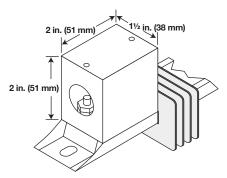


Two 10-24 threaded post terminals are used; both terminals on one end.

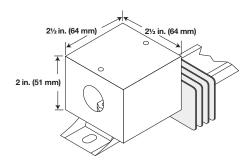
## **In-Line Terminals**



Two 10-24 threaded post terminals are in-line with each other on the same end.


## **Finned Heaters**

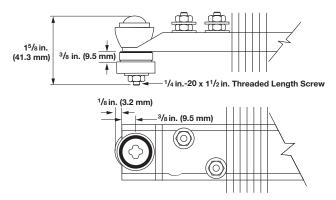
## 375 Finned Strip Heaters


**Termination Options** (Continued)

## **Metallic Terminal Boxes - Variations**

Metallic terminal boxes are available from stock on offset terminals. Terminal boxes act as a safety feature by covering the terminals. A conduit may be attached to the box through <sup>7</sup>/<sub>8</sub> in. (22.2 mm) diameter holes in the ends of the box. To order, specify **terminal box**.

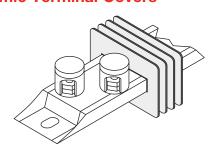



Available on in-line terminals only.



Available on offset terminals from stock and manufactured.

#### **Accessories**


## **Secondary Insulation Bushings**



Insulators are suitable when air heating and/or voltage to ground is a concern. A secondary insulation bushing kit, part number **Z-5230**, contains one set of bushings for one heater. To accommodate bushings, <sup>17</sup>/<sub>32</sub> x <sup>11</sup>/<sub>16</sub> inch diameter mounting holes **must** be specified when ordering.

**Note:** Number of fins are dependent on length of heater.

## **Ceramic Terminal Covers**



Ceramic terminal covers offer a convenient and economical method to insulate post terminals. A 10-24 screw thread is sized for standard length posts and is supplied as an accessory item and shipped separately. Specify **Z-4918** and quantity.

## **Finned Heaters**

## 375 Finned Strip Heaters

#### **Heater Part Numbers**

| Part      |          | . Net Wt. | Approx. | /in²  | W   | Power   |       | gth   | Len                            |             | Width                              |
|-----------|----------|-----------|---------|-------|-----|---------|-------|-------|--------------------------------|-------------|------------------------------------|
| Number    | Delivery | (kg)      | lbs     | cm²)  | (W/ | (Watts) | Volts | mm)   | in. (                          | Termination | in. (mm)                           |
| SGA1J5JY2 | RS       | (0.23)    | 0.5     | (2.1) | 14  | 125     | 120   | (140) | 5 <sup>1</sup> /2              | Parallel    | 1 <sup>1</sup> / <sub>2</sub> (38) |
| SGA1J5JY3 | RS       | (0.23)    | 0.5     | (4.3) | 28  | 250     | 120   | (140) | 5 <sup>1</sup> / <sub>2</sub>  | Parallel    |                                    |
| SGA1J6AY  | RS       | (0.23)    | 0.5     | (2.1) | 14  | 150     | 120   | (152) | 6                              | Parallel    |                                    |
| SGA1J6AY2 | RS       | (0.23)    | 0.5     | (2.1) | 14  | 150     | 240   | (152) | 6                              | Parallel    |                                    |
| SGA1J6AY3 | RS       | (0.23)    | 0.5     | (4.3) | 28  | 300     | 120   | (152) | 6                              | Parallel    |                                    |
| SGA1J6AY4 | RS       | (0.23)    | 0.5     | (4.3) | 28  | 300     | 240   | (152) | 6                              | Parallel    |                                    |
| SGA1J7JW  | М        | (0.32)    | 0.7     | (1.8) | 12  | 150     | 120   | (191) | 71/2                           | Offset      |                                    |
| SGA1J7JW  | М        | (0.32)    | 0.7     | (1.8) | 12  | 150     | 240   | (191) | 71/2                           | Offset      |                                    |
| SGA1J7JW  | М        | (0.32)    | 0.7     | (2.3) | 15  | 200     | 240   | (191) | 71/2                           | Offset      |                                    |
| SGA1J8AW  | RS       | (0.32)    | 0.7     | (1.5) | 10  | 150     | 120   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW  | RS       | (0.32)    | 0.7     | (1.5) | 10  | 150     | 240   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW  | RS       | (0.32)    | 0.7     | (1.8) | 12  | 175     | 120   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW  | М        | (0.32)    | 0.7     | (1.8) | 12  | 175     | 240   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW  | RS       | (0.32)    | 0.7     | (2.6) | 17  | 250     | 120   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW  | RS       | (0.32)    | 0.7     | (2.6) | 17  | 250     | 240   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW  | М        | (0.32)    | 0.7     | (4.2) | 27  | 400     | 120   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW  | М        | (0.32)    | 0.7     | (4.2) | 27  | 400     | 240   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW1 | RS       | (0.32)    | 0.7     | (5.1) | 33  | 500     | 120   | (203) | 8                              | Offset      |                                    |
| SGA1J8AW1 | RS       | (0.32)    | 0.7     | (5.1) | 33  | 500     | 240   | (203) | 8                              | Offset      |                                    |
| SGA1J10JW | М        | (0.40)    | 0.9     | (1.5) | 10  | 250     | 120   | (267) | 10 <sup>1</sup> / <sub>2</sub> | Offset      |                                    |
| SGA1J10JW | М        | (0.40)    | 0.9     | (1.5) | 10  | 250     | 240   | (267) | 10 <sup>1</sup> / <sub>2</sub> | Offset      |                                    |
| SGA1J10JW | RS       | (0.40)    | 0.9     | (2.1) | 14  | 350     | 120   | (267) | 10 <sup>1</sup> / <sub>2</sub> | Offset      |                                    |
| SGA1J10JW | М        | (0.40)    | 0.9     | (2.1) | 14  | 350     | 240   | (267) | 10 <sup>1</sup> / <sub>2</sub> | Offset      |                                    |
| SGA1J10JW | RS       | (0.40)    | 0.9     | (2.5) | 16  | 400     | 120   | (267) | 10 <sup>1</sup> / <sub>2</sub> | Offset      |                                    |
| SGA1J10JW | RS       | (0.40)    | 0.9     | (2.5) | 16  | 400     | 240   | (267) | 10 <sup>1</sup> /2             | Offset      |                                    |
| SGA1J12AW | RS       | (0.45)    | 1.0     | (1.2) | 8   | 250     | 120   | (305) | 12                             | Offset      |                                    |
| SGA1J12AW | RS       | (0.45)    | 1.0     | (1.2) | 8   | 250     | 240   | (305) | 12                             | Offset      |                                    |
| SGA1J12AW | RS       | (0.45)    | 1.0     | (1.8) | 12  | 350     | 120   | (305) | 12                             | Offset      |                                    |
| SGA1J12AW | М        | (0.45)    | 1.0     | (1.8) | 12  | 350     | 240   | (305) | 12                             | Offset      |                                    |
| SGA1J12AW | RS       | (0.45)    | 1.0     | (2.6) | 17  | 500     | 120   | (305) | 12                             | Offset      |                                    |
| SGA1J12AW | RS       | (0.45)    | 1.0     | (2.6) | 17  | 500     | 240   | (305) | 12                             | Offset      |                                    |
| SGA1J14AW | М        | (0.54)    | 1.2     | (1.2) | 8   | 300     | 120   | (356) | 14                             | Offset      |                                    |
| SGA1J14AW | М        | (0.54)    | 1.2     | (1.2) | 8   | 300     | 240   | (356) | 14                             | Offset      |                                    |
| SGA1J14AW | М        | (0.54)    | 1.2     | (2.0) | 13  | 500     | 120   | (356) | 14                             | Offset      |                                    |
| SGA1J14AW | М        | (0.54)    | 1.2     | (2.0) | 13  | 500     | 240   | (356) | 14                             | Offset      |                                    |
| SGA1J15EW | М        | (0.64)    | 1.4     | (1.2) | 8   | 325     | 120   | (387) | 15 <sup>1</sup> /4             | Offset      |                                    |
| SGA1J15EW | М        | (0.64)    | 1.4     | (1.2) | 8   | 325     | 240   | (387) | 15 <sup>1</sup> /4             | Offset      |                                    |
| SGA1J15EW | RS       | (0.64)    | 1.4     | (1.8) | 12  | 500     | 240   | (387) | 15 <sup>1</sup> /4             | Offset      |                                    |

CONTINUED

**Note:** 375 finned strip heaters with one-on-one terminations are available as a manufactured item only. Please contact your Watlow representative for additional information.

**Note:** Above heaters are modified stock and may not be returned for a restocking charge. **Note:**  $\frac{5}{16}$  x  $\frac{1}{2}$  in. (7.9 x 13 mm) mounting slots are supplied on all 375 finned strip heaters.



up to 10 pieces

<sup>•</sup> M - Manufacturing lead times

## **Finned Heaters**

## 375 Finned Strip Heaters

**Heater Part Numbers** (Continued)

| Width                              |             | Length                                |       | Power   | W/in²    | Approx. Net Wt. |          | Part        |
|------------------------------------|-------------|---------------------------------------|-------|---------|----------|-----------------|----------|-------------|
| in. (mm)                           | Termination | in. (mm)                              | Volts | (Watts) | (W/cm²)  | lbs (kg)        | Delivery | Number      |
| 1 <sup>1</sup> / <sub>2</sub> (38) | Offset      | 17 <sup>7</sup> /8 (454)              | 120   | 350     | 8 (1.2)  | 1.6 (0.73)      | М        | SGA1J17RW1  |
| , ,                                | Offset      | 17 <sup>7</sup> /8 (454)              | 240   | 350     | 8 (1.2)  | 1.6 (0.73)      | М        | SGA1J17RW2  |
|                                    | Offset      | 17 <sup>7</sup> /8 (454)              | 120   | 375     | 9 (1.4)  | 1.6 (0.73)      | М        | SGA1J17RW3  |
|                                    | Offset      | 17 <sup>7</sup> /8 (454)              | 240   | 375     | 9 (1.4)  | 1.6 (0.73)      | М        | SGA1J17RW4  |
|                                    | Offset      | 17 <sup>7</sup> /8 (454)              | 120   | 500     | 12 (1.8) | 1.6 (0.73)      | М        | SGA1J17RW5  |
|                                    | Offset      | 17 <sup>7</sup> /8 (454)              | 240   | 500     | 12 (1.8) | 1.6 (0.73)      | RS       | SGA1J17RW6  |
|                                    | Offset      | 17 <sup>7</sup> /8 (454)              | 120   | 750     | 18 (2.8) | 1.6 (0.73)      | RS       | SGA1J17RW7  |
|                                    | Offset      | 17 <sup>7</sup> /8 (454)              | 240   | 750     | 18 (2.8) | 1.6 (0.73)      | RS       | SGA1J17RW8  |
|                                    | Offset      | 17 <sup>7</sup> /8 (454)              | 120   | 1000    | 24 (3.7) | 1.6 (0.73)      | М        | SGA1J17RW9  |
|                                    | Offset      | 17 <sup>7</sup> /8 (454)              | 240   | 1000    | 24 (3.7) | 1.6 (0.73)      | RS       | SGA1J17RW10 |
|                                    | Offset      | 19 <sup>1</sup> / <sub>2</sub> (495)  | 240   | 350     | 6 (.9)   | 1.7 (0.77)      | М        | SGA1J19JW2  |
|                                    | Offset      | 19 <sup>1</sup> / <sub>2</sub> (495)  | 120   | 500     | 9 (1.4)  | 1.7 (0.77)      | М        | SGA1J19JW3  |
|                                    | Offset      | 19 <sup>1</sup> / <sub>2</sub> (495)  | 240   | 500     | 9 (1.4)  | 1.7 (0.77)      | М        | SGA1J19JW4  |
|                                    | Offset      | 19 <sup>1</sup> / <sub>2</sub> (495)  | 240   | 750     | 13 (2.0) | 1.7 (0.77)      | RS       | SGA1J19JW5  |
|                                    | Offset      | 19 <sup>1</sup> / <sub>2</sub> (495)  | 240   | 1000    | 17 (2.6) | 1.7 (0.77)      | RS       | SGA1J19JW6  |
|                                    | Offset      | 21 (533)                              | 120   | 500     | 8 (1.2)  | 1.9 (0.86)      | М        | SGA1J21AW3  |
|                                    | Offset      | 21 (533)                              | 240   | 500     | 8 (1.2)  | 1.9 (0.86)      | М        | SGA1J21AW4  |
|                                    | Offset      | 21 (533)                              | 120   | 750     | 12 (1.8) | 1.9 (0.86)      | М        | SGA1J21AW5  |
|                                    | Offset      | 21 (533)                              | 240   | 750     | 12 (1.8) | 1.9 (0.86)      | RS       | SGA1J21AW6  |
|                                    | Offset      | 23 <sup>3</sup> /4 (603)              | 240   | 500     | 7 (1.0)  | 2.1 (0.95)      | М        | SGA1J23NW3  |
|                                    | Offset      | 23 <sup>3</sup> /4 (603)              | 240   | 750     | 10 (1.5) | 2.1 (0.95)      | М        | SGA1J23NW5  |
|                                    | Offset      | 23 <sup>3</sup> /4 (603)              | 120   | 1000    | 14 (2.1) | 2.1 (0.95)      | М        | SGA1J23NW6  |
|                                    | Offset      | 23 <sup>3</sup> /4 (603)              | 240   | 1000    | 14 (2.1) | 2.1 (0.95)      | М        | SGA1J23NW7  |
|                                    | Offset      | 23 <sup>3</sup> /4 (603)              | 240   | 1500    | 20 (3.1) | 2.1 (0.95)      | RS       | SGA1J23NW8  |
|                                    | Offset      | 251/2 (648)                           | 120   | 500     | 6 (0.9)  | 2.3 (1.00)      | М        | SGA1J25JW2  |
|                                    | Offset      | 25 <sup>1</sup> / <sub>2</sub> (648)  | 240   | 500     | 6 (0.9)  | 2.3 (1.00)      | М        | SGA1J25JW3  |
|                                    | Offset      | 25 <sup>1</sup> / <sub>2</sub> (648)  | 120   | 750     | 9 (1.4)  | 2.3 (1.00)      | М        | SGA1J25JW4  |
|                                    | Offset      | 25 <sup>1</sup> / <sub>2</sub> (648)  | 240   | 750     | 9 (1.4)  | 2.3 (1.00)      | RS       | SGA1J25JW5  |
|                                    | Offset      | 25 <sup>1</sup> / <sub>2</sub> (648)  | 240   | 1000    | 12 (1.8) | 2.3 (1.00)      | RS       | SGA1J25JW6  |
|                                    | Offset      | 26 <sup>3</sup> /4 (680)              | 240   | 700     | 8 (1.2)  | 2.4 (1.10)      | М        | SGA1J26NW2  |
|                                    | Offset      | 26 <sup>3</sup> /4 (680)              | 240   | 1000    | 12 (1.8) | 2.4 (1.10)      | RS       | SGA1J26NW3  |
|                                    | Offset      | 30 <sup>1</sup> / <sub>2</sub> (775)  | 120   | 750     | 8 (1.2)  | 2.7 (1.20)      | М        | SGA1J30JW1  |
|                                    | Offset      | 30 <sup>1</sup> / <sub>2</sub> (775)  | 240   | 750     | 8 (1.2)  | 2.7 (1.20)      | М        | SGA1J30JW2  |
|                                    | Offset      | 33 <sup>1</sup> / <sub>2</sub> (851)  | 240   | 750     | 7 (1.0)  | 3.0 (1.40)      | М        | SGA1J33JW1  |
|                                    | Offset      | 35 <sup>7</sup> /8 (911)              | 120   | 1000    | 8 (1.2)  | 3.2 (1.50)      | М        | SGA1J35RW1  |
|                                    | Offset      | 35 <sup>7</sup> /8 (911)              | 240   | 1000    | 8 (1.2)  | 3.2 (1.50)      | М        | SGA1J35RW2  |
|                                    | Offset      | 35 <sup>7</sup> /8 (911)              | 240   | 1500    | 13 (2.0) | 3.2 (1.50)      | М        | SGA1J35RW3  |
|                                    | Offset      | 38 <sup>1</sup> / <sub>2</sub> (978)  | 120   | 1000    | 8 (1.2)  | 3.4 (1.50)      | М        | SGA1J38JW2  |
|                                    | Offset      | 38 <sup>1</sup> / <sub>2</sub> (978)  | 240   | 1500    | 11 (1.7) | 3.4 (1.50)      | М        | SGA1J38JW3  |
|                                    | Offset      | 42 <sup>1</sup> / <sub>2</sub> (1080) | 240   | 1500    | 10 (1.5) | 3.8 (1.70)      | RS       | SGA1J42JW1  |
|                                    | Offset      | 47 <sup>7</sup> /8 (1216)             | 240   | 2250    | 16 (2.4) | 4.3 (2.00)      | RS       | SGA1J47RW2  |

**Note:** 375 finned strip heaters with one-on-one terminations are available as a manufactured item only. Please contact your Watlow representative for additional information.

Note: Above heaters are modified stock and may not be returned for a restocking charge.

Note:  $\frac{5}{16} \times \frac{1}{2}$  in. (7.9 x 13 mm) mounting slots are supplied on all 375 finned strip heaters.



• **RS** - Next day shipment up to 10 pieces

• M - Manufacturing lead times

## **Finned Heaters**

## FINBAR™ Single-Ended Heaters

Composed of aluminized steel fins press fitted to a one-inch single-ended FIREBAR element. The FINBAR™ is designed to improve heat transfer to the air and permits putting more power in tighter spaces—like forced air ducts, dryers, ovens and load bank resistors.

Heat transfer, lower sheath temperature and element life are all maximized by its finned construction. Installation is simplified by terminations exiting at one end and mounting accommodations on both ends.

## **Performance Capabilities**

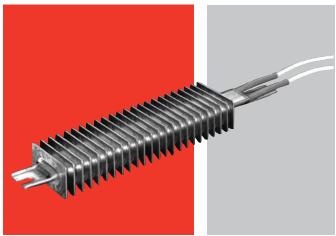
- Watt densities up to 50 W/in<sup>2</sup> (7.7 W/cm<sup>2</sup>)
- 304 stainless steel sheath temperatures up to 1200°F (650°C)
- Voltages up to 480VAC
- Amperages up to 48 amperes per heater or 16 amperes per coil

## **Features and Benefits**

#### Rugged aluminized steel fins

 Provides an increase in surface area to approximately 16 square inches for every linear inch of element length. Fins press fitted to the heating element improve heat transfer to the air

## Single-ended termination


• Simplifies wiring and installation

# Stainless steel mounting bracket, welded to the terminal end, supplied with a slotted end

· Allows ease of installation

#### Lavacone seals

 Provides protection against humid storage conditions, moisture retardant to 221°F (105°C)





## **Typical Applications**

- Forced air heating for dryers, ovens, ducts
- Still air heating for ovens, comfort heating
- Incubators
- Ink drying
- · Load bank resistors

For detailed product and technical data, see the full FINBAR product section located on pages 112 through 114.

WATLOW® \_\_\_\_\_\_ 415

## FIREROD® Cartridge Heaters

The Watlow® FIREROD® cartridge heater incorporates engineering excellence and is supported by almost 60 years of solid industry performance across a broad range of simple and complex applications. As the premier choice in swaged cartridge heating, thousands of industrial manufacturers continue to choose Watlow as their trusted thermal partner and certified cartridge heater supplier.

Built using premium materials and tight manufacturing controls, the FIREROD heater provides superior heat transfer, uniform temperatures, resistance to oxidation and corrosion and a long life even at high temperatures. Every system component that leaves our manufacturing facilities meets our strict quality assurance specifications, in addition to those set forth by leading standards and regulating industries.

FIREROD offers many delivery programs to meet your needs.

## **Performance Capabilities**

- Part temperatures up to 1400°F (760°C) on alloy 800 sheath
- Watt density dependent on flow rate and orientation of the heater
- Maximum voltage up to 480V

#### **Features and Benefits**

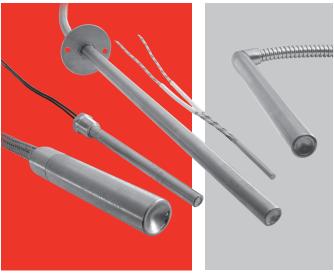
## Nickel-chromium resistance wire

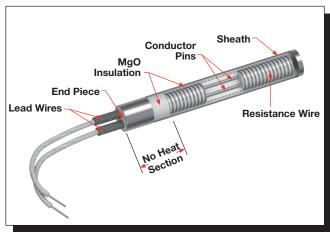
 Ensures even and efficient distribution of heat to the sheath

## **Conductor pins**

- Provide a metallurgical bond to the resistance wire
- Ensure a trouble-free electrical connection

## Magnesium oxide insulation of specific grain and purity


 Results in high dielectric strength and contributes to faster heat-up


## Alloy 800 sheath

 Resists oxidation and corrosion from heat, many chemicals and atmospheres

## Minimal spacing between the element wire and sheath

- Results in lower internal temperature
- Accommodates a design with fewer or smaller heaters





operating at higher watt densities

## International Organization for Standardization (ISO) 9001 certified

Provides confidence that quality and reliability expectations are met

## UL® and CSA approved flexible stranded wires

 Lead insulation rated to temperatures up to 480°F (250°C)

#### Patented lead adapter (LA) method

 Allows same day shipment on more than 150,000 configurations of stock FIREROD heaters and lead combinations

For detailed product and technical data, see the full FIREROD product section located on pages 11 through 47.

## **Enclosure Heaters**

## WATROD Heaters

Designed to prevent freezing and condensation in electrical and mechanical housings, the WATROD element is enclosed in a perforated, aluminized-steel bracket.

## **Performance Capabilities**

- Watt densities up to 15 W/in<sup>2</sup> (2.3 W/cm<sup>2</sup>)
- Wattages up to 1000 watts
- UL® and CSA component recognition up to 250VAC

## **Features and Benefits**

#### Stainless steel sheath wall

 Resists corrosion and protects the heating coil from exposure

#### Silicone resin seal

 Provides protection against humid storage conditions and is effective to 390°F (200°C)

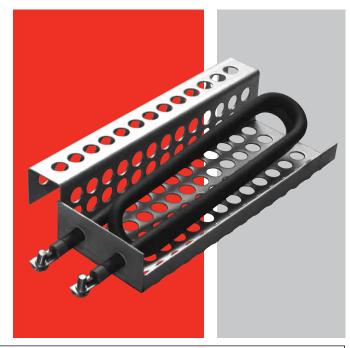
## Perforated aluminized-steel mounting bracket

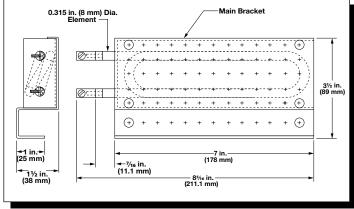
• Eases installation and helps prevent direct contact with the heating element

## Stock straight projection Type B #10-32 screw lug terminals

• Provides easy electrical connection

#### Made-to-order threaded stud


 Provides quick connect and flexible lead wire termination options.


## **Typical Applications**

- Control panels
- Traffic signal boxes
- · Automated teller machines
- Switch gear
- Electronic equipment

## **Application Hints**

- Locate heater(s) in the lowest portion of the enclosure to maximize convection heating
- Place thermostat(s) in the upper half of the enclosure, away from the heater(s)





WATLOW<sup>®</sup> 417

## **Enclosure Heaters**

## **WATROD Heaters**

## **Technical Information**

|       | Watt<br>Density |         | Part N |         | Est. Net Wt. |     |       |
|-------|-----------------|---------|--------|---------|--------------|-----|-------|
| Watts | W/in²           | (W/cm²) | 125VAC | 250VAC  | Delivery     | lbs | (kg)  |
| 95    | 4               | (0.6)   | EN951  | •       | RS           | 1.5 | (0.7) |
| 100   | 4               | (0.6)   |        | EN10010 | RS           | 1.5 | (0.7) |
| 250   | 10              | (1.6)   | EN2501 | EN25010 | RS           | 1.5 | (0.7) |
| 375   | 15              | (2.3)   | EN3751 | EN37510 | RS           | 1.5 | (0.7) |



• RS - Next day shipment up to 5 pieces

## **Enclosure Heaters**

## Silicone Rubber Heaters

Designed for freeze and condensation protection, Watlow's enclosure heaters are rugged, reliable and safe to operate. These rectangular-shaped, wire-wound silicone rubber heaters can be ordered individually with adhesive or vulcanized to an aluminum mounting plate. A thermostat can be attached to the heater or mounted separately as shown.

## **Performance Capabilities**

- Watt density rating of 5 W/in<sup>2</sup> (0.8 W/cm<sup>2</sup>)
- Temperature up to 150°F (66°C)

#### **Features and Benefits**

## Pressure-sensitive adhesive mounting to an aluminum plate or customer cementing

- · Reduces installation time
- Creates easy installation

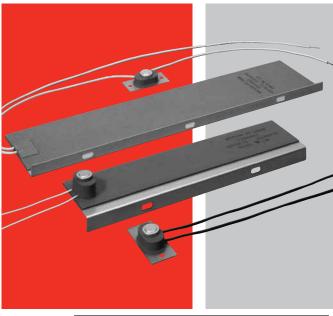
#### Several standard thermostat set points

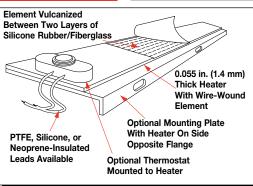
Ensures protection against freezing with minimal energy consumption

## Variety of installation options

- Provide the option to utilize cement installation to ensure permanent heater attachment
- The pressure sensitive adhesive installation option saves assembly time
- Facilitate assembly and disassembly with factory installed aluminum plate mount

## Remote thermostat option


 Provides optimal choice of heater location versus temperature control location


#### **Lead options**

- Allows for a variety of applications
- Allows different lead lengths for a variety of wiring requirements

## Factory pre-wired heater and thermostat

 Ensures safety and reliability as there are no exposed electrical connections





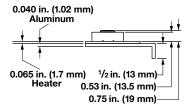
## **Typical Applications**

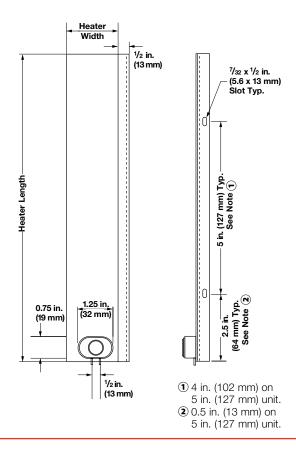
Freeze or condensation prevention in housings containing electronic equipment including:

- Traffic signal boxes
- Automated teller machines
- Temperature control panels
- Gas or liquid control valve housings

WATLOW® \_\_\_\_\_\_ 419

## **Enclosure Heaters**


## Silicone Rubber Heaters


## **Options**

## **Aluminum Mounting Plate**

Both vertical and horizontal mounting can be accomplished with enclosure heaters. Mounting plates are 0.040 in. (1.02 mm) thick, specified as #3003 H14 aluminum. The preferred orientation is vertical with a thermostat attached at the lower end (as shown in the drawing).

For horizontal mounting, a remote thermostat is recommended. An enclosure heater can be ordered by itself, with PSAS or vulcanized to an aluminum mounting plate. See the *Thermostat* section below for more information.





#### **Thermostats**

## **Mounted on Heater**

Built-in snap action thermostats from Watlow sense air temperature. See the ordering chart on the following page for available settings.

#### **Remote From Heater**

For an air sensing thermostat that is separate from the heater, the ST-207E is ideal. It is a modified ST-207 mounted on a <sup>1</sup>/<sub>32</sub> in. (0.8 mm) thick G-10 circuit board with the thermostat's metal cap exposed to sense air temperature. The thermostat is placed at the midpoint of the lead length. The sensor can be preset at the temperatures listed for integral sensors.

## **Notes:**

- On both integral and remote sensors, the thermostat's exposed metal cap is vulnerable to impact. This could defeat the thermostat's switching action and cause heater malfunction.
- T-10 thermostats are not recommended for enclosure heating applications.

## **Enclosure Heaters**

## Silicone Rubber Heaters

## **Technical Data**

## **Determining Minimum Wattage Requirements** For Enclosures

This chart is an excellent guide for determining total wattage requirements for both insulated and uninsulated enclosures, assuming the box is relatively airtight.

For windy conditions, add an additional 50 percent to the wattage requirement listed.

|             |      |            |            |            | То         | tal Enclos | sure Surfa   | ace Area - | - Square    | Feet (Squ   | are Mete    | rs)         |             |             |             |
|-------------|------|------------|------------|------------|------------|------------|--------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|             |      | 2<br>(0.2) | 3<br>(0.3) | 4<br>(0.4) | 5<br>(0.5) | 6<br>(0.6) | 7.5<br>(0.7) | 9<br>(0.8) | 10<br>(0.9) | 15<br>(1.4) | 20<br>(1.9) | 25<br>(2.3) | 30<br>(2.8) | 40<br>(3.7) | 50<br>(4.7) |
|             | 20   | 30         | 40         | 55         | 70         | 80         | 100          | 120        | 135         | 205         | 270         | 335         | 405         | 540         | 670         |
| (°C)        | (11) | 10         | 10         | 15         | 20         | 20         | 25           | 30         | 35          | 50          | 65          | 80          | 100         | 130         | 160         |
| ¥.          | 40   | 55         | 80         | 110        | 135        | 160        | 200          | 245        | 270         | 405         | 540         | 670         | 805         | 1075        | 1340        |
| Ambient     | (22) | 15         | 20         | 30         | 35         | 40         | 50           | 60         | 65          | 100         | 130         | 160         | 195         | 260         | 320         |
| m<br>igi    | 60   | 90         | 120        | 160        | 205        | 245        | 300          | 365        | 405         | 605         | 805         | 1005        | 1210        | 1610        | 2010        |
|             | (33) | 20         | 30         | 55         | 50         | 60         | 75           | 90         | 100         | 145         | 195         | 240         | 290         | 385         | 480         |
| from        | 80   | 110        | 160        | 215        | 270        | 325        | 400          | 485        | 540         | 805         | 1075        | 1340        | 1610        | 2145        | 2680        |
| se f        | (44) | 30         | 40         | 55         | 65         | 80         | 100          | 115        | 130         | 195         | 260         | 320         | 385         | 515         | 640         |
| Rise        | 100  | 135        | 200        | 270        | 335        | 405        | 500          | 605        | 670         | 1005        | 1340        | 1675        | 2010        | 2680        | 3350        |
| ure         | (56) | 35         | 50         | 65         | 80         | 100        | 125          | 145        | 160         | 240         | 320         | 400         | 480         | 640         | 800         |
| rat         | 120  | 165        | 240        | 320        | 405        | 485        | 600          | 725        | 805         | 1210        | 1610        | 2010        | 2415        | 3220        | 4020        |
| Temperature | (67) | 40         | 60         | 80         | 100        | 115        | 150          | 175        | 195         | 290         | 385         | 480         | 580         | 770         | 960         |
| Ten         | 140  | 190        | 280        | 375        | 470        | 565        | 700          | 845        | 940         | 1410        | 1880        | 2345        | 2815        | 3755        | 4690        |
| _           | (78) | 45         | 70         | 90         | 115        | 135        | 175          | 205        | 225         | 340         | 450         | 560         | 675         | 900         | 1120        |

Uninsulated boxes
Insulated boxes

## Silicone Rubber Enclosure Heaters Offering

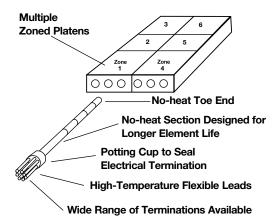
For a complete list of silicone rubber product offerings available for use as an enclosure heater with a thermostat, please refer to the RAPID SHIP offering on page 125.



# **High-Temperature Heaters**

|                           |                  | Max. Operating<br>Temperatures |      | Typica<br>Watt D |       |      |
|---------------------------|------------------|--------------------------------|------|------------------|-------|------|
| High-Temperature Heaters  | Sheath Materials | °F                             | °C   | W/in²            | W/cm² | Page |
| MULTICELL™                | Alloy 800        | 2050                           | 1120 | 30               | 4.6   | 425  |
| High-Temperature FIREROD® | Platen           | 1800                           | 982  | 100              | 15.5  | 431  |
| High-Temperature Tubular  | Alloy 800        | 1800                           | 983  | 30               | 4.6   | 432  |
| Ceramic Fiber             | Ceramic fiber    | 2200                           | 1204 | 30               | 4.6   | 433  |






## **MULTICELL™** Heaters

The advanced design of the MULTICELL™ insertion heater from Watlow® offers three major advantages: extreme process temperature capability, independent zone control for precise temperature uniformity and loose fit design for easy insertion and removal.

## **Performance Capabilities**

- Engineered to achieve sheath temperatures up to 2050°F (1120°C)
- Up to six independently controllable zones



## **Features and Benefits**

## Multiple, independently controllable zones

 Allows process temperature uniformity not possible with any other single-sheathed heater

#### Radiant design of heater

- Allows for loose insertion in boiling holes and piping holes
- Permits easy removal and replacement with minimal down time since it will not bind or seize in the hole

#### **Oxidized sheath**

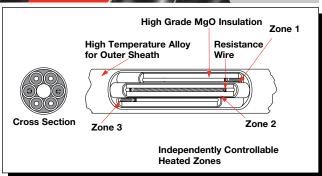
 Provides high emissivity and improves the heater's performance as oxidation increases

## Individual metal-sheathed coils swaged into a larger, high-temperature alloy outer sheath

 Provides maximum protection against element burnout through the outer sheath

## Quick disconnect plug and jack

 Permits fast replacement of individual elements while the press stays at operating temperature


#### Special bending capabilities

 Solves unusual machinery needs and keeps leads away from heated zones

#### Flexible leads up to 842°F (450°C)

• Protects termination from high temperature environment





## **Typical Applications**

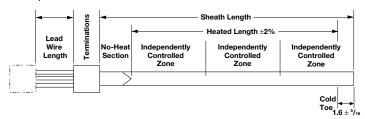
- Hot isothermal forming
- Soil remediation
- Hot forging dies
- Heated platens
- Super plastic forming
- Heated platens (single and multiple zones)
- Heat treating processes
- Super plastic forming with diffusion bonding
- Polysilicon ingots
- Hot gas generation
- Hazardous waste treatment systems

WATLOW® \_\_\_\_\_\_ 425

## **MULTICELL Heaters**

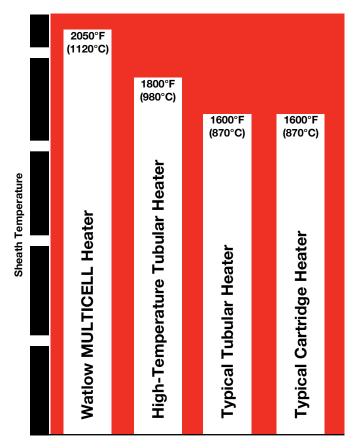
## Applications and Technical Data

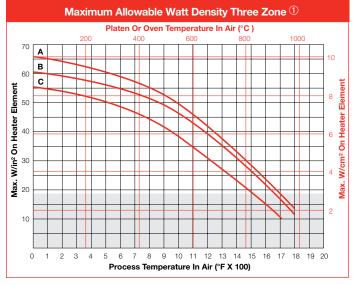
## **Definition of Terms**


**Cold Toe:** A physical minimum requirement of  $1^{5/8} \pm {5/16}$  inch

**Independent Zone:** Up to three, separately controlled zones, which can be of varying lengths and wattages

**Heated Length:** The combined sum of all independent


zones


**Wattage:** Ratings are the combined sum of all independent zones





# **MULTICELL** Heaters: The High Temperature Choice

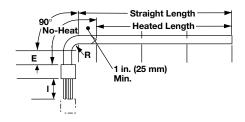




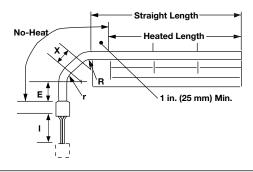
A = 6 cell, 0.935 in. diameter, 240VAC, 3-phase B = 6 cell, 0.685 in. diameter, 240VAC, 3-phase C = 6 cell, 0.935 in. diameter, 480VAC, 3-phase

**Note:** Shaded area represents the Watlow offering, non-shaded area contact your Watlow representative.

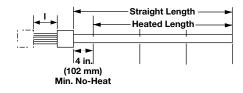
① Other designs and voltages with higher temperature capabilities are available. Contact your Watlow representative.


## **MULTICELL Heaters**

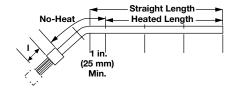
## Applications and Technical Data (Continued)


## **Physical Design Parameters**

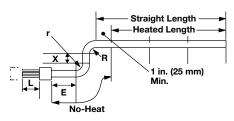
All bending of a MULTICELL heater is restricted to the cold area of the heater. All bend radii points must be 1 in. (25 mm) from the hot/cold junction.


## "["




## **Droop**




## **Straight**



## **Angle**



#### **Crank**



## 0.935 Inch Diameter MULTICELL Heater

| Diameter<br>in. | Bend<br>Sty |      | Sheath<br>Length<br>Min./Max.<br>in. (mm) |                           |   | Min.<br>No-Heat<br>Length<br>in. (mm) |   |   | Total Heated<br>Length<br>Min./Max.<br>in. (mm) |        |                 |
|-----------------|-------------|------|-------------------------------------------|---------------------------|---|---------------------------------------|---|---|-------------------------------------------------|--------|-----------------|
| 0.935           | Stra        | ight | 14<br>225                                 | (35)<br>(571)             | 1 | Conta<br>Conta                        |   |   |                                                 | 3      | (152)<br>(4064) |
| 0.935           | Anç         | gle  | 17<br>225                                 | (43)<br>(571)             | ′ | Conta<br>Conta                        |   |   |                                                 | 3      | (152)<br>(4382) |
| 0.935           | L           | -    | 18<br>225                                 | (45 <sup>-</sup>          | ′ | Conta<br>Conta                        |   |   |                                                 | 3<br>4 | (152)<br>(4324) |
| 0.935           | Cra         | ınk  | 23<br>225                                 | (584<br>(571)             | ′ | Conta<br>Conta                        |   |   | 160                                             | 3<br>3 | (152)<br>(4140) |
| 0.935           | Dro         | op   | 18<br>225                                 | (45 <sup>-</sup><br>(571) | ′ | Conta<br>Conta                        |   |   | 168                                             | 3<br>3 | (152)<br>(4267) |
| Symbol          |             |      | E                                         | r                         |   | Х                                     | , | ı | 7                                               |        | I               |
|                 |             |      | 4 2 <sup>1</sup> / <sub>2</sub> 02) (38)  |                           |   |                                       |   |   | 1 <sub>/2</sub><br>38)                          |        | 12<br>(305)     |
| Zones           |             |      | 1                                         |                           |   | 2                                     |   | ; | 3                                               |        |                 |
| Min. Hea        | ited        |      | 6                                         |                           |   | 6                                     |   |   |                                                 | 6      |                 |

## 0.685 Inch Diameter MULTICELL Heater

(152)

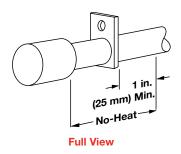
in. (mm)

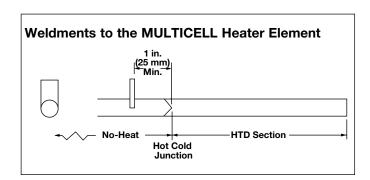
| Diameter<br>in. | Bending<br>Style | Sheath<br>Length<br>Min./Max.<br>in. (mm) |        | Min.<br>No-Heat<br>Length<br>in. (mm) | Le<br>Min           | Heated<br>ngth<br>./Max.<br>(mm) |
|-----------------|------------------|-------------------------------------------|--------|---------------------------------------|---------------------|----------------------------------|
| 0.685           | Straight         | 14                                        | (356)  | Contact Watlow                        | 6                   | (152)                            |
|                 |                  | 225                                       | (5715) | Contact Watlow                        | 178                 | (4521)                           |
| 0.685           | Angle            | 17                                        | (432)  | Contact Watlow                        | 6                   | (152)                            |
|                 |                  | 225                                       | (5715) | Contact Watlow                        | 173 <sup>1</sup> /2 | (4407)                           |
| 0.685           | L                | 18                                        | (457)  | Contact Watlow                        | 6                   | (152)                            |
|                 |                  | 225                                       | (5715) | Contact Watlow                        | 172                 | (4369)                           |
| 0.685           | Crank            | 18                                        | (457)  | Contact Watlow                        | 6                   | (152)                            |
|                 |                  | 225                                       | (5715) | Contact Watlow                        | 163                 | (4267)                           |
| 0.685           | Droop            | 15½                                       | (394)  | Contact Watlow                        | 6                   | (152)                            |
|                 |                  | 225                                       | (5715) | Contact Watlow                        | 170                 | (4331)                           |
|                 |                  |                                           |        |                                       |                     |                                  |

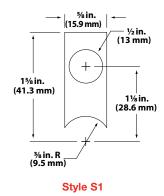
(152)

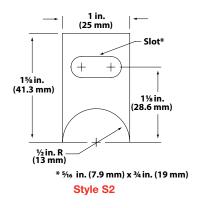
(152)

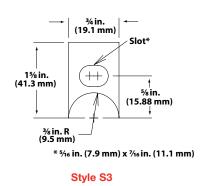
| Symbol      | Е     | r                             | Χ                             | R                             | I     |
|-------------|-------|-------------------------------|-------------------------------|-------------------------------|-------|
| Min. Length | 4     | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub> | 12    |
| in. (mm)    | (102) | (38)                          | (38)                          | (38)                          | (305) |


| Zones                | 1     | 2     | 3     |  |  |
|----------------------|-------|-------|-------|--|--|
| Min. Heated in. (mm) | 6     | 6     | 6     |  |  |
|                      | (152) | (152) | (152) |  |  |


WATLOW<sup>®</sup> 427

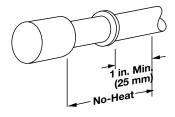

## **MULTICELL Heaters**


## Applications and Technical Data (Continued)


## **Tab Styles**



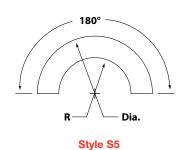


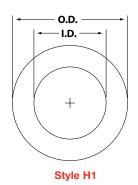








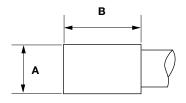

Tabs and rings are used to hold the heater in place and keep it from creeping. Available in carbon steel, 304 and 316 SS.


## **Ring Styles**



**Full View** 

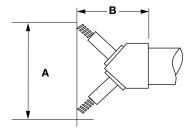






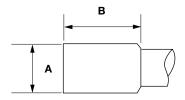

## **MULTICELL Heaters**

## **Termination Standards**


## **Potting Sleeves**

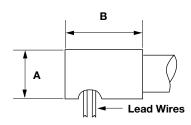


| Heater O.D. | Dimension A                         | Dimension B                        |      |                |          |
|-------------|-------------------------------------|------------------------------------|------|----------------|----------|
| in.         | in. (mm)                            | in. (mm)                           | Zone | Phase          | Type No. |
| 0.685       | <sup>3</sup> /4 (19)                | 1 <sup>1</sup> / <sub>2</sub> (38) | 1    | 1              | 61L      |
| 0.935       | 1 <sup>1</sup> / <sub>16</sub> (27) | 1 <sup>1</sup> / <sub>2</sub> (38) | 1    | 1              | 91L      |
| 0.935       | 1 <sup>1</sup> /16 (27)             | 1 <sup>1</sup> / <sub>2</sub> (38) | 1    | 3 <sup>①</sup> | 91L      |


<sup>&</sup>lt;sup>1</sup> 3 wire only

# **Ceramic Wedge with 10-32 Threaded Terminals**




| Heater O.D. | Dimension A       |      | Dimension B       |      |      |       |          |
|-------------|-------------------|------|-------------------|------|------|-------|----------|
| in.         | in.               | (mm) | in.               | (mm) | Zone | Phase | Type No. |
| 0.685       | 1 <sup>1</sup> /4 | (32) | 1 <sup>1</sup> /4 | (32) | 1    | 1     | 61T      |
| 0.935       | 1 <sup>5</sup> /8 | (41) | 1 <sup>5</sup> /8 | (41) | 1    | 1     | 91T      |

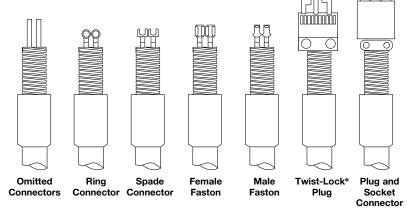
## **Potting Cups**



| Heater O.D. in. |                   | ension A<br>(mm) |                   | ension B<br>(mm) | Zone | Phase | Type No. |
|-----------------|-------------------|------------------|-------------------|------------------|------|-------|----------|
| 0.685           | 1 <sup>3</sup> /8 | (35)             | 1 <sup>3</sup> /8 | (35)             | 2    | 1     | 62L      |
| 0.685           | 1 <sup>3</sup> /8 | (35)             | 1 <sup>3</sup> /8 | (35)             | 3    | 1     | 62L      |
| 0.685           | 1 <sup>3</sup> /8 | (35)             | 1 <sup>3</sup> /8 | (35)             | 1    | 3     | 62L      |
| 0.685           | 1 <sup>3</sup> /8 | (35)             | 1 <sup>3</sup> /8 | (35)             | 2    | 3     | 62L      |
| 0.935           | 1 <sup>3</sup> /8 | (35)             | 1 <sup>3</sup> /8 | (35)             | 2    | 1     | 92L      |
| 0.935           | 1 <sup>3</sup> /8 | (35)             | 1 <sup>3</sup> /8 | (35)             | 3    | 1     | 92L      |
| 0.935           | 1 <sup>3</sup> /8 | (35)             | 1 <sup>3</sup> /8 | (35)             | 1    | 3     | 92L      |
| 0.935           | 1 <sup>3</sup> /8 | (35)             | 1 <sup>3</sup> /8 | (35)             | 2    | 3     | 92L      |

## **Potting Cup for Right Angle Exit**




| Heater O.D. | Dimension A               |      | Dimension B       |      |      |        |          |
|-------------|---------------------------|------|-------------------|------|------|--------|----------|
| in.         | in.                       | (mm) | in.               | (mm) | Zone | Phase  | Type No. |
| 0.685       | 3/4                       | (19) | 1 <sup>1</sup> /2 | (38) | 1    | 1 or 3 | RAE1     |
| 0.935       | <b>1</b> <sup>1</sup> /16 | (27) | 1 <sup>1</sup> /2 | (38) | 1    | 1 or 3 | RAE2     |

**WATLOW**<sup>®</sup> 429

## **MULTICELL Heaters**

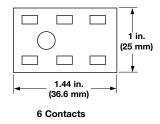
## **Termination Assemblies**

All termination assemblies are available with potting sleeves or cups, with or without armor flex lead wire protection. Please specify **potting vessel** and **lead cover option** when ordering.



Termination illustrations shown with armor flex covering.

## **Options**


# Plug and Socket and Twist-Lock<sup>®</sup> Plug Variations

Three zone heaters requiring a quick disconnect plug will typically be supplied with a six contact plug and socket. Twist-Lock® plug variations are typically supplied with single zone MULTICELL heaters. When ordering a Twist-Lock® plug, please specify the type as shown below.

For any other plug variations, please contact your Watlow representative.

**Note:** Mating connectors are also available for plug terminations listed. Contact your Watlow representative.

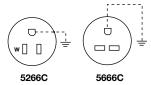
## **Plug and Socket**



| Male Plug | Zones | Туре   | Voltage | Amperage | Blade Type  |
|-----------|-------|--------|---------|----------|-------------|
| P406-CCT  | 3     | 6 wire | 600     | 30       | Straight    |
| 4570C     | 1     | 3 wire | 250     | 15       | Twist-Lock® |
| 4720C     | 1     | 3 wire | 125     | 15       | Twist-Lock® |
| 5266C     | 1     | 3 wire | 125     | 15       | Straight    |
| 5666C     | 1     | 3 wire | 250     | 15       | Straight    |
| 7102C     | 1     | 2 wire | 250     | 20       | Twist-Lock® |
| 7545C     | 1     | 2 wire | 250     | 15       | Twist-Lock® |
| 7567C     | 1     | 3 wire | 125     | 10       | Twist-Lock® |

## Twist-Lock®












**Straight** 





# Extended Capabilities For High-Temperature (HT) FIREROD® Heaters

The Watlow HT FIREROD heater is especially designed for high temperature platen applications up to 1600°F (871°C). The HT FIREROD heater utilizes the same industry leading design principles used on all Watlow FIREROD products. Advancing the FIREROD heater enables it to withstand application temperatures up to 400°F (204°C) higher than standard cartridge heaters.

HT FIREROD design features, which are important in high temperature applications, include:

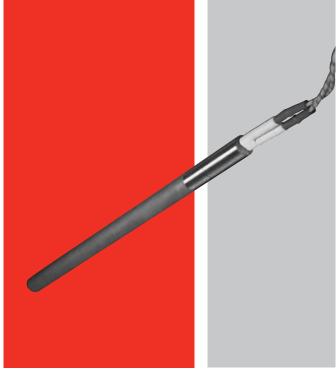
- A specially constructed end seal that is virtually airtight to reduce the effects of resistance wire oxidation
- A high-temperature sheath that is treated to improve its emissivity for better heat transfer

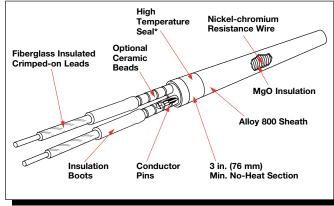
## **Performance Capabilities**

- Platen temperatures up to 1600°F (871°C)
- Maximum watt density up to 100 W/in² (15.5 W/cm²)
- Maximum voltage up to 277VAC ground
- Length tolerance of +0, -4 percent standard diameters;
   +0, -8 percent for special diameter

#### Made-to-Order Availability

| Nominal<br>Diameter<br>in. | Actual<br>Diameter<br>in. | Max.<br>Amperes |
|----------------------------|---------------------------|-----------------|
| 1/2                        | $0.496 \pm 0.004$         | 10              |
| 5/8                        | $0.580 \pm 0.004$         | 23              |
|                            | 0.621 ± 0.004             | 23              |
| 3/4                        | $0.710 \pm 0.004$         | 46              |
|                            | $0.746 \pm 0.004$         | 46              |
| 1                          | 0.960 ± 0.004             | 46              |
|                            | 0.996 ± 0.006             | 46              |


Contact your Watlow representative for special diameter requests.


#### **Features and Benefits**

## High-temperature seal

 Reduces exposure to the atmosphere, which minimizes oxidation of the winding wires resulting in longer element life

**Note:** The first 2 in. (51 mm) must be outside of the platen in free air and less than 1000°F (538°C).





\* First 2 in. (51 mm) at lead end must be kept below 1000°F (538°C).

#### Alloy 800 sheath

Transfers heat more efficiently

#### High emissivity sheath

Provides better heat transfer and longer life

For detailed product and technical data, see the full High-Temperature FIREROD product section located on pages 36 through 37.

WATLOW® \_\_\_\_\_\_ 431

## **High-Temperature Tubular Heaters**

Watlow manufactures high-temperature tubular heaters to bridge the gap between standard tubular heaters and Watlow MULTICELL™ heaters. This tubular is well suited for process air heating applications in excess of 1300°F (704°C), resulting in a maximum sheath temperature of 1800°F (983°C). Controlled lab testing between the new design and current tubular designs show an increase in life of approximately 50 percent.

The high-temperature tubular consists of an engineered tubing with an outer sheath of alloy 600 and a special internal construction. The outer sheath offers high temperature capabilities, reduced oxidation as well as corrosion resistance.

The tubular offering is available in 0.430 and 0.375 inch diameters that are configurable either as formed tubulars or process heaters. The heaters can also be welded to flanges and plates for mounting purposes. Maximum sheath length available is 275 inches for the 0.430 inch and 0.375 inch diameters. The factory should be contacted for longer sheath lengths.

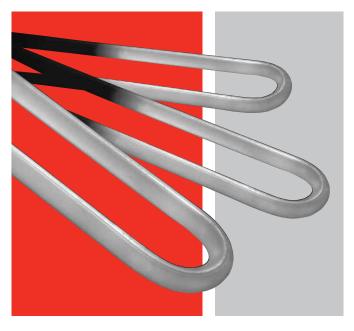
## **Features and Benefits**

## Alloy 600 sheath material and a special internal construction

Assures high temperature performance and corrosion protection in tough applications

## 0.430 inch diameters\*

 Allows heater to be configured to existing tubular designs that may be experiencing short life


\*Note: 0.375 diameters are available in Watlow's extended capabilities, contact your Watlow representative for details.

#### **Dual-ended termination**

 Installs into flanges and screw plugs similarly to standard product configurations

## Bendable in standard formations

 Makes the heater easy to apply in a wide variety of applications



## **Typical Applications**

- High temperature ovens and furnaces
- Radiant heating
- Drying
- Environmental—VOC abatement
- Process air heating: duct heaters, circulation heaters
- Vacuum applications
- Flue gas cleaning (desulphurization)
- Fluidized beds

For detailed product and technical data, see the full High-Temperature Tubular product section located on pages 87 through 88.

### **Ceramic Fiber Heaters**

Ceramic fiber heaters offer some of the highest temperature heating element capabilities available in the Watlow family of heaters. Heating units constructed of ceramic fiber insulation isolate the heating chamber from the outside. Ceramic fiber heaters are extremely low mass, high insulation value units with self-supported heating elements. Many applications can benefit from the convenience of the heating element and insulation combined into one package. Its lightweight, low-density properties are ideally suited for high temperature applications requiring low thermal mass.

### **Performance Capabilities**

- Operating temperatures up to 2200°F (1204°C)
- Watt densities from 5 up to 30 W/in<sup>2</sup> (0.8 to 4.6 W/cm<sup>2</sup>)
- Uses "radiant" heat transfer exclusively

#### **Features and Benefits**

### High temperature ICA resistance elements

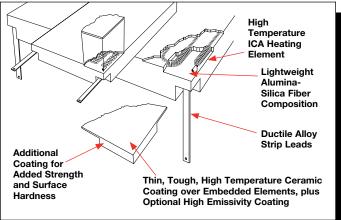
- Bounds integrally into required position
- · Allows five element configurations

## Lightweight, low-density alumina-silica composition molded into shape

- Acts as insulation to isolate the heating chamber from the outside
- Provides low shrinkage fiber and inorganic binder
- Ensures a firm, thermal shock resistant, self-supporting unit at all operating temperatures

#### Operating temperatures up to 2200°F (1204°C)

 Provides high temperature performance that is not possible with many other heater types (See page 436 for detailed limits)


# Low mass ceramic fiber insulation of 10 to 15 lb/ft<sup>3</sup> (160 to 240 kg/m<sup>3</sup>)

- · Allows the heater to reach process temperature quickly
- Allows the energy to heat the load instead of wasting energy on itself

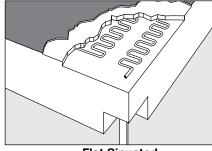
#### Works directly off of common power line voltages

- Eliminates the need for expensive transformers or complex power control systems
- Enables compatibility with the full range of Watlow temperature controllers and power switching devices

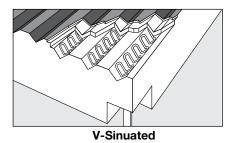




### **Typical Applications**

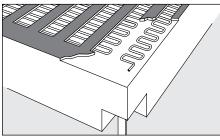

- High temperature furnaces
- Metal melting, holding and transfer
- Semiconductor processing
- Glass, ceramic and wire processing
- Analytical instrumentation

WATLOW® \_\_\_\_\_\_ 433

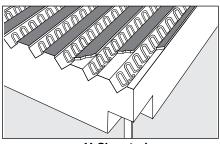

### **Ceramic Fiber Heaters**

### **Options**

### **Embedded Sinuated Elements**




**Flat Sinuated** 




- Available in either flat or V-sinuated element configurations
- Advanced V-sinuated element configuration allows up to 27 percent additional watt density over embedded flat sinuated elements
- Performs best at medium to high temperatures at medium watt density power requirements
- Use in partially enclosed to fully enclosed applications
- Especially well suited for large, flat units; semi-cylindrical units above 5 in. (125 mm) I.D.; and full cylinders above 4 in. (100 mm) I.D.
- Offers greater effective insulation thickness than coiled element designs
- Enhances "heated insulation" concept of operational use
- Features high emissivity coating on new high watt density series units. When ordering, refer to charts on pages 452 to 454.

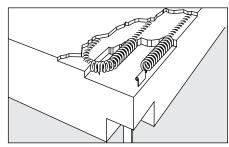
### **Exposed Sinuated Elements**



Flat Sinuated



V-Sinuated


- Available in either flat or V-sinuated element configurations
- Advanced V-sinuated element configuration allows up to 20 percent additional watt density compared to exposed flat sinuated elements
- Offers the lowest possible wire-to-chamber temperature difference for maximum heater life
- Provides optimum heat-up/cool-down and recovery times as well as maximum operational efficiency
- Higher current handling capabilities are possible
- Minimizes the number of circuits and connections in large furnaces
- Especially well suited for large, flat surface area units and large I.D. curved units
- Exposed elements are available on special order as a variation of the embedded sinuated element normally provided on stock and standard units. When ordering, refer to charts on pages 452 to 454.

### **Ceramic Fiber Heaters**

### **Application Hints**

### **Applications**

- High temperature furnaces
- Metal melting, holding and transfer
- Semiconductor processing
- Glass, ceramic and wire processing
- Analytical instrumentation
- Fluidized beds
- Laboratory and R&D
- Other high temperature process applications



**Embedded Coil Elements** 

- Optimum performance for high temperature, enclosed furnace chambers
- Coiled elements readily conform to complex curved surfaces, especially small custom chamber shapes
- Coiled element design works best in higher voltage, lower current situations
- Use where lower watt density requirements and low duty cycle operations are expected
- Available in stock and standard units of medium watt density, rated up to 2000°F (1093°C). When ordering, refer to charts on pages 449 to 451.

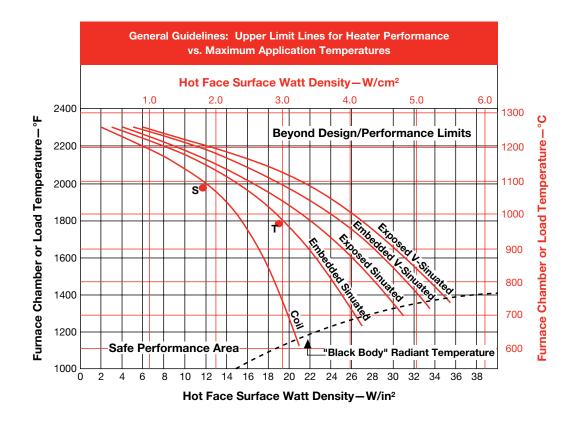


- Never use ceramic fiber heaters for conduction heating applications. These heaters are designed for radiant heat transfer only.
- Use appropriate mounting methods including pins, washers, clamping straps, overlapping edge clamps, interlocking edges, etc. Generally, these methods work better than cementing ceramic fiber heaters, as cementing will not accommodate the expansion and contraction caused by thermal cycling of surrounding metal structures.
- Keep furnace loads free of oils, lubricants and other contaminants that can vaporize at high temperatures.
   Ceramic fiber heaters have a porosity exceeding
   90 percent and cannot be sealed against contamination infiltration and possible damage to the heating element wire.

- Use low mass thermocouples that are responsive to rapidly changing radiant energy transfer conditions.
   Without proper temperature control, ceramic fiber heaters can generate sufficient heat for self destruction.
- Mount a thermocouple junction directly above an element and within <sup>1</sup>/<sub>16</sub> in. (1.6 mm) of the heated surface. Embedded ceramic mounting tubes are available as an option to position 0.125 in. (3.2 mm) diameter thermocouples inside the fiber, directly behind and between the elements. Heater wire operating temperatures are critical and wires should be monitored at the hottest point within the application.
- Electrical connections made in heated portions of the application must be rated for the appropriate currents and anticipate ambient temperatures. To ensure good electrical connections, use compression-type connection devices located as far away from the hottest area of the application. This minimizes the possibility of electrical connection degradation caused by thermal expansion, contraction and high temperature oxidation.
- Ceramic fiber products shrink at high temperatures.
   During the first 24 hours of operation at temperatures between 1600 and 2200°F (870 to 1204°C), shrinkage of up to 4 percent can occur. Fill all gaps between units created by shrinkage with loose ceramic fiber insulation. Watlow offers a "pre-firing" process that pre-shrinks and dimensionally stabilizes units before shipping.
   Contact your Watlow representative for further details.
- Use additional back-up insulation for maximum energy efficiency and appropriate safety considerations. Use only insulation with inorganic fibers and binders to avoid corrosive fumes that could damage heater elements.
- Handle all units and leads with care. Ceramic fiber heaters are very resistant to thermal cycling and thermal shock, but are easily subject to mechanical damage from careless handling.
- Repair of minor mechanical damage, made with unapproved or unknown cements, could damage the wire elements at high temperatures. If unsure, contact your Watlow representative before making repairs. Several accessory items are available from the factory for repair purposes.

**WATLOW**<sup>®</sup> **435** 

### **Ceramic Fiber Heaters**


#### Performance Data

### **Performance Capabilities**

The *Performance* graph shown below represents capabilities of the five heater element configurations. The curves compare upper temperature limits versus permissible design watt densities to achieve a standard heater life expectation of 2,000 hours.

As with all Watlow heaters, the major application concern is the heater's surface watt density as it relates to the application temperature, such as with the furnace chamber temperature or the radiant surface temperature. When evaluating an application for temperature and watt density requirements, it should fall to the left of and below the performance limit lines. If the application falls

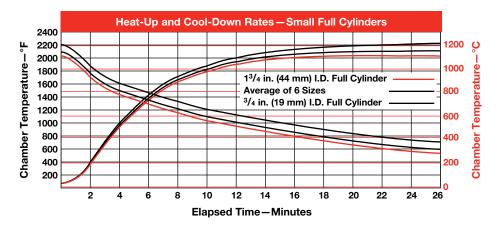
into this area, then it is in the safe performance area. The further into this safe performance area, the higher the life expectancy of the heater. If an application requires temperatures or watt densities that fall into the area to the right of and above the lines, then the application operates beyond the heater's typical design or performance limits. Using a heater required to perform in this area of the graph may result in a shorter life expectancy. For information specific to an application, contact your Watlow representative.



### **Ceramic Fiber Heaters**

### Performance Data (Continued)

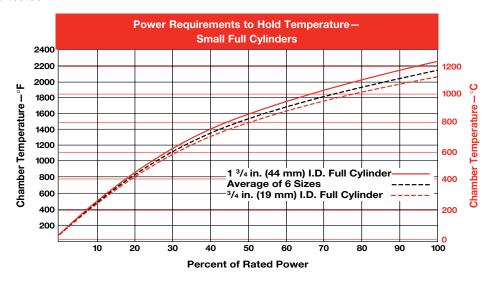
The following graphs provide technical data to help evaluate performance and select the correct ceramic fiber heater for an application.


The four graphs shown represent performance data for heat-up/cool-down rates and power requirements

to maintain furnace temperature. This data averages test results performed for two typical types of furnace chambers, and should not be used for specification purposes.

### Small, Full Cylinder, Heated Chambers

Test conditions for small, full-cylinder heated chambers are typical of analytical instrumentation furnaces. Several stock sizes are represented. Units tested were 6 in. (150 mm) long, mounted in a vertical orientation. Both ends were capped with 1 in. (25 mm) of ceramic fiber


insulation. No additional insulation or metal sheath was added to the outside diameter. Temperature was measured by a thermocouple located in the geometric center of the chamber.

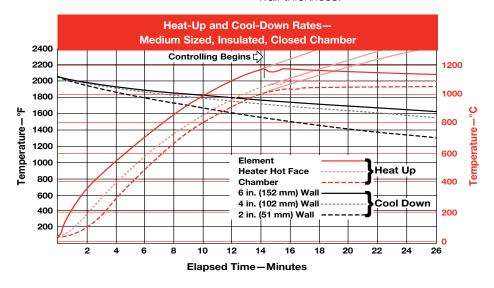


### **Power Requirements**

Shown below are percentages of rated power needed to achieve and hold specific temperatures inside the full cylinder chambers tested.

This represents the efficiency of these heaters in this mounting configuration.

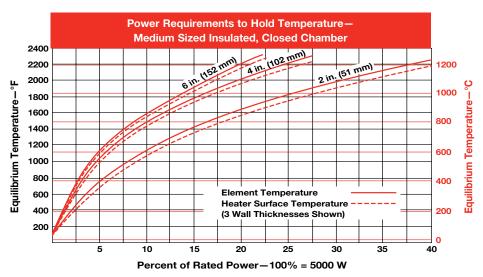



### **Ceramic Fiber Heaters**

Performance Data (Continued)

### **Medium Sized, Insulated Closed Chambers**

Test conditions for medium-sized, insulated chambers are typical of pit and box furnaces, large tube furnaces and pipe and reactor heating. Standard embedded coil units (Watlow part number **VS412A12S**) were used and rated for 2000°F (1093°C). The test chamber size was 12 in. long and 12 in. l.D. (305 X 305 mm). The volume was approximately 0.75 ft $^3$  (0.02 m $^3$ ).

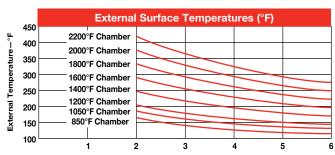

Temperature heat-up rates were measured by thermocouples in three places: at the element, on the heater surface and at the center-of-chamber. Data for various additional wall thicknesses is also shown. This is typical of how large, flat and semi-cylindrical units are used. The chamber was oriented vertically with top and bottom disks of ceramic fiber insulation equal to wall thickness.



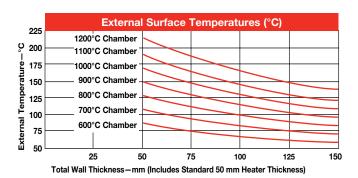
### **Power Requirements**

Shown below are the percentages of rated power needed to achieve and hold specific temperatures inside of

medium-sized, insulated chambers. This represents the efficiency of these heaters in this mounting configuration.



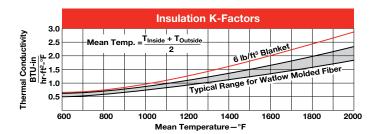

### **Ceramic Fiber Heaters**

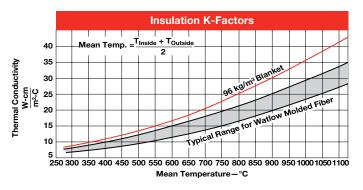

Performance Data (Continued)

#### **Insulation Effectiveness**

The graphs below illustrate the effectiveness of adding 6 lb/ft<sup>3</sup> (96 kg/m<sup>3</sup>) blanket insulation to the backside of standard 2 in. (50 mm) thick ceramic fiber heaters. Total wall thickness of up to 6 in. (152 mm) is shown. Data is for vertical sides without metal sheathing. Top and bottom surfaces and surfaces with metal sheaths covering ceramic fiber insulation will vary.




Total Wall Thickness-inches (Includes Standard 2 in. Heater Thickness)




### **Heat Loss and Energy Transfer**

For general calculations of heat loss and energy transfer, the *Insulation K-Factors* and *Emissivity* graphs are helpful.

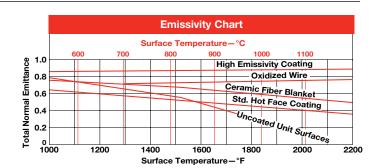
The *K-Factors* graph is for ceramic fiber heaters and the ceramic fiber insulation blanket typically used with the heaters. This blanket is offered as an accessory by Watlow.







#### **Application Hints**


For wall thicknesses (T) in cylindrical situations use the "equivalent thickness" conversion.

$$T_{\text{cyl.}} = r_{\text{out}} \log_{e} \left(\frac{r_{\text{out}}}{r_{\text{in}}}\right)$$

Where rout is outer radius rin is inner radius

### **Emissivity of Heater Surface**

The *Emissivity* graph details the normalized emittance values for the four surfaces most likely to be encountered when planning Watlow ceramic fiber heater applications.



### **Ceramic Fiber Heaters**

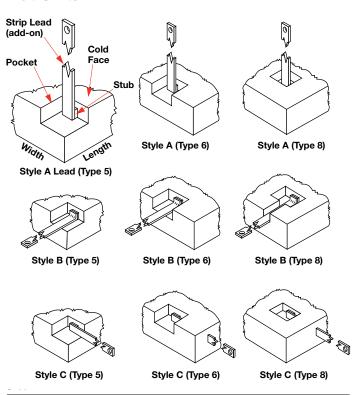
### **Termination Options**

Watlow offers many variations of electric leads to meet particular wiring requirements. To understand termination options available, it is necessary to understand the various methods for applying electrical leads.

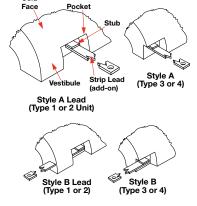
Ceramic fiber heater electrical leads are welded to stubs – the metal parts that interface between the heating element wire and the add-on electrical leads. These stubs exit the heater at the lead pockets. Pockets are small cavities below the cold face plane (outside surface) and usually located at or near the corners.

Watlow ceramic fiber heaters are equipped with either strip leads or double twisted wire leads. Strip leads are most commonly used, unless otherwise specified. The various lead styles refer to the lead's exit orientation relative to the pocket used on a given type of heater. See illustrations for specific details.

### **Strip Leads**


Flat and semi-cylindrical ceramic fiber heaters are available with the termination options shown here. When ordering termination options for catalog units, the specific strip lead **Style** must be specified. To determine the desired style, refer to the following illustrations. If a style is not specified, **Style A** leads, 12 in. (305 mm) in length will be provided. Additional lengths are available using add-on leads which are priced per pair, per inch, for the three different widths. See ordering charts for which lead width is used on a specific heater. Strip leads are shipped with a <sup>13</sup>/<sub>64</sub> in. (5 mm) hole at the end of the lead. Use #10-24 screws, nuts and washers, or other wiring connections. Caution should be exercised when making connections. Leads are susceptible to loosening due to thermal expansion and contraction as the heater cycles.




#### **Important**

Inspect the carton and its contents for damage prior to discarding packaging material. If there is any damage, contact your Watlow representative immediately for a Returned Material Authorization (RMA) number. All damaged goods are to be returned in the original packaging to reduce the possibility of further damage to the product.

### **Flat Units**



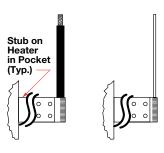
### **Semi-Cylindrical Units**



### **Ceramic Fiber Heaters**

**Termination Options** (Continued)

### **Special Lead Orientation**


If the various standard strip lead orientations and pocket configurations are not suitable, special designs are available. When ordering, please include drawings that show proposed locations.

### **Leads Bent 90 Degrees**

The double twisted leads of full cylinder heaters can bend 90 degrees to lay into slots and exit to the sides of the unit.

### **Special Add-On Lead Configurations**

The two options illustrated can be welded onto the stub at the heater pocket, or for a better installation, welded to the end of a specified length of the regular strip lead. The strip lead length can vary from zero to the value necessary to distance it from the hot zone. The length of the add-on lead option eliminates the need for a custom product and satisfies a greater range of wiring requirements. Contact your Watlow representative for technical details and price.



Flexible Stranded MGT Insulated Nickel Lead Wire (450°C Rated)

Solid NiCr Wire

#### Accessories

Ceramic fiber heater orders can include the accessory items described in this section. Please specify the Watlow part number when ordering.

#### Rigidizer

Rigidizer is primarily used to recoat soft, cut edges of ceramic fiber heaters and ceramic fiber insulation panels. Various degrees of hardening can be achieved with additional applications. Rigidizer can be ordered by the pint (0.47 L) by specifying part number **CFRGDPT** or gallon (3.78 L), part number **CFRGDGAL**.

### **B.T.E. Closed-End Thermocouple Tubes**

A horizontal thermocouple tube between the elements is available in two sizes: 0.140 in. (3.6 mm) and 0.265 in. (6.7 mm), both 6 in. (152 mm) long with closed end.

### **Black Surface Coat**

Black high emissivity coating is used to raise emissivity closer to 1.0. The container size is 4 ounces. Order **CFBSC**.

#### **Ceramic Tubes**

Ceramic tubes are available in four nominal sizes: <sup>1</sup>/<sub>8</sub>, <sup>1</sup>/<sub>4</sub>, <sup>3</sup>/<sub>8</sub> and <sup>1</sup>/<sub>2</sub> in. (3.2, 6, 9.5 and 13 mm) I.D. and lengths including 0.9 in. (22 mm) and 1.9 in. (48 mm) long. Ceramic tubes have several uses, including thermocouple mounting holes, mounting pin sleeves and lead coverings. The table below lists part numbers and exact sizes.

| Inside Diameter<br>in. (mm) | Length<br>in. (mm) | Part<br>Number |
|-----------------------------|--------------------|----------------|
| 0.140 (3.6)                 | 0.90 (22)          | CC405-1        |
| 0.265 (6.7)                 | 0.90 (22)          | CC405-2        |
| 0.390 (9.9)                 | 0.74 (19)          | CC405-3        |
| 0.515 (13.1)                | 0.90 (22)          | CC405-9        |
| 0.140 (3.6)                 | 1.90 (48)          | CC405-4        |
| 0.265 (6.7)                 | 1.90 (48)          | CC405-5        |
| 0.390 (9.9)                 | 1.60 (41)          | CC405-6        |
| 0.515 (13.1)                | 1.90 (48)          | CC405-8        |

WATLOW® \_\_\_\_\_\_ 441

### **Ceramic Fiber Heaters**

**Accessories** (Continued)

### **Dry Heating Surface Mix**

Dry heating surface mix is used to make the hot face of all heaters, including those with the high emissivity coating. It can also be used with rigidizer to make a very high temperature paste for touch ups of the hot face area. Order by the pint (0.47 L), part number **CFHTGSURMX**, or gallon (3.78 L), part number **CFHTGMXGAL**.

#### Patch Kit

To easily repair small breaks or cracks, the patch kit contains one pint (0.47 L) of powdered ceramic fiber and four ounces (0.118 L) of black surface coat. Order **CFPATCHKIT**.

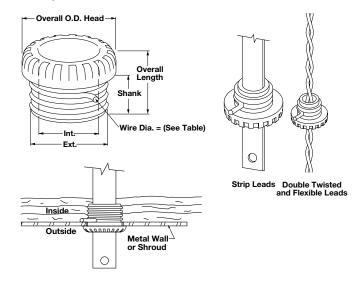
### **Ceramic Fiber Insulation Blanket**

Additional insulation value for ceramic fiber heaters is available with ceramic fiber insulation blanket. This 6 lb/ft³ (96 kg/m³) ceramic fiber blanket contains no organic binders. It is suitable for applications up to 2300°F (1260°C) and sold in full rolls or cut by the square foot. These blankets are available in the following sizes:

| Size (U.S.)                                      | Size (metric)          | Part No.               |
|--------------------------------------------------|------------------------|------------------------|
| 24 in. X 25 ft X <sup>1</sup> / <sub>4</sub> in. | 610 mm X 7.6 m X 6 mm  | CFBLKT1/4 <sup>1</sup> |
| 24 in. X 25 ft X <sup>1</sup> / <sub>2</sub> in. | 610 mm X 7.6 m X 13 mm | CFBLKT1/2 <sup>1</sup> |
| 24 in. X 25 ft X 1 in.                           | 610 mm X 7.6 m X 25 mm | CFBLKT-1 <sup>®</sup>  |

<sup>&</sup>lt;sup>1</sup> Add ...R to end of part number for full roll.

#### **Powdered Ceramic Fiber**


Powdered ceramic fiber is used primarily to improve surface finish in critical areas. It can also be used to fill voids, cracks and broken corners in damaged units. Use powdered ceramic fiber with rigidizer to make an easy to apply paste. A standard container size is one pint (0.47 L). Order part number **CFPDRFPT**.

# **High Temperature Coating and Electrical Potting Cement**

Two different high purity, high temperature cements can be used to mount thermocouple tubes, provide extra surface hardening, bond ceramic fiber gaskets and affix lightweight ceramic fiber insulation blanket to panels, as well as attach edge-spacer blocks and custom vestibules. Potting cement is packaged in a <sup>1</sup>/<sub>4</sub> pint (116 mL) jar, and may be ordered by specifying part number **CFPTGCMT**. The high temperature coating cement is available in pints or gallons, and can be ordered by using part numbers **CFCTGCMTPT** and **CFCTGCMTGAL**.

### **Strip Lead Porcelain Bushings**

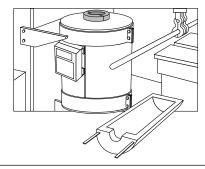
Strip lead porcelain bushings are primarily used to protect heater power leads when passing through metal walls and furnace structures. Bushings are available with inside diameters listed below for use with double twisted leads and the three standard strip lead widths. To select the appropriate inside diameter lead bushing, reference the heater selection tables on pages 449 through 454. The strip lead width for each heater is listed therein.



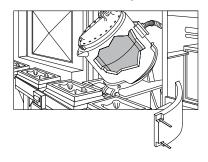
**Porcelain Bushings Specifications** 

| Conduit<br>K.O. Size  | Shank Dia. w<br>Int.    | ithout Wire Nut<br>Ext.              | Dia.          | Shank<br>Length                    | Overall<br>Length                     | Overall Head<br>O.D. (Ref.)           |                                             | Part    |
|-----------------------|-------------------------|--------------------------------------|---------------|------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------|---------|
| in. (mm)              | in. (mm)                | in. (mm)                             | in. (mm)      | in. (mm)                           | in. (mm)                              | in. (mm)                              | Use With:                                   | Number  |
| <sup>3</sup> /8 (9.5) | <sup>3</sup> /8 (9.5)   | <sup>21</sup> /32 (16.7)             | 0.080 (2.032) | <sup>9</sup> /16 (14.3)            | <sup>7</sup> /8 (22.2)                | <sup>7</sup> /8 (22.2)                | All double twist                            | CS45-11 |
| 1/2 (13.0)            | <sup>7</sup> /16 (11.1) | <sup>13</sup> / <sub>16</sub> (20.6) | 0.080 (2.032) | <sup>3</sup> / <sub>4</sub> (19.0) | 1 <sup>1</sup> / <sub>8</sub> (28.6)  | 1 <sup>1</sup> /8 (28.6)              | <sup>3</sup> /8 (9.5 mm) Strip              | CS45-20 |
| 3/4 (19.0)            | <sup>9</sup> /16 (14.3) | 1 (25.0)                             | 0.106 (2.692) | <sup>7</sup> /8 (22.2)             | 1 <sup>5</sup> / <sub>16</sub> (33.3) | 1 <sup>5</sup> / <sub>16</sub> (33.3) | <sup>1</sup> / <sub>2</sub> (13.0 mm) Strip | CS45-30 |

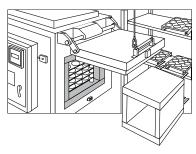
### **Ceramic Fiber Heaters**


### **Mounting Methods**

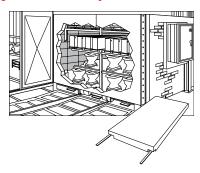
The Watlow ceramic fiber heater is available in a wide range of heater shapes and configurations to solve high temperature process applications. The modularity and range of sizes and wattages provide the greatest possible flexibility. Watlow has developed and can recommend many appropriate specific and generalized mounting systems for mounting heaters. Ceramic fiber heaters have been organized into seven major mounting categories or heater system configurations as shown in the following illustrations.


### 1. Full Cylinder Heaters

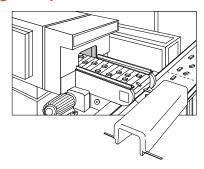



### 2. Semi-Cylindrical (180° section) Heaters




# 3. Arc-Section Arrays of Heaters (3 or more units of 120° or less each)




### 4. Flat Panels, with One Panel on Each Side



# 5. Flat Wall Array with Minimum Two-by-Two Units per Wall



### 6. Made-to-Order Molded Shapes with up to Five Sides of a Box Molded as One Piece, Including Complex Curves



WATLOW® \_\_\_\_\_\_ 443

### **Ceramic Fiber Heaters**

### Molded Ceramic Fiber Insulation Modules

For heating applications requiring insulation panels, Watlow offers many shapes and sizes of molded ceramic fiber insulation modules. These insulation modules are constructed using the same high quality, high temperature, low mass ceramic fiber material used in our heaters.

As a complement to the overall product line, these modules offer additional solutions for high temperature industrial insulation problems. Without heating elements, molded ceramic fiber insulation modules are available in complex shapes to conform to application requirements.

Molded-to-shape insulation modules also make handling and installation easier compared to other insulation methods. Since they are molded to shape, sanding, cutting and grinding of blocks to achieve the desired configuration is not required.

Highly resistant to thermal shock and chemical attack, except for hydrofluoric and phosphoric acids and strong alkalies, insulation modules are unaffected by oil and water. If the insulation becomes wet, physical and thermal properties can be fully restored when dried.

**Note:** If using molded ceramic fiber insulation modules along with other Watlow ceramic fiber heaters, oil, water and other contaminants will negatively affect the heating element portion of the ceramic fiber heater.

Molded insulation modules are rated for up to 2300°F (1260°C) continuous duty. The inorganic binder eliminates smoke or combustion during initial heating to 300°F (150°C) and higher. Vacuum molded density is 10 to 15 lbs/ft³ (160 to 240 kg/m³), the same as the ceramic fiber heaters.

**Size Limits:** Maximum flat size is 34 x 52 in. (860 x 1320 mm) with a molded thickness of more than 4 in. (102 mm). Maximum inside diameter for semi-cylindrical modules is 24 in. (610 mm). For applications requiring curved insulation pieces in excess of 180 degrees, consider using multiple arc-section modules or an array system of multiple flat units.



### Application and Technical Data

The same insulation performance and technical data for ceramic fiber heaters applies to molded ceramic fiber insulation modules. For specific information on insulation performance properties, see the *Heat Loss and Energy Transfer* portion of the ceramic fiber heaters section on page 439.

#### **Accessories**

Where appropriate, many of the same accessories available for ceramic fiber heaters are available for use with molded ceramic fiber insulation modules. Accessories can be used to modify, provide mounting options and for minor repairs and maintenance.

### **Ordering Information**

Molded ceramic fiber insulation modules are available in exactly the same sizes and shapes as the ceramic fiber heaters listed in the ordering tables. In general, the ordering part numbers are derived by replacing the second alpha character in the heater part number (i.e., F, S, C, R, etc.) with **N** to designate **no-element.** 

**Extended Capabilities:** Watlow representatives can work with your customers to design and manufacture modules to meet specific insulation needs.

444 **----- WATLOW**®

### **Ceramic Fiber Heaters**

### **Molded Ceramic Fiber Insulation Modules**

### **Ordering Information**

**VN - No-Heat Panels** 

### Part Number

| 1                    | 2                    | 3                    | 4                    | 5                    | 6                    | 7                    | 8                    | 9                    | 10                      | 11 | 12 | 13 | 14 |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|----|----|----|----|
| Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Modification<br>Options |    |    |    |    |
| V                    | N                    | 5                    | 1                    | 2                    | Α                    | 1                    | 2                    | Α                    |                         | 0  | 0  | 0  | 0  |

| (a) |       |          |                | Dana Car | le Number |
|-----|-------|----------|----------------|----------|-----------|
|     | 2)(3) | (4)(5)(6 | X07AX(83)X(9)X | Base Cod | ie Number |

| 10  | Modification Options                                           |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------|--|--|--|--|--|--|--|
| 0 = | None                                                           |  |  |  |  |  |  |  |
| A = | 0.430 thermocouple tube I.D. center on unit                    |  |  |  |  |  |  |  |
| B = | 0.265 thermocouple tube I.D. center on unit                    |  |  |  |  |  |  |  |
| E = | Black surface coat one side                                    |  |  |  |  |  |  |  |
| F = | Black surface coat 0.140 thermocouple tube I.D. center on unit |  |  |  |  |  |  |  |
| G = | Black surface coat 0.265 thermocouple tube I.D. center on unit |  |  |  |  |  |  |  |

### **Ceramic Fiber Heaters**

### **Modifications**

It is possible to order certain special modifications for catalog units prior to shipment. Some of these are listed below, with a brief description.

**Beveled and trimmed edges**: The unheated edges of Type 6, 7 and 8 units can be factory modified to provide in-between overall sizes, and can be angle cut to form regular polygon shapes around objects. Angles between zero degrees and 45 degrees can be accommodated.

**Black surface coating**: Improves the emissivity of the heater's hotface. See the graph on page 439 for emissivity values, contact the factory for pricing adders.

**Leads**: See page 441 for other "Special Add-On Lead" configurations.

**Thermocouple holes**: Ceramic tubes on page 441 are used to make electrically isolated holes through heaters. To order, the inside **diameter** and **location** must be specified. A special "behind-the-element" horizontal thermocouple tube is available to very closely track element temperature for over-temperature protection and improved heater life.

### Notches or long slots in no-heat areas of

**units**: Rectangular and semi-circular notches can be cut into no-heat areas and vestibules on most units. Usually, a sketch or drawing that specifies exact location must be included with your order. Fax numbers to send drawings to are available.

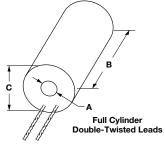
**Shortened vestibule lengths**: Modified vestibule lengths require retention of at least <sup>1</sup>/<sub>2</sub> in. (13 mm) of insulation for adequate strength or complete removal ("0" length) to make Type 1 units into left vestibule (i.e., Type 2) or right vestibule (i.e., Type 3) units.

### **Lead Times**

**RAPID SHIP:** Same or next working day shipment is subject to current inventory (contact your Watlow representative for latest status). No set up charges. Orders must be placed before 11:00 a.m. CST/CDT, USA.

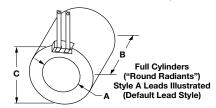
**RAPID SHIP with modifications**: Two-to-three working days shipment. Nominal set up charges only for specific modifications, not for the basic heater.

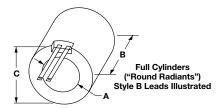
**Standard delivery**: Shipment is usually within three weeks. Check with the factory for the latest lead time status. No set up charges.


### Warning

This product contains refractory ceramic fibers (RCF) which have been identified by the International Agency for Research on Cancer

(IRAC) as a possible human carcinogen (class 2B). Before using these products, read the material data safety sheet (MSDS) which includes the detailed precautionary measures and handling instructions.


446 **----- WATLOW**®


### **Ceramic Fiber Heaters**



### **Full Cylinder Units**

|                               |                | Dimer  | nsions, in       | . (mm)            |                  |       |                       |      |                   |            |    |                |          |                  |
|-------------------------------|----------------|--------|------------------|-------------------|------------------|-------|-----------------------|------|-------------------|------------|----|----------------|----------|------------------|
| I.D                           | Heat<br>D. (A) | ed Are | a<br>igth (B)    |                   | verall<br>D. (C) |       | Electrical R<br>Power |      | face              |            | Δι | oprox.         |          |                  |
| in.                           | (mm)<br>(±1.6) | in.    | (mm)<br>6 (±1.6) | in.               | (mm)<br>(±3.2)   | Volts | (Watts)<br>±5%        | Load | ling ①<br>(W/cm²) | Lead Width |    | et Wt.<br>(kg) | Delivery | Part<br>Number ② |
| 1/2                           | (13)           | 6      | (152)            | 2                 | (51)             | 60    | 175                   | 18.6 | (2.9)             |            | 5  | (0.14)         | RS       | VC400J06A        |
| 1/2                           | (13)           | 12     | (305)            | 2                 | (51)             | 120   | 350                   | 18.6 | (2.9)             |            | 10 | (0.28)         | RS       | VC400J12A        |
| 3/4                           | (19)           | 6      | (152)            | 3                 | (76)             | 60    | 200                   | 14.2 | (2.2)             |            | 8  | (0.23)         | RS       | VC400N06A        |
| 3/4                           | (19)           | 12     | (305)            | 3                 | (76)             | 120   | 400                   | 14.2 | (2.2)             |            | 13 | (0.37)         | RS       | VC400N12A        |
| 1                             | (25)           | 6      | (152)            | 3                 | (76)             | 60    | 220                   | 11.7 | (1.8)             |            | 9  | (0.26)         | RS       | VC401A06A        |
| 1                             | (25)           | 12     | (305)            | 3                 | (76)             | 120   | 440                   | 11.7 | (1.8)             |            | 13 | (0.37)         | RS       | VC401A12A        |
| 1 <sup>1</sup> /4             | (32)           | 6      | (152)            | 3 <sup>1</sup> /2 | (89)             | 60    | 275                   | 11.7 | (1.8)             | Double     | 11 | (0.31)         | RS       | VC401E06A        |
| 1 <sup>1</sup> /4             | (32)           | 12     | (305)            | 3 <sup>1</sup> /2 | (89)             | 120   | 550                   | 11.7 | (1.8)             | Twisted    | 18 | (0.51)         | RS       | VC401E12A        |
| 11/2                          | (38)           | 6      | (152)            | 31/2              | (89)             | 60    | 300                   | 10.6 | (1.6)             | Leads      | 12 | (0.34)         | RS       | VC401J06A        |
| 1 <sup>1</sup> /2             | (38)           | 12     | (305)            | 3 <sup>1</sup> /2 | (89)             | 120   | 600                   | 10.6 | (1.6)             |            | 20 | (0.57)         | RS       | VC401J12A        |
| 1 <sup>3</sup> /4             | (45)           | 6      | (152)            | 4                 | (102)            | 120   | 350                   | 10.6 | (1.6)             |            | 12 | (0.34)         | RS       | VC401N06A        |
| 1 <sup>3</sup> / <sub>4</sub> | (45)           | 12     | (305)            | 4                 | (102)            | 120   | 700                   | 10.6 | (1.6)             |            | 23 | (0.65)         | RS       | VC401N12A        |
| 2                             | (51)           | 6      | (152)            | 4                 | (102)            | 120   | 425                   | 11.3 | (1.8)             |            | 13 | (0.37)         | RS       | VC402A06A        |
| 2                             | (51)           | 12     | (305)            | 4                 | (102)            | 120   | 850                   | 11.3 | (1.8)             |            | 25 | (0.71)         | RS       | VC402A12A        |





#### **Full Cylinder Units**

|                   | Dimensions, in. (mm) |      |            |                    |                    |       | Florida di Ballino |         |         |                 |      |     |       |          |           |
|-------------------|----------------------|------|------------|--------------------|--------------------|-------|--------------------|---------|---------|-----------------|------|-----|-------|----------|-----------|
| in.               |                      |      | Lead Width |                    | Approx.<br>Net Wt. |       |                    | Part    |         |                 |      |     |       |          |           |
| ±1/16             | 6 (±1.6)             | ±1/1 | 6 (±1.6)   | ±1/8               | (±3.2)             | Volts | ±5%                | W/in² ( | (W/cm²) |                 | (mm) | lbs | (kg)  | Delivery | Number ②  |
| 3                 | (76)                 | 6    | (152)      | 7                  | (178)              | 120   | 650                | 11.5    | (1.8)   | 3/8             | (10) | 2.5 | (1.1) | RS       | VC403A06A |
| 4                 | (102)                | 6    | (152)      | 8                  | (203)              | 120   | 900                | 11.9    | (1.8)   | 1/2             | (13) | 3.1 | (1.4) | RS       | VC404A06A |
| 4                 | (102)                | 6    | (152)      | 8                  | (203)              | 120   | 1100               | 14.6    | (2.3)   | <sup>3</sup> /8 | (10) | 3.1 | (1.4) | RS       | VC404A06T |
| 5                 | (127)                | 6    | (152)      | 9                  | (229)              | 120   | 1250               | 13.7    | (2.1)   | 1/2             | (13) | 3.5 | (1.6) | RS       | VC405A06A |
| 5                 | (127)                | 6    | (152)      | 9                  | (229)              | 120   | 1400               | 14.9    | (2.3)   | 3/8             | (10) | 3.6 | (1.6) | RS       | VC405A06T |
| 6 <sup>1</sup> /2 | (165)                | 6    | (152)      | 10 <sup>1</sup> /2 | (267)              | 120   | 1500               | 12.2    | (1.9)   | 3/4             | (19) | 4.9 | (2.2) | RS       | VC406J06A |
| 6 <sup>1</sup> /2 | (165)                | 6    | (152)      | 10 <sup>1</sup> /2 | (267)              | 120   | 2000               | 16.3    | (2.5)   | 1/2             | (13) | 4.9 | (2.2) | RS       | VC406J06T |
| 8                 | (203)                | 6    | (152)      | 12                 | (305)              | 120   | 1800               | 11.9    | (1.8)   | 3/4             | (19) | 5.7 | (2.6) | RS       | VC408A06A |
| 8                 | (203)                | 6    | (152)      | 12                 | (305)              | 120   | 2600               | 17.2    | (2.7)   | 3/4             | (19) | 5.8 | (2.6) | RS       | VC408A06T |



- RAPID SHIP

   RS Next day shipment up to 2 pieces for orders with part number configuration -0000R or 0001R.
- All modifications to RAPID SHIP are manufacturing lead times.
- ① Units with part numbers ending in ... 0A, watt densities between 10.6 to 14.2 W/in² (1.6 to 2.2 W/cm²), are coil designs suitable for use up to 2000°F (1093°C) maximum surface temperature. Units with part numbers ending in ...T, watt densities between 14.6 to 17.2 W/in² (2.3 to 2.7 W/cm²) are "round radiants" with sinuated element designs and high emissivity coating that are suitable for use up to 1800°F (982°C) maximum surface temperature.
- @ For unheated insulation tubes, substitute "VN" for "VC" in the part number of the appropriate size unit. No heats are manufacturing lead times.

### **Ceramic Fiber Heaters**

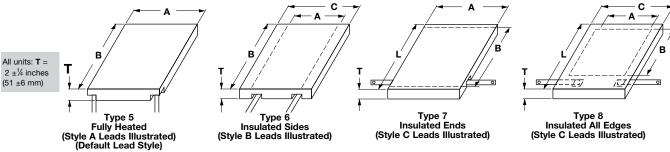
### **Ordering Information**

### **VC - Full Cylindrical**

#### **Part Number**

| 1                    | 2                    | 3                    | 4                    | 5                    | 6                    | 7                    | 8                    | 9                    | 10                      | 11 | 12 | 13              | 14             |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|----|----|-----------------|----------------|
| Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Modification<br>Options |    |    | Lead<br>Options | Lead<br>Length |
| V                    | С                    | 4                    | 0                    | 5                    | Α                    | 0                    | 6                    | Α                    |                         | 0  | 0  |                 |                |

| 12  | ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ Base Code Number                                                 |  |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 10  | Modification Options                                                               |  |  |  |  |  |  |  |  |  |
| 0 = | None                                                                               |  |  |  |  |  |  |  |  |  |
| A = | 0.140 thermocouple tube I.D. opposite leads, centered on height                    |  |  |  |  |  |  |  |  |  |
| B = | 0.140 thermocouple tube I.D. lead side, centered on height                         |  |  |  |  |  |  |  |  |  |
| E = | Black surface coat                                                                 |  |  |  |  |  |  |  |  |  |
| F = | Black surface coat 0.140 thermocouple tube I.D. opposite leads, centered on height |  |  |  |  |  |  |  |  |  |
| G = | Black surface coat 0.140 thermocouple tube I.D. lead side, centered on height      |  |  |  |  |  |  |  |  |  |


| 13  | Lead Options                             |  |  |  |  |  |  |
|-----|------------------------------------------|--|--|--|--|--|--|
| 0 = | Fixed (built-in) standard double-twisted |  |  |  |  |  |  |
| 1 = | 601 Alloy 600 strip A style              |  |  |  |  |  |  |
| 2 = | 601 Alloy 600 strip B style              |  |  |  |  |  |  |
| 9 = | Flex NI, MGT A style                     |  |  |  |  |  |  |
| A = | Flex NI, MGT B style                     |  |  |  |  |  |  |
| E = | Chromel <sup>®</sup> A / NI, A style     |  |  |  |  |  |  |
| F = | Chromel <sup>®</sup> A / NI, B style     |  |  |  |  |  |  |

| 14  | Lead I | _ength | 1      |
|-----|--------|--------|--------|
| A = | 0 in.  | T =    | 14 in. |
| B = | 1 in.  | U =    | 15 in. |
| E = | 2 in.  | V =    | 16 in. |
| F = | 3 in.  | W=     | 17 in. |
| G = | 4 in.  | X =    | 18 in. |
| H = | 5 in.  | Y =    | 19 in. |
| J = | 6 in.  | 1 =    | 20 in. |
| K = | 7 in.  | 2 =    | 21 in. |
| L = | 8 in.  | 3 =    | 22 in. |
| M = | 9 in.  | 4 =    | 23 in. |
| N = | 10 in. | 6 =    | 24 in. |
| P = | 11 in. | 7 =    | 30 in. |
| R = | 12 in. | 8 =    | 36 in. |
| S = | 13 in. | 9 =    | 42 in. |

#### Notes:

- If the order is placed before 11:00 AM CST, heaters with standard leads (...0R) ship the same day. Heaters with non-standard leads ship the next day.
- The BTE (between-the-element) is NOT covered in this system yet. Please contact your Watlow representative for availability.

### **Ceramic Fiber Heaters**



(Style A, B or C leads available on any type unit. Please specify.)

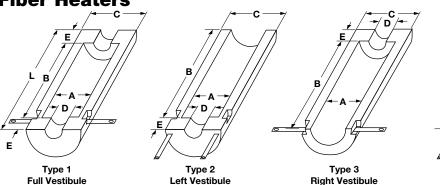
### Flat Units — Embedded Coiled Elements (see page 435)

|    |                                    |    | imensior                          |                                                  |                      | u Lic | mem                  | <b>S</b> (see p | age 43         | (3)              |       |     |             |      |           |       |             |            |        |          |                                     |
|----|------------------------------------|----|-----------------------------------|--------------------------------------------------|----------------------|-------|----------------------|-----------------|----------------|------------------|-------|-----|-------------|------|-----------|-------|-------------|------------|--------|----------|-------------------------------------|
|    | Heate                              |    |                                   | <del>-                                    </del> | 6 & 8                | Туре  | 7 & 8                | Ele             | ectrical       | Rating           |       | St  | rip         |      | Appr      | oxima | ate N       | let Wi     | t.     |          |                                     |
|    | th (A)                             |    | gth (B)                           |                                                  | th (C)               |       | gth (L)              |                 | Power          |                  |       |     | ad          | T    | уре       |       | ре          | Ту         |        |          | B                                   |
|    | ( <mark>mm)</mark><br>/8 (1.6-3.2) |    | (mm)<br><sup>1</sup> /8 (1.6-3.2) |                                                  | (mm)<br>/8 (1.6-3.2) |       | (mm)<br>/8 (1.6-3.2) | Volts           | (Watts)<br>±5% | Load<br>W/in² (V |       |     | dth<br>(mm) | lbs  | 5<br>(kg) | lbs   | ፄ 7<br>(kg) | 8<br>lbs ( |        | Delivery | Part<br>Number                      |
| 4  | (102)                              | 6  | (152)                             | 8                                                | (203)                | 10    | (254)                | 60              | 275            | 11.5             | (1.8) | 3/8 | (10)        | 0.6  | (0.3)     | 1.1   | (0.5)       | 1.7        | (0.8)  | RS       | VF004A06S                           |
|    |                                    | 12 | (305)                             | 8                                                | (203)                | 16    | (406)                | 60              | 550            | 11.5             | (1.8) | 1/2 | (13)        | 1.2  | (0.5)     | 2.2   | (1.0)       | 2.8        | (1.3)  | RS       | VF004A12S                           |
|    |                                    | 18 | (457)                             | 8                                                | (203)                | 22    | (559)                | 120             | 750            | 10.4             | (1.6) | 3/8 | (10)        | 1.9  | (0.9)     | 3.4   | (1.5)       | 4.5        | (2.0)  | М        | VF004A18S                           |
|    |                                    | 24 | (610)                             | 8                                                | (203)                | 28    | (711)                | 120             | 1100           | 11.5             | (1.8) | 1/2 | (13)        | 2.4  | (1.1)     | 4.4   | (2.0)       | 5.6        | (2.5)  | RS       | VF004A24S                           |
| 6  | (152)                              | 6  | (152)                             | 10                                               | (254)                | 10    | (254)                | 60              | 375            | 10.4             | (1.6) | 3/8 | (10)        | 0.9  | (0.4)     | 1.5   | (0.7)       | 2.4        | (1.1)  | RS       | VF006A06S                           |
|    |                                    | 12 | (305)                             | 10                                               | (254)                | 16    | (406)                | 120             | 750            | 10.4             | (1.6) | 3/8 | (10)        | 1.8  | (0.8)     | 2.8   | (1.3)       | 3.7        | (1.7)  | RS       | VF006A12S                           |
|    |                                    | 18 | (457)                             | 10                                               | (254)                | 22    | (559)                | 120             | 1250           | 11.6             | (1.8) | 1/2 | (13)        | 3.0  | (1.4)     | 4.1   | (1.9)       | 5.0        | (2.3)  | RS       | VF006A18S                           |
|    |                                    | 24 | (610)                             | 10                                               | (254)                | 28    | (711)                | 240             | 1500           | 10.4             | (1.6) | 3/8 | (10)        | 3.5  | (1.6)     | 5.3   | (2.4)       | 6.2        | (2.8)  | RS       | VF006A24S                           |
|    |                                    | 30 | (762)                             | 10                                               | (254)                | 34    | (864)                | 240             | 2000           | 11.2             | (1.7) | 1/2 | (13)        | 4.5  | (2.0)     | 6.6   | (3.0)       | 8.4        | (3.8)  | М        | VF006A30S                           |
|    |                                    | 36 | (914)                             | 10                                               | (254)                | 40    | (1016)               | 240             | 2500           | 11.6             | (1.8) | 1/2 | (13)        | 6.1  | (2.8)     | 8.3   | (3.8)       | 10.2       | (4.6)  | М        | VF006A36S                           |
| 8  | (203)                              | 12 | (305)                             | 12                                               | (305)                | 16    | (406)                | 120             | 1100           | 11.5             | (1.8) | 1/2 | (13)        | 2.5  | (1.1)     | 3.2   | (1.5)       | 4.1        | (1.9)  | RS       | VF008A12S                           |
|    |                                    | 18 | (457)                             | 12                                               | (305)                | 22    | (559)                | 240             | 1500           | 10.4             | (1.6) | 3/8 | (10)        | 3.6  | (1.6)     | 4.7   | (2.1)       | 5.6        | (2.5)  | М        | VF008A18S                           |
|    |                                    | 24 | (610)                             | 12                                               | (305)                | 28    | (711)                | 240             | 2200           | 11.5             | (1.8) | 1/2 | (13)        | 4.8  | (2.2)     | 6.5   | (2.9)       | 7.4        | (3.4)  | RS       | VF008A24S                           |
|    |                                    | 30 | (762)                             | 12                                               | (305)                | 34    | (864)                | 240             | 2500           | 10.4             | (1.6) | 1/2 | (13)        | 6.2  | (2.8)     | 8.0   | (3.6)       | 9.7        | (4.4)  | М        | VF008A30S                           |
|    |                                    | 36 | (914)                             | 12                                               | (305)                | 40    | (1016)               | 240             | 3000           | 10.4             | (1.6) | 3/4 | (19)        | 7.8  | (3.5)     | 10.0  | (4.5)       | 11.8       | (5.4)  | М        | VF008A36S                           |
| 10 | (254)                              | 12 | (305)                             | 14                                               | (356)                | 16    | (406)                | 240             | 1250           | 10.4             | (1.6) | 3/8 | (10)        | 2.6  | (1.2)     | 3.9   | (1.8)       | 5.0        | (2.3)  | RS       | VF010A12S                           |
|    |                                    | 18 | (457)                             | 14                                               | (356)                | 22    | (559)                | 240             | 1800           | 10.0             | (1.6) | 1/2 | (13)        | 4.2  | (1.9)     | 5.4   | (2.4)       | 6.5        | (2.9)  | RS       | VF010A18S                           |
|    |                                    | 24 | (610)                             | 14                                               | (356)                | 28    | (711)                | 240             | 2500           | 10.4             | (1.6) | 1/2 | (13)        | 5.2  | (2.4)     | 7.7   | (3.5)       | 8.8        | (4.0)  | М        | VF010A24S                           |
|    |                                    | 30 | (762)                             | 14                                               | (356)                | 34    | (864)                | 240             | 3000           | 10.0             | (1.6) | 3/4 | (19)        | 7.0  | (3.2)     | 9.5   | (4.3)       | 11.7       | (5.3)  | М        | VF010A30S                           |
|    |                                    | 36 | (914)                             | 14                                               | (356)                | 40    | (1016)               | 240             | 3600           | 10.0             | (1.6) | 3/4 | (19)        | 9.1  | (4.1)     | 11.5  | (5.2)       | 13.7       | (6.2)  | М        | VF@10A36S                           |
| 12 | (305)                              | 12 | (305)                             | 16                                               | (406)                | 16    | (406)                | 240             | 1500           | 10.4             | (1.6) | 3/8 | (10)        | 3.2  | (1.5)     | 4.6   | (2.1)       | 5.8        | (2.6)  | RS       | VF012A12S                           |
|    |                                    | 18 | (457)                             | 16                                               | (406)                | 22    | (559)                | 240             | 2200           | 10.2             | (1.6) | 1/2 | (13)        | 4.9  | (2.2)     | 6.5   | (2.9)       | 7.7        | (3.5)  | М        | VF012A18S                           |
|    |                                    | 24 | (610)                             | 16                                               | (406)                | 28    | (711)                | 240             | 3000           | 10.4             | (1.6) | 3/4 | (19)        | 7.5  | (3.4)     | 9.5   | (4.3)       | 10.7       | (4.9)  | RS       | VF012A24S                           |
|    |                                    | 30 | (762)                             | 16                                               | (406)                | 34    | (864)                | 240             | 3600           | 10.0             | (1.6) | 3/4 | (19)        | 9.1  | (4.1)     | 11.7  | (5.3)       | 12.9       | (5.9)  | М        | VF012A30S                           |
|    |                                    | 36 | (914)                             | 16                                               | (406)                | 40    | (1016)               | 240             | 4400           | 10.2             | (1.6) | 3/4 | (19)        | 12.4 | (5.6)     | 15.5  | (7.0)       | 16.7       | (7.6)  | М        | VF012A36S                           |
| 14 | (356)                              | 12 | (305)                             | 18                                               | (457)                | 16    | (406)                | 240             | 1750           | 10.4             | (1.6) | 1/2 | (13)        | 4.7  | (2.1)     | 6.1   | (2.8)       | 7.6        | (3.4)  | М        | VF014A12S                           |
|    |                                    | 18 | (457)                             | 18                                               | (457)                | 22    | (559)                | 240             | 2550           | 10.6             | (1.6) | 1/2 | (13)        | 6.8  | (3.1)     | 8.5   | (3.9)       | 10.0       | (4.5)  | М        | VF014A18S                           |
|    |                                    | 24 | (610)                             | 18                                               | (457)                | 28    | (711)                | 240             | 3500           | 10.4             | (1.6) | 3/4 | (19)        | 10.0 | (4.5)     | 11.9  | (5.4)       | 13.4       | (6.1)  | М        | VF014A24S                           |
|    |                                    | 30 | (762)                             | 18                                               | (457)                | 34    | (864)                | 240             | 4300           | 10.2             | (1.6) | 3/4 | (19)        | 12.5 | (5.7)     | 15.0  | (6.8)       | 16.5       | (7.5)  | М        | VF014A30S                           |
|    |                                    | 36 | (914)                             | 18                                               | (457)                | 40    | (1016)               | 240/240         | 5200           | 10.3             | (1.6) | 1/2 | (13)        | 14.2 | (6.4)     | 17.2  | (7.8)       | 18.7       | (8.5)  | М        | VF014A36S <sup>2</sup>              |
| 16 | (406)                              | 12 | (305)                             | 20                                               | (508)                | 16    | (406)                | 240             | 2100           | 10.9             | (1.7) | 1/2 | (13)        | 5.2  | (2.4)     | 6.7   | (3.0)       | 8.4        | (3.8)  | М        | VF016A12S                           |
|    |                                    | 18 | (457)                             | 20                                               | (508)                | 22    | (559)                | 240             | 3000           | 10.4             | (1.6) | 3/4 | (19)        | 8.2  | (3.7)     | 9.9   | (4.5)       | 11.6       | (5.3)  | М        | VF016A18S                           |
|    |                                    | 24 | (610)                             | 20                                               | (508)                | 28    | (711)                | 240             | 4200           | 10.9             | (1.7) | 3/4 | (19)        | 11.9 | (5.4)     | 13.8  | (6.3)       | 15.5       | (7.0)  | М        | VF016A24S                           |
|    |                                    | 30 | (762)                             | 20                                               | (508)                | 34    | (864)                | 240/240         | 5000           | 10.4             | (1.6) | 1/2 | (13)        | 15.2 | (6.9)     | 17.7  | (8.0)       | 19.4       | (8.8)  | М        | VF <sup>1</sup> 16A30S <sup>2</sup> |
|    |                                    | 36 | (914)                             | 20                                               | (508)                | 40    | (1016)               | 240/240         | 6000           | 10.4             | (1.6) | 3/4 | (19)        | 17.9 | (8.1)     | 20.9  | (9.5)       | 22.6       | (10.3) | М        | VF016A36S <sup>2</sup>              |



<sup>•</sup> RS - Next day shipment up to 2 pieces for orders with part number

configuration -0001R.


<sup>•</sup> All modifications to RAPID SHIP are manufacturing lead times. **WATLOW**®

All units in this table are suitable for use up to 2000°F (1093°C) maximum surface temperature.

① Add Type number (Type 5 - 8) in the blank position in the part number. Example: VS704A06S. For unheated units, see catalog page 444.

<sup>2</sup> These units have dual elements to use in "parallel" for 240V usage. Alternate designs are available for 480V, 277V and three-phase (internally wired). Contact your Watlow representative.

### **Ceramic Fiber Heaters**



(Style B Leads Illustrated)

(Style A or B leads available on any type unit. Please specify.)

(Style A Leads Illustrated)

Type 4

No Vestibule

(Style B Leads Illustrated)

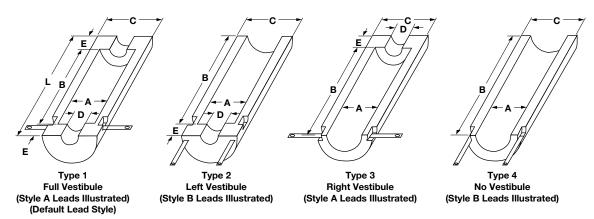
### Semi-Cylindrical Units — Embedded Coiled Elements (see page 435)

(Style A Leads Illustrated)

(Default Lead Style)

| Se                | IIII-C          | yııı | urica                | ו טו               | 1115 -         | _ =:               | iibed  | iuec                                          | 1 601           | ieu                           | Eleli          | nents ( | see pag       | 3 435)  |               |            |      |      |             |              |          |                        |
|-------------------|-----------------|------|----------------------|--------------------|----------------|--------------------|--------|-----------------------------------------------|-----------------|-------------------------------|----------------|---------|---------------|---------|---------------|------------|------|------|-------------|--------------|----------|------------------------|
|                   |                 |      |                      | Dir                | nensic         | ns, in             | . (mm) |                                               |                 |                               |                |         |               |         |               |            |      |      |             |              |          |                        |
|                   |                 | Heat | ed Size              | )                  |                |                    |        | <u> , , , , , , , , , , , , , , , , , , ,</u> | & 3 Si          |                               |                |         | Electrica     | l Ratii | ngs           |            |      | Ap   | prox.       | Net Wt.      |          |                        |
|                   |                 |      |                      |                    |                |                    |        |                                               | ule Siz         | 1                             |                |         |               |         |               |            |      |      |             |              |          |                        |
|                   | ). (A)<br>(mm)  |      | gth (B)<br>(mm)      |                    | D. (C)<br>(mm) | Leng<br>in. (n     |        |                                               | a. (D)<br>(mm)  |                               | th (E)<br>mm)  |         | Power (Watts) |         | face<br>iding | Str<br>Lea |      |      | pe 1<br>ull | Type 4<br>No |          |                        |
|                   | ( <u>+</u> 3.2) | +1/  | i6 - <sup>1</sup> /8 |                    | Ref)           | +1/16              | -1/8   |                                               | ( <u>+</u> 3.2) | +1/1                          | 6 <b>-</b> 1/8 |         |               |         | (W/cm²)       | Wic        |      | Ve   | est.        | Vest.        |          | Part                   |
|                   |                 | (+1. | 6 - 3.2)             |                    |                | (+1.6              | - 3.2) |                                               |                 | (+1.6                         | - 3.2)         | Volts   |               |         |               | in. (n     | nm)  | lbs  | (kg)        | lbs (kg)     | Delivery | Number                 |
| 2                 | (51)            | 6    | (152)                | 6                  | (152)          | 8                  | (203)  | 1                                             | (25)            | 1                             | (25)           | 60      | 275           | 14.6    | (2.3)         | 3/8        | (10) | 1.1  | (0.5)       | 1.1 (0.5)    | RS       | VS002A06S              |
|                   |                 | 12   | (305)                | 6                  | (152)          | 14                 | (356)  | 1                                             | (25)            | 1                             | (25)           | 120     | 550           | 14.6    | (2.3)         | 3/8        | (10) | 1.8  | (8.0)       | 1.8 (0.8)    | RS       | VS002A12S              |
|                   |                 | 18   | (457)                | 6                  | (152)          | 20                 | (508)  | 1                                             | (25)            | 1                             | (25)           | 120     | 750           | 13.3    | (2.1)         | 3/8        | (10) | 2.3  | (1.0)       | 2.3 (1.0)    | RS       | VS002A18S              |
|                   |                 | 24   | (610)                | 6                  | (152)          | 26                 | (660)  | 1                                             | (25)            | 1                             | (25)           | 240     | 1100          | 14.6    | (2.3)         | 3/8        | (10) | 3.5  | (1.6)       | 3.5 (1.6)    | RS       | VS002A24S              |
| 31/2              | (89)            | 6    | (152)                | 71/                | 2 (191)        | 91/2               | (241)  | 2                                             | (51)            | 1 <sup>3</sup> / <sub>4</sub> | (45)           | 60      | 450           | 13.6    | (2.1)         | 1/2        | (13) | 2.0  | (0.9)       | 1.5 (0.7)    | RS       | VS003J06S              |
|                   |                 | 12   | (305)                | 7 <sup>1</sup> /   | 2 (191)        | 15 <sup>1</sup> /2 | (394)  | 2                                             | (51)            | 1 <sup>3</sup> /4             | (45)           | 120     | 900           | 13.6    | (2.1)         | 1/2        | (13) | 3.1  | (1.4)       | 2.6 (1.2)    | RS       | VS <sup>①</sup> 03J12S |
|                   |                 | 18   | (457)                | 71/                | 2 (191)        | 21 <sup>1</sup> /2 | (546)  | 2                                             | (51)            | 1 <sup>3</sup> /4             | (45)           | 120     | 1250          | 12.6    | (2.0)         | 1/2        | (13) | 4.5  | (2.0)       | 4.0 (1.8)    | RS       | VS003J18S              |
|                   |                 | 24   | (610)                | 71/                | 2 (191)        | 27 <sup>1</sup> /2 | (699)  | 2                                             | (51)            | 1 <sup>3</sup> / <sub>4</sub> | (45)           | 240     | 1800          | 13.6    | (2.1)         | 1/2        | (13) | 5.4  | (2.4)       | 4.9 (2.2)    | RS       | VS003J24S              |
| 5                 | (127)           | 6    | (152)                | 9                  | (229)          | 11                 | (279)  | 3 <sup>1</sup> / <sub>2</sub>                 | (89)            | 2 <sup>1</sup> / <sub>2</sub> | (64)           | 60      | 625           | 13.3    | (2.1)         | 1/2        | (13) | 3.4  | (1.5)       | 2.5 (1.1)    | RS       | VS005A06S              |
|                   |                 | 12   | (305)                | 9                  | (229)          | 17                 | (432)  | 3 <sup>1</sup> /2                             | (89)            | 21/2                          | (64)           | 120     | 1250          | 13.3    | (2.1)         | 1/2        | (13) | 4.9  | (2.2)       | 4.0 (1.8)    | RS       | VS <sup>®</sup> 05A12S |
|                   |                 | 18   | (457)                | 9                  | (229)          | 23                 | (584)  | 31/2                                          | (89)            | 21/2                          | (64)           | 240     | 1775          | 12.6    | (2.0)         | 1/2        | (13) | 5.7  | (2.6)       | 4.8 (2.2)    | RS       | VS005A18S              |
|                   |                 | 24   | (610)                | 9                  | (229)          | 29                 | (737)  | 3 <sup>1</sup> /2                             | (89)            | 2 <sup>1</sup> / <sub>2</sub> | (64)           | 240     | 2500          | 13.3    | (2.1)         | 1/2        | (13) | 7.9  | (3.6)       | 6.9 (3.1)    | RS       | VS <sup>0</sup> 05A24S |
|                   |                 | 30   | (762)                | 9                  | (229)          | 35                 | (889)  | 31/2                                          | (89)            | 21/2                          | (64)           | 240     | 3100          | 13.2    | (2.0)         | 3/4        | (19) | 10.9 | (4.9)       | 9.2 (4.2)    | RS       | VS005A30S              |
|                   |                 | 36   | (914)                | 9                  | (229)          | 41                 | (1041) | 31/2                                          | (89)            | 21/2                          | (64)           | 240     | 3550          | 12.6    | (2.0)         | 3/4        | (19) | 13.2 | (6.0)       | 11.5 (5.2)   | М        | VS005A36S              |
| 6 <sup>1</sup> /2 | (165)           | 6    | (152)                | 10 <sup>1</sup> /  | 2 (267)        | 12                 | (305)  | 5                                             | (127)           | 3                             | (76)           | 120     | 750           | 12.2    | (1.9)         | 3/8        | (10) | 3.8  | (1.7)       | 2.6 (1.2)    | RS       | VS006J06S              |
|                   |                 | 12   | (305)                | 10 <sup>1</sup> /: | 2 (267)        | 18                 | (457)  | 5                                             | (127)           | 3                             | (76)           | 240     | 1500          | 12.2    | (1.9)         | 3/8        | (10) | 5.4  | (2.4)       | 4.2 (1.9)    | RS       | VS®06J12S              |
|                   |                 | 18   | (457)                | l                  | 2 (267)        |                    | (610)  |                                               | (127)           | 3                             | (76)           | 240     | 2100          | 11.4    | (1.8)         |            | (13) |      | (3.4)       | 6.2(2.8)     | RS       | VS006J18S              |
|                   |                 | 24   | (610)                | l                  | 2 (267)        |                    | (762)  |                                               | (127)           | 3                             | (76)           | 240     | 3000          | 12.2    | (1.9)         |            |      |      | (4.9)       | 8.9(4.0)     | RS       | VS006J24S              |
|                   |                 | 30   | (762)                | l                  | 2 (267)        |                    | (914)  |                                               | (127)           | 3                             | (76)           | 240     | 3750          | 12.2    | (1.9)         |            |      | 13.5 | (- /        | 11.4(5.2)    | М        | VS006J30S              |
|                   |                 | 36   | (914)                |                    | 2 (267)        |                    | (1067) | 5                                             | (127)           | 3                             | (76)           | 240     | 4200          | 11.4    | (1.8)         |            |      | 16.4 | (7.4)       | 14.3(6.5)    | М        | VS:06J36S              |
| 8                 | (203)           | 6    | (152)                | 12                 | (000)          | 12                 | (305)  |                                               | (165)           | 3                             | (76)           | 120     | 900           | 11.6    | (1.8)         | 1/2        | (13) |      | (2.3)       | 2.8(1.3)     | М        | VS008A06S              |
|                   |                 | 12   | (305)                | 12                 | (000)          | 18                 | (457)  | 61/2                                          | (165)           | 3                             | (76)           | 240     | 1800          | 11.6    | (1.8)         |            | (13) |      | (3.4)       | 5.0(2.3)     | RS       | VS008A12S              |
|                   |                 | 18   | (457)                | 12                 | ()             | 24                 | (610)  |                                               | (165)           | 3                             | (76)           | 240     | 2500          | 11.1    | (1.7)         |            |      | 10.5 | , ,         | 8.1 (3.7)    | RS       | VS008A18S              |
|                   |                 | 24   | (610)                | 12                 | ()             | 30                 | (762)  |                                               | (165)           | 3                             | (76)           | 240     | 3500          | 11.6    | (1.8)         |            |      |      | ()          | 12.4(5.6)    | М        | VS008A24S              |
|                   |                 | 30   | (762)                | 12                 | ()             | 36                 | (914)  |                                               | (165)           | 3                             | (76)           | 240     | 4200          | 11.1    | (1.7)         |            |      |      | ,           | 14.1 (6.4)   | М        | VS008A30S              |
|                   |                 | 36   | (914)                | 12                 | (305)          | 42                 | (1067) | 61/2                                          | (165)           | 3                             | (76)           | 240/240 | 5000          | 11.1    | (1.7)         | 1/2        | (13) | 18.0 | (8.2)       | 15.6(7.1)    | М        | VS008A36S2             |
|                   |                 |      |                      |                    |                |                    |        |                                               |                 |                               |                |         |               |         |               |            |      |      |             |              |          | CONTINUED              |
|                   |                 |      |                      |                    |                |                    |        |                                               |                 |                               |                |         |               |         |               |            |      |      |             |              |          |                        |

### RAPID SHIP


- RS Next day shipment up to 2 pieces for orders with part number configuration -0001R.
- All modifications to RAPID SHIP are manufacturing lead times.
- M Manufacturing lead times

All units have  $2 \pm 1/4$  inch thick walls.

All units in this table are suitable for use up to 2000°F (1093°C) maximum surface temperature.

- ① Add Type number (Type 1 4) in the blank position in the part number. Example: **VS102A06S**. For unheated units, see catalog page 444.
  - Overall length applies only to the full vestibule (Type 1) units. Types 2 and 3 are shorter by one vestibule length. Type 4 length equals **(B)**.
  - Type 2 (left vestibule) and Type 3 (right vestibule) style units are not stocked. They are, however, still standard units and designs are kept on file.
- ② These units have dual elements to use in "parallel" for 240V usage. Alternate designs are available for 480V, 277V and three-phase (internally wired). Contact your Watlow representative.

### **Ceramic Fiber Heaters**



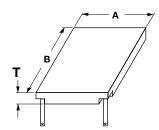
(Style A or B leads available on any type unit. Please specify.)

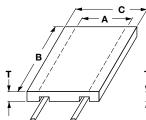
### Semi-Cylindrical Units - Embedded Coiled Elements (see page 435)

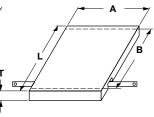
|     |                                     |                         |                                                     | Di  | mensio                 | ns, i    | n. (mm)                                         |            |                                     |                     |                                                     |         |                         |         |                         |                                    |                                     |                                   |          |                |
|-----|-------------------------------------|-------------------------|-----------------------------------------------------|-----|------------------------|----------|-------------------------------------------------|------------|-------------------------------------|---------------------|-----------------------------------------------------|---------|-------------------------|---------|-------------------------|------------------------------------|-------------------------------------|-----------------------------------|----------|----------------|
|     | I                                   | Heat                    | ed Size                                             | ;   |                        |          | Туре                                            | 1, 2,      | & 3 Si                              | zes                 |                                                     | ١       | Electrica               | l Ratir | ngs                     |                                    | Approx.                             | Net Wt.                           |          |                |
| in. | ). (A)<br>(mm)<br>s ( <u>+</u> 3.2) | in.<br>+ <sup>1</sup> / | gth (B)<br>(mm)<br>16 - <sup>1</sup> /8<br>6 - 3.2) | in. | D. (C)<br>(mm)<br>Ref) | in<br>+1 | Vngth (L)<br>1. (mm)<br>1.6 - 1/8<br>1.6 - 3.2) | Dia<br>in. | ule Siz<br>a. (D)<br>(mm)<br>(±3.2) | Leng<br>in.<br>+1/1 | gth (E)<br>(mm)<br>16 - <sup>1</sup> /8<br>5 - 3.2) | Volts   | Power<br>(Watts)<br>±5% | Loa     | face<br>ding<br>(W/cm²) | Strip<br>Lead<br>Width<br>in. (mm) | Type 1<br>Full<br>Vest.<br>Ibs (kg) | Type 4<br>No<br>Vest.<br>Ibs (kg) | Delivery | Part<br>Number |
| 10  | (254)                               | 12                      | (305)                                               | 14  | (356)                  | 18       | (457)                                           | 8          | (203)                               | 3                   | (76)                                                | 240     | 2100                    | 11.1    | (1.7)                   | <sup>1</sup> /2 (13)               | 9.2 (4.2)                           | 6.5 (2.9)                         | М        | VS010A12S      |
|     |                                     | 18                      | (457)                                               | 14  | (356)                  | 24       | (610)                                           | 8          | (203)                               | 3                   | (76)                                                | 240     | 3000                    | 10.6    | (1.6)                   | <sup>3</sup> /4 (19)               | 13.3 (6.0)                          | 10.6 (4.8)                        | М        | VS010A18S      |
|     |                                     | 24                      | (610)                                               | 14  | (356)                  | 30       | (762)                                           | 8          | (203)                               | 3                   | (76)                                                | 240     | 4200                    | 11.1    | (1.7)                   | <sup>3</sup> /4 (19)               | 15.5 (7.0)                          | 12.8 (5.8)                        | М        | VS010A24S      |
|     |                                     | 30                      | (762)                                               | 14  | (356)                  | 36       | (914)                                           | 8          | (203)                               | 3                   | (76)                                                | 240/240 | 5000                    | 10.6    | (1.6)                   | <sup>1</sup> /2 (13)               | 18.7 (8.5)                          | 15.4 (7.0)                        | М        | VS010A30S2     |
|     |                                     | 36                      | (914)                                               | 14  | (356)                  | 42       | (1067)                                          | 8          | (203)                               | 3                   | (76)                                                | 240/240 | 6000                    | 10.6    | (1.6)                   | <sup>3</sup> /4 (19)               | 22.6(10.3)                          | 19.3 (8.8)                        | М        | VS010A36S2     |
| 12  | (305)                               | 12                      | (305)                                               | 16  | (406)                  | 18       | (457)                                           | 10         | (254)                               | 3                   | (76)                                                | 240     | 2500                    | 11.1    | (1.7)                   | <sup>1</sup> / <sub>2</sub> (13)   | 9.9 (4.5)                           | 6.8 (3.1)                         | RS       | VS012A12S      |
|     |                                     | 18                      | (457)                                               | 16  | (406)                  | 24       | (610)                                           | 10         | (254)                               | 3                   | (76)                                                | 240     | 3500                    | 10.3    | (1.6)                   | <sup>3</sup> /4 (19)               | 13.0 (5.9)                          | 9.9 (4.5)                         | RS       | VS012A18S      |
|     |                                     | 24                      | (610)                                               | 16  | (406)                  | 30       | (762)                                           | 10         | (254)                               | 3                   | (76)                                                | 240     | 4200                    | 9.3     | (1.4)                   | <sup>3</sup> /4 (19)               | 18.5 (8.4)                          | 15.4 (7.0)                        | RS       | VS012A24S      |
|     |                                     | 30                      | (762)                                               | 16  | (406)                  | 36       | (914)                                           | 10         | (254)                               | 3                   | (76)                                                | 240/240 | 6000                    | 10.6    | (1.6)                   | <sup>3</sup> /4 (19)               | 22.5(10.2)                          | 18.6 (8.4)                        | М        | VS012A30S2     |
|     |                                     | 36                      | (914)                                               | 16  | (406)                  | 42       | (1067)                                          | 10         | (254)                               | 3                   | (76)                                                | 240/240 | 7000                    | 10.3    | (1.6)                   | <sup>3</sup> /4 (19)               | 26.9(12.2)                          | 23.1(10.5)                        | М        | VS012A36S2     |
| 14  | (356)                               | 12                      | (305)                                               | 18  | (457)                  | 18       | (457)                                           | 12         | (305)                               | 3                   | (76)                                                | 240     | 3000                    | 11.4    | (1.8)                   | <sup>3</sup> / <sub>4</sub> (19)   | 12.6 (5.7)                          | 9.0 (4.1)                         | М        | VS014A12S      |
|     |                                     | 18                      | (457)                                               | 18  | (457)                  | 24       | (610)                                           | 12         | (305)                               | 3                   | (76)                                                | 240     | 4200                    | 10.6    | (1.6)                   | <sup>3</sup> /4 (19)               | 15.3 (6.9)                          | 11.7 (5.3)                        | М        | VS014A18S      |
|     |                                     | 24                      | (610)                                               | 18  | (457)                  | 30       | (762)                                           | 12         | (305)                               | 3                   | (76)                                                | 240/240 | 6000                    | 11.4    | (1.8)                   | <sup>3</sup> /4 (19)               | 18.8 (8.5)                          | 15.2 (6.9)                        | М        | VS014A24S2     |
|     |                                     | 30                      | (762)                                               | 18  | (457)                  | 36       | (914)                                           | 12         | (305)                               | 3                   | (76)                                                | 240/240 | 7000                    | 10.6    | (1.6)                   | <sup>3</sup> /4 (19)               | 26.7(12.1)                          | 22.2(10.1)                        | М        | VS014A30S2     |
|     |                                     | 36                      | (914)                                               | 18  | (457)                  | 42       | (1067)                                          | 12         | (305)                               | 3                   | (76)                                                | 240/240 | 8400                    | 10.6    | (1.6)                   | ( - /                              | 31.8(14.4)                          | 27.3(12.4)                        | М        | VS014A36S2     |
| 16  | (406)                               | 12                      | (305)                                               | 20  | (508)                  | 18       | (457)                                           | 14         | (356)                               | 3                   | (76)                                                | 240     | 3500                    | 11.6    | (1.8)                   | <sup>3</sup> / <sub>4</sub> (19)   | 14.0 (6.4)                          | 10.2 (4.6)                        | М        | VS016A12S      |
|     |                                     | 18                      | (457)                                               | 20  | (508)                  | 24       | (610)                                           | 14         | (356)                               | 3                   | (76)                                                | 240     | 4200                    | 9.3     | (1.4)                   | <sup>3</sup> /4 (19)               | 16.9 (7.7)                          | 13.1 (5.9)                        | М        | VS016A18S      |
|     |                                     | 24                      | (610)                                               | 20  | (508)                  | 30       | (762)                                           | 14         | (356)                               | 3                   | (76)                                                | 240/240 | 7000                    | 11.6    | (1.8)                   | <sup>3</sup> /4 (19)               | 20.8 (9.4)                          | 17.0 (7.7)                        | М        | VS016A24S2     |
|     |                                     | 30                      | (762)                                               | 20  | (508)                  | 36       | (914)                                           | 14         | (356)                               | 3                   | (76)                                                | 240/240 | 7600                    | 10.1    | (1.6)                   | <sup>3</sup> /4 (19)               | 30.1(13.7)                          | 24.2(11.0)                        | М        | VS016A30S2     |
|     |                                     | 36                      | (914)                                               | 20  | (508)                  | 42       | (1067)                                          | 14         | (356)                               | 3                   | (76)                                                | 240/240 | 9000                    | 9.9     | (1.5)                   | <sup>3</sup> /4 (19)               | 34.4(15.6)                          | 28.5(12.9)                        | М        | VS016A36S2     |

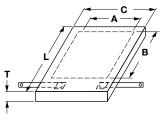
## RAPID SHIP

- RS Next day shipment up to 2 pieces for orders with part number configuration -0001R.
- All modifications to RAPID SHIP are manufacturing lead times.
- **M** Manufacturing lead times


All units in this table have  $2 \pm 1/4$  inch thick walls.


All units in this table are suitable for use up to 2000°F (1093°C) maximum surface temperature.


- ① Add Type number (Type 1 4) in the blank position in the part number. Example: **VS102A06S**. For unheated units, see catalog page 444.
  - Overall length applies only to the full vestibule (Type 1) Units. Types 2 and 3 are shorter by one vestibule length. Type 4 length equals (B).
  - Type 2 (left vestibule) and Type 3 (right vestibule) style units are not stocked. They are, however, still standard units and designs are kept on file.
- ② These units have dual elements to use in "parallel" for 240V usage. Alternate designs are available for 480V, 277V and three-phase (internally wired). Contact your Watlow representative.


### **Ceramic Fiber Heaters**











Type 5 Fully Heated (Style A Leads Illustrated) (Default Lead Style)

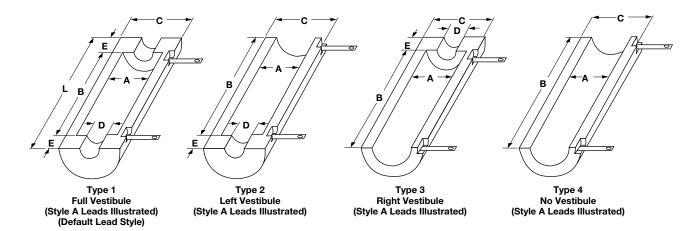
Type 6 Insulated Sides (Style B Leads Illustrated)

Type 7 Insulated Ends (Style C Leads Illustrated)

Type 8 Insulated All Edges (Style C Leads Illustrated)

(Style A, B or C leads available on any type unit. Please specify.)

Flat Units—High Watt Density Sinuated Elements (see page 434)


|    | Ullits                       |    | Dimension                           |    |                                   |     | autou                                     | Lienie  | 1110 (0)       | σο ρας | JO 10 1         |     |              |             |     |                   |       |       |          |                        |
|----|------------------------------|----|-------------------------------------|----|-----------------------------------|-----|-------------------------------------------|---------|----------------|--------|-----------------|-----|--------------|-------------|-----|-------------------|-------|-------|----------|------------------------|
|    | Heate                        |    |                                     |    | e 6 & 8                           | Тур | pe 7 & 8                                  |         | Electric       | al Rat | ing             | St  | rip          | Ар          | pro | oximate N         | let W | t.    |          |                        |
|    | th (A)                       |    | gth (B)                             |    | Ith (C)                           |     | ngth (L)                                  |         | Power          |        | face            |     | ead          | Туре        | е   | Туре              | Ту    |       |          |                        |
|    | ( <b>mm)</b><br>/8 (1.6-3.2) |    | (mm)<br>· <sup>1</sup> /8 (1.6-3.2) |    | (mm)<br><sup>1</sup> /8 (1.6-3.2) |     | . <b>(mm)</b><br><sup>1</sup> /8 (1.6-3.2 | Volts   | (Watts)<br>±5% |        | ding<br>(W/cm²) |     | idth<br>(mm) | 5<br>lbs (k | g)  | 6 & 7<br>lbs (kg) | lbs   |       | Delivery | Part No.               |
| 6  | (152)                        | 12 | (305)                               | 10 | (254)                             | 16  | (406)                                     | 60      | 1250           | 17.4   | (2.7)           | 1/2 | (13)         | 1.7 (0      | .8) | 2.7 (1.6)         | 3.6   | (1.2) | М        | VF006A12T              |
|    |                              | 18 | (457)                               | 10 | (254)                             | 22  | (559)                                     | 120     | 2000           | 18.5   | (2.9)           | 1/2 | (13)         | 2.6 (1      | .2) | 3.7 (2.1)         | 4.6   | (1.7) | М        | VF®06A18T              |
|    |                              | 24 | (610)                               | 10 | (254)                             | 28  | (711)                                     | 120     | 2500           | 17.4   | (2.7)           | 1/2 | (13)         | 3.2 (1      | .5) | 5.0 (2.7)         | 5.9   | (2.3) | М        | VF®06A24T              |
|    |                              | 24 | (610)                               | 10 | (254)                             | 28  | (711)                                     | 240     | 2500           | 17.4   | (2.7)           | 1/2 | (13)         | 3.2 (1      | .5) | 5.0 (2.7)         | 5.9   | (2.3) | М        | VF006A24U              |
|    |                              | 30 | (762)                               | 10 | (254)                             | 34  | (864)                                     | 240     | 3400           | 18.9   | (2.9)           | 1/2 | (13)         | 4.5 (2      | .0) | 7.1 (3.6)         | 7.9   | (3.2) | М        | VF006A30T              |
|    |                              | 36 | (914)                               | 10 | (254)                             | 40  | (1016)                                    | 240     | 4000           | 18.5   | (2.9)           | 1/2 | (13)         | 5.5 (2      | .5) | 8.5 (4.2)         | 9.3   | (3.9) | М        | VF®06A36T              |
| 8  | (203)                        | 12 | (305)                               | 12 | (305)                             | 16  | (406)                                     | 60      | 1800           | 18.7   | (2.9)           | 3/4 | (19)         | 2.3 (1      | .0) | 3.0 (1.8)         | 3.9   | (1.4) | М        | VF008A12T              |
|    |                              | 18 | (457)                               | 12 | (305)                             | 22  | (559)                                     | 120     | 3000           | 20.8   | (3.2)           | 3/4 | (19)         | 3.5 (1      | .6) | 4.6 (2.5)         | 5.5   | (2.1) | М        | VF008A18T              |
|    |                              | 24 | (610)                               | 12 | (305)                             | 28  | (711)                                     | 120     | 3600           | 18.7   | (2.9)           | 3/4 | (19)         | 4.4 (2      | .0) | 6.1 (3.2)         | 7.0   | (2.8) | М        | VF008A24T              |
|    |                              | 30 | (762)                               | 12 | (305)                             | 34  | (864)                                     | 240     | 5000           | 20.8   | (3.2)           | 1/2 | (13)         | 6.1 (2      | .8) | 8.7 (4.4)         | 9.7   | (4.0) | М        | VF008A30T              |
|    |                              | 36 | (914)                               | 12 | (305)                             | 40  | (1016)                                    | 240     | 6000           | 20.8   | (3.2)           | 3/4 | (19)         | 7.0 (3      | .2) | 10.0 (5.0)        | 11.0  | (4.5) | М        | VF008A36T              |
| 10 | (254)                        | 12 | (305)                               | 14 | (356)                             | 16  | (406)                                     | 120     | 2000           | 16.7   | (2.6)           | 1/2 | (13)         | 2.4 (1      | .1) | 3.7 (2.2)         | 4.8   | (1.7) | М        | VF <sup>1</sup> 10A12T |
|    |                              | 18 | (457)                               | 14 | (356)                             | 22  | (559)                                     | 120     | 3600           | 20.0   | (3.1)           | 3/4 | (19)         | 4.0 (1      | .8) | 5.2 (2.9)         | 6.3   | (2.4) | М        | VF010A18T              |
|    |                              | 24 | (610)                               | 14 | (356)                             | 28  | (711)                                     | 240     | 4500           | 17.9   | (2.8)           | 3/4 | (19)         | 4.7 (2      | .1) | 7.2 (3.8)         | 8.3   | (3.3) | М        | VF010A24T              |
|    |                              | 30 | (762)                               | 14 | (356)                             | 34  | (864)                                     | 240     | 6000           | 20.0   | (3.1)           | 3/4 | (19)         | 6.7 (3      | .0) | 9.3 (4.8)         | 10.5  | (4.2) | М        | VF010A30T              |
|    |                              | 36 | (914)                               | 14 | (356)                             | 40  | (1016)                                    | 240     | 7200           | 20.0   | (3.1)           | 3/4 | (19)         | 8.5 (3      | .9) | 11.5 (5.8)        | 12.7  | (5.2) | М        | VF010A36T              |
| 12 | (305)                        | 12 | (305)                               | 16 | (406)                             | 16  | (406)                                     | 120     | 2500           | 17.4   | (2.7)           | 1/2 | (13)         | 2.9 (1      | .3) | 4.3 (2.5)         | 5.5   | (2.0) | М        | VF012A12T              |
|    |                              | 12 | (305)                               | 16 | (406)                             | 16  | (406)                                     | 240     | 2500           | 17.4   | (2.7)           | 3/8 | (10)         | 2.9 (1      | .3) | 4.3 (2.5)         | 5.5   | (2.0) | М        | VF012A12U              |
|    |                              | 18 | (457)                               | 16 | (406)                             | 22  | (559)                                     | 240     | 4000           | 18.5   | (2.9)           | 1/2 | (13)         | 4.5 (2      | .0) | 6.1 (3.3)         | 7.3   | (2.8) | М        | VF012A18T              |
|    |                              | 24 | (610)                               | 16 | (406)                             | 28  | (711)                                     | 240     | 6000           | 20.8   | (3.2)           | 3/4 | (19)         | 6.6 (3      | .0) | 8.6 (4.4)         | 9.8   | (3.9) | М        | VF012A24T              |
|    |                              | 30 | (762)                               | 16 | (406)                             | 34  | (864)                                     | 240     | 7200           | 20.0   | (3.1)           | 3/4 | (19)         | 8.6 (3      | .9) | 11.2 (5.7)        | 12.6  | (5.1) | М        | VF012A30T              |
|    |                              | 36 | (914)                               | 16 | (406)                             | 40  | (1016)                                    | 240/240 | 8400           | 19.4   | (3.0)           | 3/4 | (19)         | 10.2 (4     | .6) | 13.2 (6.6)        | 14.6  | (6.0) | М        | VF012A36T2             |
| 14 | (356)                        | 12 | (305)                               | 18 | (457)                             | 16  | (406)                                     | 120     | 3500           | 20.8   | (3.2)           | 3/4 | (19)         | 4.2 (1      | .9) | 5.3 (3.0)         | 6.7   | (2.4) | М        | VF014A12T              |
|    |                              | 18 | (457)                               | 18 | (457)                             | 22  | (559)                                     | 240     | 4900           | 19.4   | (3.0)           | 1/2 | (13)         | 6.1 (2      | .8) | 7.6 (4.1)         | 9.1   | (3.4) | М        | VF114A18T              |
|    |                              | 24 | (610)                               | 18 | (457)                             | 28  | (711)                                     | 240     | 7000           | 20.8   | (3.2)           | 3/4 | (19)         | 8.5 (3      | .9) | 10.5 (5.4)        | 11.9  | (4.8) | М        | VF014A24T              |
|    |                              | 30 | (762)                               | 18 | (457)                             | 34  | (864)                                     | 240/240 | 8400           | 20.0   | (3.1)           | 3/4 | (19)         | 10.7 (4     | .9) | 13.2 (6.6)        | 14.6  | (6.0) | М        | VF014A30T <sup>2</sup> |
|    |                              | 36 | (914)                               | 18 | (457)                             | 40  | (1016)                                    | 240/240 | 9800           | 19.4   | (3.0)           | 1/2 | (13)         | 12.2 (5     | .5) | 15.2 (7.5)        | 16.6  | (6.9) | М        | VF114A36T2             |
| 16 | (406)                        | 12 | (305)                               | 20 | (508)                             | 16  | (406)                                     | 120     | 3550           | 18.5   | (2.9)           | 3/4 | (19)         | 4.7 (2      | .1) | 5.7 (3.4)         | 7.4   | (2.6) | М        | VF016A12T              |
|    |                              | 18 | (457)                               | 20 | (508)                             | 22  | (559)                                     | 240     | 5750           | 20.0   | (3.1)           | 3/4 | (19)         | 7.1 (3      | .2) | 8.6 (4.7)         | 10.3  | (3.9) | М        | VF016A18T              |
|    |                              | 24 | (610)                               | 20 | (508)                             | 28  | (711)                                     | 240     | 7100           | 18.5   | (2.9)           | 3/4 | (19)         | 9.5 (4      | .3) | 11.5 (6.0)        | 13.2  | (5.2) | М        | VF016A24T              |
|    |                              | 30 | (762)                               | 20 | (508)                             | 34  | (864)                                     | 240/240 | 9600           | 20.0   | (3.1)           | 1/2 | (13)         | 11.7 (5     | .3) | 14.2 (7.2)        | 15.9  | (6.4) | М        | VF016A30T <sup>2</sup> |
|    |                              | 36 | (914)                               | 20 | (508)                             | 40  | (1016)                                    | 240/240 | 11,500         | 20.0   | (3.1)           | 3/4 | (19)         | 14.2 (6     | .4) | 17.2 (8.6)        | 18.9  | (7.8) | М        | VF016A36T <sup>©</sup> |

<sup>•</sup> M - Manufacturing lead times

All units in this table are suitable for use up to 1800°F (982°C) maximum surface temperature.

- ① Add Type number (Type 5 8) in the blank position in the part number. Example: **VF806A12T**. For unheated units, see catalog page 444.
  - Sinuated wire, high watt density units are provided with embedded sinuated elements and high emissivity coating unless exposed sinuated is specified when manufactured. (These are not stocked.) Contact your Watlow representative.
- ② These units have dual elements to use in "parallel" for 240V usage. Alternate designs are available for 480V, 277V and three-phase (internally wired). Contact your Watlow representative.

### **Ceramic Fiber Heaters**



### Semi-Cylindrical Units—High Watt Density Sinuated Elements (see page 434)

|                                                 |      |                                                      | Die                | noncia                 | ne i                                   | n. (mm)                                            |                               |                        |                                                            |             |         |                         |         |                           |                                    |                                     |                                   |          |                        |
|-------------------------------------------------|------|------------------------------------------------------|--------------------|------------------------|----------------------------------------|----------------------------------------------------|-------------------------------|------------------------|------------------------------------------------------------|-------------|---------|-------------------------|---------|---------------------------|------------------------------------|-------------------------------------|-----------------------------------|----------|------------------------|
|                                                 | Heat | ted Size                                             |                    | Hensio                 | 115, 1                                 | Type                                               | 1. 2. 8                       | & 3 S                  | zes                                                        |             |         | Electric                | al Rati | nas                       |                                    | Approx.                             | Net Wt.                           |          |                        |
|                                                 |      |                                                      | <u> </u>           |                        |                                        |                                                    |                               | le Siz                 |                                                            |             |         |                         |         | -3-                       |                                    |                                     |                                   |          |                        |
| I.D. (A)<br>in. (mm)<br>± <sup>1</sup> /8 (±3.2 | in.  | ngth (B)<br>(mm)<br>16 - <sup>1</sup> /8<br>6 - 3.2) | in.                | O. (C)<br>(mm)<br>Ref) | in. (<br>+ <sup>1</sup> / <sub>1</sub> | gth (L)<br>mm)<br>16 - <sup>1</sup> /8<br>6 - 3.2) | in. (                         | . (D)<br>mm)<br>(±3.2) | Lengt<br>in. (r<br>+ <sup>1</sup> / <sub>16</sub><br>(+1.6 | nm)<br>-1/8 | Volts   | Power<br>(Watts)<br>±5% | Loa     | rface<br>iding<br>(W/cm²) | Strip<br>Lead<br>Width<br>in. (mm) | Type 1<br>Full<br>Vest.<br>Ibs (kg) | Type 4<br>No<br>Vest.<br>Ibs (kg) | Delivery | Part<br>Number         |
| 5 (127)                                         | 6    | (152)                                                | 9                  | (229)                  | 11                                     | (279)                                              | 3 <sup>1</sup> /2             | (89)                   | 2 <sup>1</sup> /2                                          | (64)        | 60      | 750                     | 15.9    | (2.5)                     | <sup>3</sup> / <sub>8</sub> (10)   | 3.1 (1.4)                           | 2.3 (1.0)                         | М        | VS <sup>®</sup> 05A06T |
|                                                 | 12   | (305)                                                | 9                  | (229)                  | 17                                     | (432)                                              | 3 <sup>1</sup> /2             | (89)                   | 2 <sup>1</sup> / <sub>2</sub>                              | (64)        | 60      | 1400                    | 14.9    | (2.3)                     | <sup>3</sup> / <sub>4</sub> (19)   | 4.5 (2.0)                           | 3.6 (1.6)                         | М        | VS <sup>®</sup> 05A12T |
|                                                 | 18   | (457)                                                | 9                  | (229)                  | 23                                     | (584)                                              | 31/2                          | (89)                   | 21/2                                                       | (64)        | 120     | 2100                    | 14.9    | (2.3)                     | 1/2 (13)                           | 5.2 (2.4)                           | 4.3 (2.0)                         | М        | VS005A18T              |
|                                                 | 24   | (610)                                                | 9                  | (229)                  | 29                                     | (737)                                              | 3 <sup>1</sup> /2             | (89)                   | 2 <sup>1</sup> / <sub>2</sub>                              | (64)        | 120     | 2800                    | 14.9    | (2.3)                     | <sup>3</sup> / <sub>4</sub> (19)   | 6.9 (3.1)                           | 6.0 (2.7)                         | М        | VS <sup>①</sup> 05A24T |
|                                                 | 30   | (762)                                                | 9                  | (229)                  | 35                                     | (889)                                              | 3 <sup>1</sup> /2             | (89)                   | 2 <sup>1</sup> / <sub>2</sub>                              | (64)        | 240     | 3500                    | 14.9    | (2.3)                     | <sup>1</sup> / <sub>2</sub> (13)   | 8.3 (3.8)                           | 7.4 (3.4)                         | М        | VS <sup>®</sup> 05A30T |
|                                                 | 36   | (914)                                                | 9                  | (229)                  | 41                                     | (102)                                              | 3 <sup>1</sup> / <sub>2</sub> | (89)                   | 21/2                                                       | (64)        | 240     | 4200                    | 14.9    | (2.3)                     | 1/2 (13)                           | 9.6 (4.4)                           | 8.7 (3.9)                         | М        | VS005A36T              |
| 6 <sup>1</sup> /2 (165)                         | 6    | (152)                                                | 10 <sup>1</sup> /2 | 2 (267)                | 12                                     | (305)                                              | 5                             | (127)                  | 3                                                          | (76)        | 60      | 1000                    | 16.3    | (2.5)                     | 1/2 (13)                           | 3.6 (1.6)                           | 2.4 (1.1)                         | М        | VS <sup>①</sup> 06J06T |
|                                                 | 12   | (305)                                                | 10 <sup>1</sup> /2 | 2 (267)                | 18                                     | (457)                                              | 5                             | (127)                  | 3                                                          | (76)        | 120     | 2000                    | 16.3    | (2.5)                     | <sup>1</sup> / <sub>2</sub> (13)   | 5.1 (2.3)                           | 3.9 (1.8)                         | М        | VS <sup>1</sup> 06J12T |
|                                                 | 18   | (457)                                                | 10 <sup>1</sup> /2 | 2 (267)                | 24                                     | (610)                                              | 5                             | (127)                  | 3                                                          | (76)        | 120     | 3000                    | 16.3    | (2.5)                     | <sup>3</sup> / <sub>4</sub> (19)   | 6.8 (3.1)                           | 5.6 (2.5)                         | М        | VS006J18T              |
|                                                 | 24   | (610)                                                | 10 <sup>1</sup> /2 | 2 (267)                | 30                                     | (762)                                              | 5                             | (127)                  | 3                                                          | (76)        | 240     | 4000                    | 16.3    | (2.5)                     | <sup>1</sup> / <sub>2</sub> (13)   | 9.5 (4.3)                           | 7.4 (3.4)                         | М        | VS <sup>®</sup> 06J24T |
|                                                 | 30   | (762)                                                | 10 <sup>1</sup> /2 | 2 (267)                | 36                                     | (914)                                              | 5                             | (127)                  | 3                                                          | (76)        | 240     | 5000                    | 16.3    | (2.5)                     | <sup>1</sup> / <sub>2</sub> (13)   | . ,                                 | 9.3 (4.2)                         | М        | VS <sup>0</sup> 06J30T |
|                                                 | 36   | (914)                                                | 10 <sup>1</sup> /2 | 2 (267)                | 42                                     | (1067)                                             | 5                             | (127)                  | 3                                                          | (76)        | 240     | 6000                    | 16.3    | (2.5)                     | 3/4 (19)                           | 12.4 (5.6)                          | 11.2 (5.1)                        | М        | VS006J36T              |
| 8 (203)                                         | 6    | (152)                                                | 12                 | (305)                  | 12                                     | (305)                                              | 6 <sup>1</sup> /2             | (165)                  | 3                                                          | (76)        | 60      | 1300                    | 17.2    | (2.7)                     | <sup>1</sup> / <sub>2</sub> (13)   | 4.1 (1.9)                           | 2.6 (1.2)                         | М        | VS <sup>®</sup> 08A06T |
| , ,                                             | 12   | (305)                                                | 12                 | (305)                  | 18                                     | (457)                                              | l                             | (165)                  | 3                                                          | (76)        | 120     | 2600                    | 17.2    | (2.7)                     | <sup>1</sup> / <sub>2</sub> (13)   | 6.9 (3.1)                           | 5.4 (2.4)                         | М        | VS <sup>1</sup> 08A12T |
|                                                 | 18   | (457)                                                | 12                 | (305)                  | 24                                     | (610)                                              |                               | (165)                  | 3                                                          | (76)        | 240     | 3900                    | 17.2    | (2.7)                     | 1/2 (13)                           | 8.5 (3.9)                           | 7.0 (3.2)                         | М        | VS008A18T              |
|                                                 | 24   | (610)                                                | 12                 | (305)                  | 30                                     | (762)                                              | 6 <sup>1</sup> / <sub>2</sub> | (165)                  | 3                                                          | (76)        | 240     | 5200                    | 17.2    | (2.7)                     | <sup>1</sup> / <sub>2</sub> (13)   | ()                                  | 10.5 (4.8)                        | М        | VS <sup>①</sup> 08A24T |
|                                                 | 30   | (762)                                                | 12                 | (305)                  | 36                                     | (914)                                              |                               | (165)                  | 3                                                          | (76)        | 240     | 6250                    | 16.7    | (2.6)                     | ' '                                | (0)                                 | 12.3 (5.6)                        | М        | VS008A30T              |
|                                                 | 36   | (914)                                                | 12                 | (305)                  | 42                                     | (1067)                                             |                               | (165)                  | 3                                                          | , ,         | 240/240 | 7800                    | 17.2    | (2.7)                     |                                    |                                     | 14.1 (6.4)                        | М        | VS008A36T2             |
|                                                 |      |                                                      |                    |                        |                                        |                                                    |                               |                        |                                                            |             |         |                         |         |                           |                                    |                                     |                                   |          | CONTINUE               |

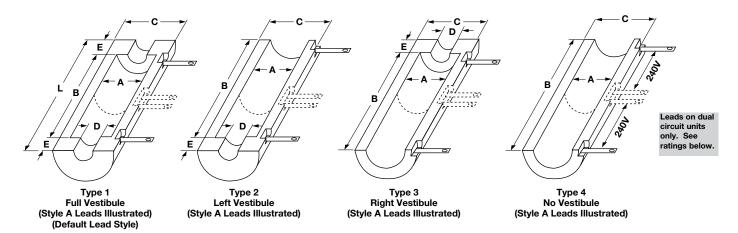
• M - Manufacturing lead times

All units in this table have  $2 \pm \frac{1}{4}$  inch thick walls.

All units in this table are suitable for use up to 1800°F (982°C) maximum surface temperature.

① Add Type number (Type 1 - 4) in the blank position in the part number. Example: **VS106J06T**. For unheated units, see catalog page 444.

Sinuated wire, high watt density units are provided with embedded sinuated elements and high emissivity coating unless exposed sinuated is specified when manufactured. (These are not stocked.) Contact your Watlow representative.


Overall length applies only to the full vestibule (Type 1) units. Types 2 and 3 are shorter by one vestibule length. Type 4 length equals **(B)**.

Type 2 (left vestibule) and Type 3 (right vestibule) style units are not stocked. They are, however, still standard units and designs are kept on file.

② These units have dual elements to use in "parallel" for 240V usage. Alternate designs are available for 480V, 277V and three-phase (internally wired). Contact your Watlow representative.

WATLOW® \_\_\_\_\_\_ 453

### **Ceramic Fiber Heaters**



Semi-Cylindrical Units—High Watt Density Sinuated Elements (see page 434)

|    |                      |                                        |                                                    | D   | imensio                    | ns, i                    | in. (mm)                                                   |           |                                      |                     |                                                     |         |                         |         |                           |                    |         |                        |        |         |                            |          |                                     |
|----|----------------------|----------------------------------------|----------------------------------------------------|-----|----------------------------|--------------------------|------------------------------------------------------------|-----------|--------------------------------------|---------------------|-----------------------------------------------------|---------|-------------------------|---------|---------------------------|--------------------|---------|------------------------|--------|---------|----------------------------|----------|-------------------------------------|
|    | ı                    | Heat                                   | ed Size                                            | Э   |                            |                          | Туре                                                       | 1, 2,     | & 3 Si                               | zes                 |                                                     |         | Electrica               | al Rati | ngs                       |                    |         | Ар                     | prox.  | Net     | Wt.                        |          |                                     |
|    | (A)<br>mm)<br>(±3.2) | in. (<br>+ <sup>1</sup> / <sub>1</sub> | gth (B)<br>(mm)<br>6 - <sup>1</sup> /8<br>i - 3.2) | in. | .D. (C)<br>. (mm)<br>(Ref) | in.<br>+ <sup>1</sup> /- | Ve<br>agth (L)<br>(mm)<br>16 - <sup>1</sup> /8<br>6 - 3.2) | Di<br>in. | ule Size<br>a. (D)<br>(mm)<br>(±3.2) | Leng<br>in.<br>+1/- | gth (E)<br>(mm)<br>16 - <sup>1</sup> /8<br>6 - 3.2) | Volts   | Power<br>(Watts)<br>±5% | Lo      | rface<br>ading<br>(W/cm²) | Stri<br>Lea<br>Wid | d<br>th | Typ<br>Fi<br>Ve<br>Ibs | st.    | N<br>Ve | oe 4<br>lo<br>est.<br>(kg) | Delivery | Part<br>Number                      |
| 10 | (254)                | 12                                     | (305)                                              | 14  | (356)                      | 18                       | (457)                                                      | 8         | (203)                                | 3                   | (76)                                                | 240     | 3200                    | 17.0    | (2.6)                     | 1/2 (              | 13)     | 8.5                    | (3.9)  | 5.8     | (2.6)                      | М        | VS010A12T                           |
|    |                      | 18                                     | (457)                                              | 14  | (356)                      | 24                       | (610)                                                      | 8         | (203)                                | 3                   | (76)                                                | 240     | 4800                    | 17.0    | (2.6)                     | ,                  | 13)     | 12.0                   | (5.4)  | 9.3     | (4.2)                      | М        | VS010A18T                           |
|    |                      | 24                                     | (610)                                              |     | (356)                      | 30                       | (762)                                                      | 8         | (203)                                | 3                   | (76)                                                | 240     | 6400                    | 17.0    | (2.6)                     | <sup>3</sup> /4 (  | 19)     | 1                      | , ,    |         | (5.0)                      | М        | VS <sup>®</sup> 10A24T              |
|    |                      | 30                                     | (762)                                              |     | (356)                      | 36                       | (914)                                                      | 8         | (203)                                | 3                   | ( - /                                               | 240/240 | 8000                    | 17.0    | (2.6)                     | · ·                | 19)     | 17.6                   | (8.0)  |         | ()                         | М        | VS010A30T2                          |
|    |                      | 36                                     | (914)                                              | _   | (356)                      | 42                       | (1067)                                                     | 8         | (203)                                | 3                   | . ,                                                 | 240/240 | 9600                    | 17.0    | (2.6)                     |                    | 13)     | 21.3                   | (9.7)  |         | (8.4)                      | М        | VS010A36T2                          |
| 12 | (305)                | 12                                     | (305)                                              |     | (406)                      | 18                       | (457)                                                      | 10        | (254)                                | 3                   | (76)                                                | 240     | 3800                    | 16.8    | (2.6)                     | ١. ١               | 13)     | 8.9                    | (4.0)  |         | (2.7)                      | М        | VS <sup>①</sup> 12A12T              |
|    |                      | 18                                     | (457)                                              |     | (406)                      | 24                       | (610)                                                      | 10        | (254)                                | 3                   | (76)                                                | 240     | 5700                    | 16.8    | (2.6)                     | ١,                 | 19)     | 1                      | (5.1)  |         | (3.7)                      | М        | VS012A18T                           |
|    |                      | 24                                     | (610)                                              |     | (406)                      | 30                       | (762)                                                      | 10        | (254)                                | 3                   | (76)                                                | 240     | 7600                    | 16.8    | (2.6)                     | · ·                | 19)     | 1                      | (7.6)  |         | (6.2)                      | М        | VS012A24T                           |
|    |                      | 30                                     | (762)                                              |     | (406)                      | 36                       | (914)                                                      | 10        | (254)                                | 3                   | ( - /                                               | 240/240 | 9600                    | 17.0    | (2.6)                     | ١. ١               | 13)     | 1                      | (8.2)  |         | (6.8)                      | М        | VS <sup>1</sup> 12A30T <sup>2</sup> |
|    |                      | 36                                     | (914)                                              | _   | (406)                      | 42                       | (1067)                                                     | 10        | (254)                                | 3                   | . ,                                                 | 240/240 | 11400                   | 16.8    | (2.6)                     |                    | 19)     |                        | (8.7)  |         | (7.3)                      | М        | VS012A36T2                          |
| 14 | (356)                | 12                                     | (305)                                              |     | (457)                      | 18                       | (457)                                                      | 12        | (305)                                | 3                   | (76)                                                | 240     | 4400                    | 16.7    | (2.6)                     | ١. ١               | 13)     | 1                      | (5.2)  |         | (3.5)                      | М        | VS014A12T                           |
|    |                      | 18                                     | /                                                  | 18  | (457)                      | 24                       | (610)                                                      | 12        | (305)                                | 3                   | (76)                                                | 240     | 6600                    | 16.7    | (2.6)                     | ١. ١               | 19)     | 1                      | (5.9)  |         | (4.3)                      | М        | VS014A18T                           |
|    |                      | 24                                     | (610)                                              |     | (457)                      | 30                       | (762)                                                      | 12        | (305)                                | 3                   | ( - /                                               | 240/240 | 8800                    | 16.7    | (2.6)                     | ١. ١               | 13)     | 16.3                   | ٠,     |         | (5.8)                      | М        | VS014A24T2                          |
|    |                      | 30                                     | (762)                                              | 18  | (457)                      | 36                       | (914)                                                      | 12        | (305)                                | 3                   | (76)                                                | 240/240 | 11400                   | 17.3    | (2.7)                     | ١ ,                | 19)     | 1                      |        |         | (7.2)                      | М        | VS014A30T2                          |
|    |                      | 36                                     | (914)                                              |     | (457)                      | 42                       | (1067)                                                     | 12        | (305)                                | 3                   |                                                     | 240/240 | 13200                   | 16.7    | (2.6)                     |                    | 19)     | 22.4 (                 |        |         | (/                         | М        | VS <sup>1</sup> 14A36T <sup>2</sup> |
| 16 | (406)                | 12                                     | (305)                                              |     | (508)                      | 18                       | (457)                                                      | 14        | (356)                                | 3                   | (76)                                                | 240     | 5000                    | 16.6    | (2.6)                     | ,                  | 13)     |                        | , ,    |         | (3.6)                      | М        | VS016A12T                           |
|    |                      | 18                                     | , ,                                                | 20  | (508)                      | 24                       | (610)                                                      | 14        | (356)                                | 3                   | ( - )                                               | 240/240 | 7500                    | 16.6    | (2.6)                     | ١. ١               | 19)     | 15.1                   | (6.8)  |         | (5.1)                      | М        | VS016A18T                           |
|    |                      | 24                                     | (610)                                              |     | (508)                      | 30                       | (762)                                                      | 14        | (356)                                | 3                   | ( - /                                               | 240/240 | -,                      | 16.6    | (2.6)                     | ,                  | 13)     | 18.1                   | (8.2)  | _       | (6.5)                      | М        | VS <sup>1</sup> 16A24T <sup>2</sup> |
|    |                      | 30                                     | (762)                                              |     | (508)                      | 36                       | (914)                                                      | 14        | (356)                                | 3                   | , ,                                                 | 240/240 | ,                       | 16.8    | (2.6)                     | 3/4 (              | 19)     | 22.3                   | . ,    |         | (- /                       | М        | VS016A30T2                          |
|    |                      | 36                                     | (914)                                              | 20  | (508)                      | 42                       | (1067)                                                     | 14        | (356)                                | 3                   | (76)                                                | 240/240 | 15,000                  | 16.6    | (2.6)                     | <sup>3</sup> /4 (  | 19)     | 26.4                   | (12.0) | 22.6    | (10.3)                     | М        | VS016A36T <sup>2</sup>              |

• M - Manufacturing lead times

All units in this table have 2  $\pm^{1/4}\,\text{inch}$  thick walls.

All units in this table are suitable for use up to 1800°F (982°C) maximum surface temperature.

① Add Type number (Type 1 through 4) in the blank position in the part number. Example **VS106J06T**. For unheated units, see catalog page 444.

Sinuated wire, high watt density units are provided with embedded sinuated elements and high emissivity coating unless exposed sinuated is specified when manufactured. (These are not stocked.) Contact your Watlow representative.

Overall length applies only to the full vestibule (Type 1) units. Types 2 and 3 are shorter by one Vestibule length. Type 4 length equals **(B)**.

Type 2 (left vestibule) and Type 3 (right vestibule) style units are not stocked. They are, however, still standard units and designs are kept on file.

② These units have dual elements to use in "parallel" for 240V usage. Alternate designs are available for 480V, 277V and three-phase (internally wired). Contact your Watlow representative.

### **Ceramic Fiber Heaters**

### **Ordering Information**

VF - Flat

**VS - Semi-Cylindrical** 

### **Part Number**

| 1                    | 2                    | 3                    | 4                    | 5                    | 6                    | 7                    | 8                    | 9                    | 10                      | 11) | 12 | 13              | 14             |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-----|----|-----------------|----------------|
| Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Base<br>Code<br>Nbr. | Modification<br>Options |     |    | Lead<br>Options | Lead<br>Length |
| V                    | F                    | 5                    | 1                    | 2                    | Α                    | 1                    | 2                    | S                    |                         | 0   | 0  |                 |                |

| (1 | ) (2) | (3) | 4 | <b>(5) (6)</b> | (7) | <b>(8</b> ) (9 | ) E | Base ( | Coc | le N | lum | ber |
|----|-------|-----|---|----------------|-----|----------------|-----|--------|-----|------|-----|-----|
|----|-------|-----|---|----------------|-----|----------------|-----|--------|-----|------|-----|-----|

| 10  | Modification Options                                                            |
|-----|---------------------------------------------------------------------------------|
| 0 = | None                                                                            |
| A = | 0.140 thermocouple tube I.D. center of heated length of unit                    |
| B = | 0.265 thermocouple tube I.D. center of heated length of unit                    |
| E = | Black surface coat                                                              |
| F = | Black surface coat 0.140 thermocouple tube I.D. center of heated length of unit |
| G = | Black surface coat 0.265 thermocouple tube I.D. center of heated length of unit |

| 13  | Lead Options                |
|-----|-----------------------------|
| 0 = | None                        |
| 1 = | 601 Alloy 600 strip A style |
| 2 = | 601 Alloy 600 strip B style |
| 3 = | 601 Alloy 600 strip C style |
| 9 = | Flex NI, MGT A style        |
| A = | Flex NI, MGT B style        |
| B = | Flex NI, MGT C style        |
| E = | Chromel® -A / NI, A style   |
| F = | Chromel® -A / NI, B style   |
| G = | Chromel® -A / NI, C style   |

| 14  | Lead I | _ength | 1      |
|-----|--------|--------|--------|
| A = | 0 in.  | T =    | 14 in. |
| B = | 1 in.  | U =    | 15 in. |
| E = | 2 in.  | V =    | 16 in. |
| F=  | 3 in.  | W=     | 17 in. |
| G = | 4 in.  | X =    | 18 in. |
| H = | 5 in.  | Y =    | 19 in. |
| J = | 6 in.  | 1 =    | 20 in. |
| K = | 7 in.  | 2 =    | 21 in. |
| L = | 8 in.  | 3 =    | 22 in. |
| M = | 9 in.  | 4 =    | 23 in. |
| N = | 10 in. | 6 =    | 24 in. |
| P = | 11 in. | 7 =    | 30 in. |
| R = | 12 in. | 8 =    | 36 in. |
| S = | 13 in. | 9 =    | 42 in. |

### Notes:

- If the order is placed before 11:00 AM CST, heaters with standard leads (...1R or ...2R) ship the same day. Heaters with non-standard leads ship the next day.
- The BTE (between-the-element) is NOT covered in this system yet. Please contact your Watlow representative for availability.

**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 455

### **Ceramic Fiber Heaters**

### How to Order

### Made-to-Order Units

### **Ordering Information**

**Quantity**: When ordering, specify quantity of units desired. Semi-cylindrical units are sold as "each half." Two halves to make a pair are usually required. Please include the number of desired spares or extras in the total quantity.

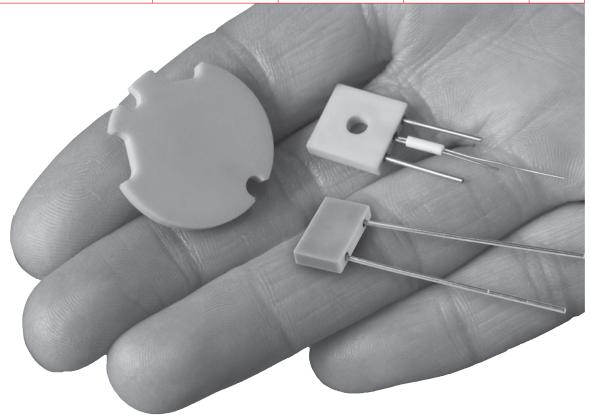
**Part number**: Use the part number if an exact re-order of a previously designed made-to-order unit is needed. Please reconfirm volts and watts, lead orientation and length. Most heaters allow selection of several stock modifications (see page 446) and termination options (see pages 440 and 441).

**Dimensions for made-to-order units**: Include a drawing if possible. Specify the heated area, width and length, overall width/length, thickness, electrical ratings, etc.

**Wattage**: 6.5 to 25 W/in<sup>2</sup> (1.0 - 3.9 W/cm<sup>2</sup>) on the heating surface is the recommended watt density range for operation in the 1500 to 2200°F (815 - 1204°C) range. (Note: At the higher temperatures, lower watt densities must be employed.) Please provide operating temperatures and conditions. Contact your Watlow representative for higher watt densities at other temperatures. Generally, for higher operating temperature limits, lower watt densities must be used.

**Voltage**: 60, 120 and 240VAC are offered on units. However, up to 600 volts is possible with extended capabilities. Internally connected three-lead, three-phase units are also available on made-to-order units (these are normally internally wye-connected). Contact your Watlow representative on special voltage requirements.

**Leads**: Lead length and orientation (i.e. **Style A, B** or **C**). Lead **Style A**, 12 in. (305 mm) long.


**Shipping weight**: The product listing tables show net weights per unit. To estimate gross shipping weight, add 30 percent to the total. Additional shipping/packaging charges may be incurred for certain large orders. Due to the light weight but large size of these heaters, dimensional box weighting may occur on expedited air shipments.

### Ordering Hints

Ordering ceramic fiber heaters is easy. However, it is very important to pay attention to part numbers and special modifications details.

- Always fill in the "...\_..." (blank) code position with the correct Type number (see illustrations above the charts).
- Always provide the correct Lead Style letter. (See suggested illustrations above the charts, but Style A-12 will be the default lead if not otherwise specified.)
- Supply a drawing or sketch whenever possible to eliminate confusion.
- When ordering Type 6, 7, 8 units, be certain of the heated area and no-heat area orientations desired.
- When planning to order Type 2 and/or Type 3 units (left or right vestibule), there are three options to consider—two of which could be used on the Type 1 items:
- 1. Order the appropriate full vestibule unit. The customer can carefully remove the unneeded vestibule.
- Order the full vestibule unit. Prior to shipping Watlow will remove the unneeded vestibule as a stock modification. There is a small additional charge for this.
- 3. Special order the desired Type 2 or 3 unit. This requires extended manufacturing of the heater and increases delivery time, but will minimize costs.

| Specialty Heaters             | Sheath Materials                 | Max. Op<br>Tempe<br>°F | perating<br>ratures<br>°C |      | al Max.<br>ensities<br>W/cm² | Page |
|-------------------------------|----------------------------------|------------------------|---------------------------|------|------------------------------|------|
| ULTRAMIC® Advanced<br>Ceramic | Aluminum nitride                 | 1112                   | 600                       | 1000 | 155                          | 459  |
| Thick Film Conduction         | 430 stainless steel              | 1022                   | 550                       | 75   | 11.6                         | 463  |
| Coil/Cable                    | 304 stainless steel or alloy 600 | 1200                   | 650                       | 30   | 4.6                          | 467  |





### **ULTRAMIC® Advanced Ceramic Heaters**

Watlow's high performance ULTRAMIC® advanced ceramic heaters are designed for thermal applications that require optimal effectiveness of equipment and processes.

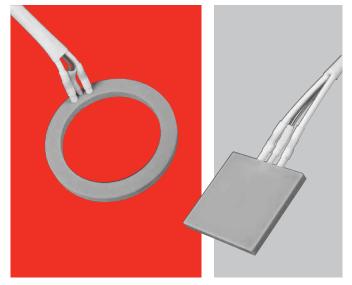
Constructed with aluminum nitride (AIN), ULTRAMIC heaters' thermally matched proprietary heating element provides maximum performance in challenging applications. AIN is especially suitable for applications that require a clean, non-contaminating heat source. Its excellent geometric stability ensures consistent part-to-part thermal contact during heating cycles.

Watlow AIN heaters operate up to 400°C (752°F)<sup>®</sup> with an ultra-fast ramp rate of up to 150°C (270°F) per second depending on the application, heater design and process parameters. In addition to its excellent thermal characteristics, the ULTRAMIC provides high electrical isolation and typically provides superior chemical resistance compared to traditional metal heaters.

### **Performance Capabilities**

- Standard operating temperature up to 400°C (752°F)<sup>①</sup>
- Watt densities up to 155 W/cm<sup>2</sup> (1000 W/in<sup>2</sup>)
- Temperature ramp rate up to 150°C (270°F) per second (depending on application parameters)

#### **Features and Benefits**


#### **Robust AIN ceramic**

- Creates a homogeneous assembly for atmospheric and vacuum applications
- Provides durable heater construction and thermal transfer necessary for high temperature and long heater life
- Supports the design of a high watt density, fast responding heater in a very small package
- Ensures geometric stability due to low coefficient of thermal expansion

#### Superior electrical performance

- Assures low leakage current
- Enables high breakdown voltage

<sup>①</sup> 400°C (752°F) operating temperature is standard. High temperature terminations between 400 and 600°C (752 and 1112°F) are available as an extended capability. Contact your Watlow representative for information.



#### **High thermal conductivity**

- Makes for an ultra-fast temperature ramp rate of up to 150°C (270°F) per second (depending on application parameters)
- Allows for quick cool-down
- Provides extremely uniform temperatures over the heater's surface

### Type K thermocouple integrated into assembly

- Ensures reliable heater/sensor interface
- Improves accuracy with optimized temperature sensing
- Provides ramping applications with a high response rate

### UL® and CE agency compliance

- · Meets global safety standards
- Includes RoHS compliance

### **Typical Applications**

- Wire and die bonding
- Integrated circuit (IC) chip testing
- Mass spectrometry
- Medical devices
- Plastic welding/sealing
- Respiratory therapy equipment

WATLOW® \_\_\_\_\_\_ 459

### **ULTRAMIC Advanced Ceramic Heaters**

### **Technical Data**

### **Mounting Guidelines**

- Temperature <200°C (392°F): bond with high-temperature epoxy adhesive
- Clamp using single or multiple-point fasteners

### **Optional Thermocouple**

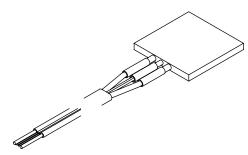
• Bonded Type K thermocouple for <400°C (752°F)

### **Specifications and Tolerances**

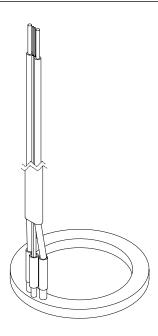
### **Surface Finish**

- Flatness: <0.05 mm (0.002 in.)
- Parallelism: <0.05 mm (0.002 in.)
- Surface roughness (Ra): <1.5 μm

### **Electrical Properties**


- TCR: 0.0015/°C
- Resistance tolerance: ±25%

### **Intellectual Property**


• U.S. Patents 7,696,455 and 7,832,616

### **Lead Wire and Terminations**

- Power terminals exit locations extended from side edge or top face
- PTFE insulated silver-plated copper lead extension
- Lead extension length standard length 305 mm (12 in.)
- Optional length of ceramic beads



Side Lead Exit



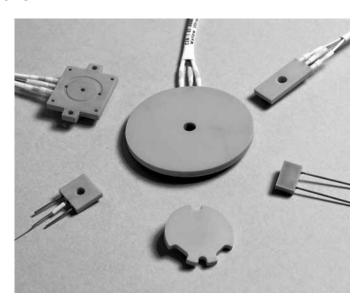
**Top Lead Exit** 



### Extended Capabilities For ULTRAMIC Advanced Ceramic Heaters

### **Features and Benefits**

### Rapid prototyping with finite element analysis (FEA)


- Provides rapid "virtual prototyping" of heater performance prior to the manufacturing process
- Allows custom prototype delivery in weeks rather than months with innovative design and manufacturing practices

### **Mounting Guidelines**<sup>1</sup>

 In addition to the options listed on the previous page, a screw hole can be provided on custom designs (recommend insulation buffer such as mica spacer)

### **Optional Sensors**

 In addition to, or in place of the standard bonded thermocouple, a drilled hole or slot can be provided for installing an externally mounted sensor



### **Configurations and Dimensions**

| illigaration                     | is and Dimension                                      | 13                               |                                                            |                                         |  |  |  |  |
|----------------------------------|-------------------------------------------------------|----------------------------------|------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Maximum Area 4032 mm² (6.25 in²) |                                                       |                                  |                                                            |                                         |  |  |  |  |
|                                  | Length                                                | Width                            | Thickness                                                  | Aspect Ratio                            |  |  |  |  |
| Flat Square                      |                                                       | mm (0.393 in.)<br>5 mm (2.5 in.) | Min: 2.5 mm (0.098 in.)<br>Max: 5 mm (0.196 in.)           | 1                                       |  |  |  |  |
| Rectangular                      | Max: 100 mm (3.94 in.)                                | Min: 8 mm (0.315 in.)            | Min: 2.5 mm (0.098 in.)<br>Max: 5 mm (0.196 in.)           | <10                                     |  |  |  |  |
|                                  | Inside Diameter<br>I.D.                               | Outside Diameter<br>O.D.         | Thickness                                                  | Ring Wall Thickness                     |  |  |  |  |
| Ring                             | Min: 0                                                | Max: O.D. 77.5 mm (3.05 in.)     | Min: 2.5 mm (0.098 in.)<br>Max: 5 mm (0.196 in.)           | Min wall thickness:<br>3 mm (0.118 in.) |  |  |  |  |
|                                  |                                                       | Machined                         | Features                                                   |                                         |  |  |  |  |
|                                  | Straight Groove<br>Custom Feature                     |                                  | Hole Size<br>Round Diameter                                |                                         |  |  |  |  |
| V                                | Depth: 0.5 mm min. (0.0<br>Vidth: 1 to 2 mm (0.039 to |                                  | Min: 1 mm (0.039 in.)                                      |                                         |  |  |  |  |
|                                  |                                                       | Electrical Pr                    | operties                                                   |                                         |  |  |  |  |
|                                  | Voltage                                               |                                  | Termination Area Max. Temperature                          |                                         |  |  |  |  |
|                                  | 12 to 480V                                            |                                  | 400°C (752°F) standard, 600°C (1112°F) extended capability |                                         |  |  |  |  |

<sup>&</sup>lt;sup>①</sup> See www.watlow.com/ultramic for detailed mounting guide.

### **ULTRAMIC Advanced Ceramic Heaters**

### **Technical Data**

### **Product Ordering Information**

| Part Number        | Dimensions<br>mm (in.)     | Thickness<br>mm (in.) | Watt Density | Watts | Volts | Lead Exit |
|--------------------|----------------------------|-----------------------|--------------|-------|-------|-----------|
| Square             |                            |                       |              |       |       |           |
| CER-1-01-00002     | 25 mm x 25 mm              | 2.5 mm                | High         | 967   | 240   | Side      |
| 02                 | (0.98 in. x 0.98 in.)      | (0.10 in.)            | g            |       | 0     | 0.00      |
| CER-1-01-00374     | 50 mm x 50 mm              | 3.0 mm                | Medium       | 1938  | 240   | Side      |
| 02.11 1 01 0007 1  | (1.97 in. x 1.97 in.)      | (0.12 in.)            | Widaiaiii    | 1000  | 2.10  | Oldo      |
| CER-1-01-00093     | 25 mm x 25 mm              | 2.5 mm                | Low          | 150   | 120   | Side      |
|                    | (0.98 in. x 0.98 in.)      | (0.10 in.)            |              |       |       |           |
| CER-1-01-00097     | 19 mm x 19 mm              | 2.5 mm                | Low          | 200   | 120   | Side      |
|                    | (0.75 in. x 0.75 in.)      | (0.10 in.)            |              |       |       |           |
| CER-1-01-00333     | 15 mm x 15 mm              | 2.5 mm                | Medium       | 150   | 48    | Side      |
|                    | (0.59 in. x 0.59 in.)      | (0.10 in.)            |              |       |       |           |
| CER-1-01-00334     | 12 mm x 12 mm              | 2.5 mm                | High         | 200   | 48    | Side      |
|                    | (0.47 in. x 0.47 in.)      | (0.10 in.)            |              |       |       |           |
| CER-1-01-00335     | 8 mm x 8 mm                | 3.0 mm                | Low          | 21.5  | 12    | Тор       |
|                    | (0.31 in. x 0.31 in.)      | (0.12 in.)            |              |       |       |           |
| Heaters With Holes |                            |                       |              |       |       |           |
| CER-1-01-00540     | 12 mm x 12 mm <sup>①</sup> | 2.5 mm                | Medium       | 100   | 24    | Side      |
|                    | (0.47 in. x 0.47 in.)      | (0.10 in.)            |              |       |       |           |
| CER-1-01-00541     | 25 mm x 25 mm <sup>②</sup> | 2.5 mm                | High         | 800   | 120   | Side      |
|                    | (0.98 in. x 0.98 in.)      | (0.10 in.)            |              |       |       |           |
| CER-1-01-00542     | 50 mm x 50 mm <sup>2</sup> | 3.0 mm                | Medium       | 1500  | 240   | Side      |
| <b>0 0 000</b>     | (1.97 in. x 1.97 in.)      | (0.12 in.)            |              |       |       |           |
| Rectangular        | (1.57 III. X 1.57 III.)    | (5112 111)            |              |       |       |           |
| CER-1-01-00001     | 25 mm x 15 mm              | 2.5 mm                | High         | 580   | 120   | Side      |
| OL11-1-01-00001    | (0.98 in. x 0.6 in.)       | (0.10 in.)            | riigii       | 300   | 120   | Olde      |
| CER-1-01-00003     | 50 mm x 10 mm              | 2.5 mm                | Medium       | 582   | 120   | Side      |
| OZ11 1 01 00000    | (1.97 in. x 0.39 in.)      | (0.10 in.)            | Wicalam      | 002   | 120   | Olde      |
| CER-1-01-00004     | 50 mm x 10 mm              | 2.5 mm                | High         | 770   | 240   | Side      |
| <b>0</b> 0. 0000.  | (1.97 in. x 0.39 in.)      | (0.10 in.)            | g            |       |       | 0.00      |
| CER-1-01-00005     | 50 mm x 25 mm              | 2.5 mm                | Medium       | 1453  | 240   | Side      |
|                    | (1.97 in. x 0.98 in.)      | (0.10 in.)            |              |       |       |           |
| CER-1-01-00007     | 75 mm x 25 mm              | 2.5 mm                | Medium       | 1455  | 240   | Side      |
|                    | (2.95 in. x 0.98 in.)      | (0.10 in.)            |              |       |       |           |
| CER-1-01-00098     | 25 mm x 15 mm              | 2.5 mm                | Low          | 180   | 120   | Side      |
|                    | (0.98 in. x 0.6 in.)       | (0.10 in.)            |              |       |       |           |
| CER-1-01-00105     | 50 mm x 25 mm              | 2.5 mm                | Low          | 100   | 120   | Side      |
|                    | (1.97 in. x 0.98 in.)      | (0.10 in.)            |              |       |       |           |
| Ring               |                            |                       |              |       |       |           |
| CER-1-02-00001     | 38 mm x 29 mm              | 3.0 mm                | High         | 733   | 120   | Тор       |
|                    | (1.50 in. x 1.14 in.)      | (0.12 in.)            |              |       |       |           |
| CER-1-02-00002     | 77.5 mm x 59 mm            | 3.0 mm                | Medium       | 770   | 240   | Тор       |
|                    | (3.05 in. x 2.32 in.)      | (0.12 in.)            |              |       |       |           |
| CER-1-02-00074     | 25.4 mm solid disk         | 2.5 mm                | Medium       | 300   | 120   | Side      |
|                    | (1 in.)                    | (0.10 in.)            |              |       |       |           |



<sup>•</sup> RS - Next day shipment

# See page 460 for lead exit details (full drawings and current list of standard designs available at www.watlow.com/ultramic) Configurations include:

- Power lead wires with 305 mm (12 in.) of PTFE insulation
- Bonded Type K thermocouple with 305 mm (12 in.) PTFE insulated lead wires

**Note:** Maximum temperature is 400°C (752°F). Lead wires are rated to 205°C (401°F). If ceramic beads are required, please contact your Watlow representative for a quote.

<sup>1 3</sup> mm (0.12 in.) hole in center of heater

<sup>&</sup>lt;sup>2</sup> 5 mm (0.19 in.) hole in center of heater

### **Thick Film Conduction Heaters**

The Watlow 430 stainless steel thick film conduction heater is ideal for many applications where fast response and uniformity are essential. A clamp-on, thick film heater provides the best possible combination of heat transfer, thermal efficiency, temperature response and uniformity in a low profile package.

This high-performance heater can be used in areas where space is limited or where conventional heaters cannot be used due to limited voltage and wattage combinations.

Thick film conduction heaters provide a low profile in a variety of shapes including two-dimensional circular and rectangular forms. Direct contact of thick film heaters to surfaces ensures efficient heat transfer through thermally stable substrates and precise resistance trace patterns.

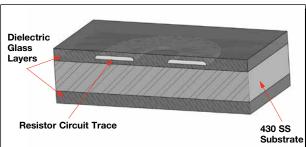
### **Performance Capabilities**

- Maximum substrate temperature up to 1022°F (550°C).
   Contact your Watlow representative for applications over 842°F (450°C)
- Watt densities up to 75 W/in<sup>2</sup> (11.6 W/cm<sup>2</sup>)
- Voltages up to 240V

#### **Features and Benefits**

# Watt densities up to 75 W/in<sup>2</sup> (11.6 W/cm<sup>2</sup>) for clamp-on applications

 Allows precise, repeatable wattage distribution and uniform temperature profile


#### Threaded stud termination

 Produces strong, trouble-free connections, see Termination Assembly drawing on page 464

### Agency approvals

• UL® component recognition available upon request





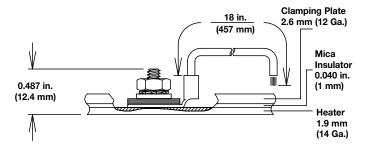
### **Typical Applications**

- Food warming cabinets
- Load dump resistors
- Seal bars
- Deposition chamber lids

### **Thick Film Conduction Heaters**

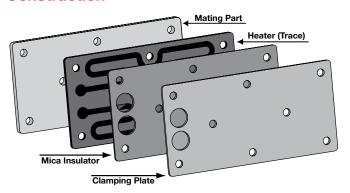
### **Technical Information**

### **Specifications**


**Min. Length:** 2.25 in. (57 mm) **Max. Length:** 24 in. (610 mm)

Max. Voltage: 240VAC Max. Amperage: 25A

**Terminations:** Stud terminals **Substrate:** 14 ga. typical


Features: Holes/slots up to 15% of area

### **Termination Assembly**



To install, mount the heater to the surface being heated and assemble mounting hardware. Standard measurements of assembly hardware are illustrated in the *Termination Assembly* drawing above. Please refer to the *Installation and Maintenance Manual* (316-42-32-1) that is supplied with the heater for proper mounting instructions.

#### Construction



Thick film conduction heaters, designed for clamp-on applications, are supplied as a multi-part assembly: heater, mica insulator, clamping plate and mounting hardware.

The mica insulator acts as a thermal barrier to effectively force heat into the part being heated and as an additional protective layer for the heater.

The clamping plate distributes pressure evenly across the entire surface of the heater to promote close contact between the thick film heater and the part to be heated.

The mounting hardware is designed to effectively clamp to the part requiring heat, based on the heater size.

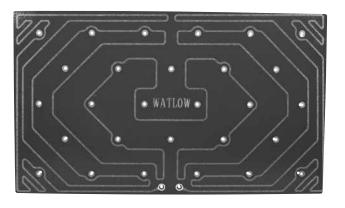


# Extended Capabilities For Thick Film Conduction Heaters

### **Technical Information**

### **Specifications**

**Min. Length:** 2.25 in. (57 mm) **Max. Length:** 24 in. (610 mm)


Max. Voltage: 240VAC Max. Amperage: 25A

**Terminations:** Stud terminals

Soldered leads 480°F (250°C)

Rubber molded flexible leads 480°F (250°C)

**Substrate:** 10 to 18 ga. 430 SS, Alumina **Features:** Holes/slots up to 15% of area **Sensor:** Bolted ring-style thermocouple



**WATLOW**<sup>®</sup> 465

### **Thick Film Conduction Heaters**

### **Technical Information**

### **Heater Part Numbers**

| Heat<br>in. | ter Size<br>(mm) | Voltage | Wattage <sup>①</sup> | W/in <sup>2</sup> (W/cm <sup>2</sup> ) | Approximate<br>Assembly Weight<br>Ibs (kg) | Watlow<br>Part Number <sup>®</sup> |
|-------------|------------------|---------|----------------------|----------------------------------------|--------------------------------------------|------------------------------------|
| Round       |                  |         |                      |                                        |                                            |                                    |
| 4.5 dia.    | (114)            | 120     | 325                  | 20.4 (3.2)                             | 1.10 (0.50)                                | TFA004JA03EL18B 3                  |
| 6.0 dia.    | (152)            | 120     | 850                  | 30.1 (4.7)                             | 2.74 (1.24)                                | TFA006AA08KL18C                    |
| 6.0 dia.    | (152)            | 240     | 1125                 | 39.8 (6.2)                             | 2.74 (1.24)                                | TFA006AE11EL18C 3                  |
| 8.0 dia.    | (203)            | 240     | 2000                 | 39.8 (6.2)                             | 4.91 (2.23)                                | TFA008AE200L18C 3                  |
| 10.0 dia.   | (254)            | 240     | 3000                 | 38.2 (5.9)                             | 7.24 (3.28)                                | TFA010AE300L18C                    |
| Square      |                  |         |                      |                                        |                                            |                                    |
| 2.25 x 2.25 | (57 x 57)        | 120     | 100                  | 19.8 (3.1)                             | 0.27 (0.12)                                | TFA2E2EA010L18B 3                  |
| 3.00 x 3.00 | (76 x 76)        | 120     | 225                  | 25.0 (3.8)                             | 0.50 (0.23)                                | TFA3A3AA02EL18B 3                  |
| 4.00 x 4.00 | (102 x 102)      | 120     | 400                  | 25.0 (3.8)                             | 1.61 (0.73)                                | TFA4A4AA040L18C                    |
| 6.00 x 6.00 | (152 x 152)      | 120     | 1250                 | 34.7 (5.4)                             | 3.74 (1.70)                                | TFA6A6AA12KL18C                    |
| 6.00 x 6.00 | (152 x152)       | 240     | 1450                 | 40.3 (6.3)                             | 3.74 (1.70)                                | TFA6A6AE14KL18C                    |
| 8.00 x 8.00 | (203 x 203)      | 240     | 2500                 | 39.1 (6.1)                             | 6.36 (2.88)                                | TFA8A8AE250L18C                    |
| Rectangle   |                  |         |                      |                                        |                                            |                                    |
| 2.0 X 4.0   | (51 x 102)       | 120     | 240                  | 30.0 (4.6)                             | 0.47 (0.21)                                | TFA2A4AA02HL18B                    |
| 4.0 X 6.0   | (102 x 152)      | 120     | 725                  | 30.2 (4.7)                             | 2.46 (1.12)                                | TFA4A6AA07EL18C                    |
| 6.0 X 8.0   | (152 x 203)      | 240     | 1920                 | 40.0 (6.2)                             | 5.01 (2.27)                                | TFA6A8AE19DL18C 3                  |

<sup>&</sup>lt;sup>①</sup>Wattage output at 77°F (25°C).

<sup>&</sup>lt;sup>®</sup>Includes clamping plate, mica insulator and mounting hardware. Replace the last letter of the part number with "O" for heater only.

<sup>&</sup>lt;sup>3</sup>Delivery 1 to 3 working days

### **Coil/Cable Heaters**

The versatile Watlow coil/cable heater can be formed into a variety of shapes. Small diameter, high performing cable heaters are fully annealed and readily bent to a multitude of configurations.

The heater can be formed into a compact, coiled nozzle heater supplying a full 360 degrees of heat with optional distributed wattage. A straight cable heater can snake through an equipment application. Flat, spiral configurations can be used in high-tech manufacturing while a star wound cable can be used for air and gas heating.

Different applications require different construction methods, including one, two or four resistance wires; parallel coil or straight wire; drawn or swaged sheaths; with or without internal thermocouples; leads exiting from one or both ends, and round, rectangular or square cable cross sectionals.

Whatever the application requirement, a Watlow coil/cable heater can be shaped to fit.

### **Performance Capabilities**

- Continuous operating temperatures up to 1200°F (650°C) with intermittent operating periods achieving up to 1500°F (815°C) dependent on the type of element wire used
- Sheath watt densities on the cable up to 30 W/in<sup>2</sup> (4.65 W/cm<sup>2</sup>), and as high as 75 W/in<sup>2</sup> (11.62 W/cm<sup>2</sup>) subject to factory approval
- Maximum voltage up to 240V

#### **Features and Benefits**

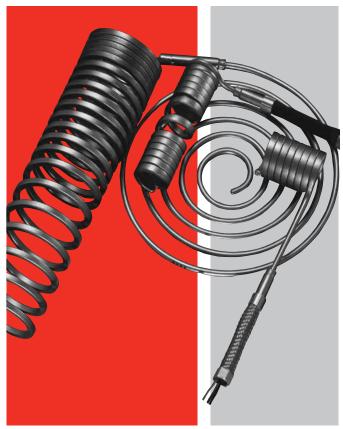
#### **High ductility**

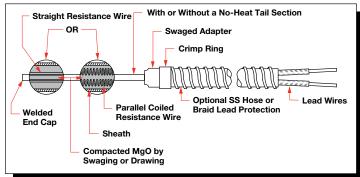
 Allows the heater to be cold-formed into almost any shape

#### Low mass

Allows quick response in both heating and cooling

#### Constructed with no open seams


- Capable of operating in unusual environments, including cryogenic and sub-freezing temperatures, high vacuum, gaseous and liquid immersion heaters
- Decreases opportunity for corrosion


# Constructed of standard 304 stainless steel, optional 316 stainless steel or alloy 600

 Provides high temperature corrosion and oxidation resistance along with ideal expansion properties

#### Heater sheath can be brazed

 Allows the permanent attachment of mounted fittings to the heater, contact your Watlow representative





# Sizes range from 0.040 in. (1.02 mm) to 0.188 in. (4.8 mm) diameter

- Delivers a high volume of heat into a tiny space
   Internal construction options
- Allows for internal thermocouples and no-heat sections (not available in all sizes)

### **Coil/Cable Heaters**

### **Typical Applications**

- Plastic injection molding nozzles
- Semiconductor manufacturing and wafer processing
- Hot metal forming dies and punches
- Sealing and cutting bars
- Medical, analytical and scientific instruments

- Restaurant and food processing equipment
- Cast-in heaters
- · Laminating and printing presses
- Air heating
- Textile manufacturing
- Heating in a vacuum environment

### **Electrical Data and Coiling Limits**

| Sheath<br>Diameter        |                         | Max.    | Surface Area Per<br>Linear Foot |          | Min. Bend<br>Radius |       | Min. Coiled<br>Inside Diameter |        |
|---------------------------|-------------------------|---------|---------------------------------|----------|---------------------|-------|--------------------------------|--------|
| in.                       | (mm)                    | Voltage | in.                             | (cm)     | in.                 | (mm)  | in.                            | (mm)   |
| $0.040 \pm 0.002$         | $(1.016 \pm 0.051)$     | 48      | 1.51                            | (9.740)  | <sup>1</sup> /16    | (1.6) | 1/8                            | (3.2)  |
| 0.062 ± 0.002             | $(1.575 \pm 0.051)$     | 120     | 2.34                            | (15.098) | 1/8                 | (3.2) | 1/4                            | (6.0)  |
| 0.094 + 0.002 - 0.003     | (2.388 + 0.051 - 0.076) | 240     | 3.54                            | (22.840) | <sup>3</sup> /16    | (4.8) | 3/8                            | (9.5)  |
| 0.102 square ± 0.003      | $(2.591 \pm 0.076)$     | 240     | 4.90                            | (31.615) | 1/4                 | (6.0) | 1/2                            | (13.0) |
| 0.102 ± 0.003 x           | (2.591 ± 0.076) x       |         |                                 |          |                     |       |                                |        |
| 0.156 ± 0.005 rectangular | $(3.962 \pm 0.127)$     | 240     | 6.19                            | (39.938) | 1/4                 | (6.0) | 1/2                            | (13.0) |
| 0.125 ± 0.003             | (3.175 ± 0.076)         | 240     | 4.71                            | (30.389) | 1/4                 | (6.0) | 1/2                            | (13.0) |
| 0.157 ± 0.004             | $(3.988 \pm 0.102)$     | 240     | 5.92                            | (38.196) | <sup>5</sup> /16    | (7.9) | 5/8                            | (15.9) |
| 0.188 + 0.003 - 0.006     | (4.775 + 0.076 - 0.152) | 240     | 7.09                            | (45.745) | 3/8                 | (9.5) | 3/4                            | (19.0) |
| 0.128 square ± 0.003      | $(3.251 \pm 0.076)$     | 240     | 6.31                            | (40.712) | 1/4                 | (6.0) | 1/2                            | (13.0) |

In most cases 30 W/in² (4.65 W/cm²) is the safe allowable limit for cable watt density. Please contact your Watlow representative prior to ordering >30 W/in² cables.

### Resistance/Wattage Tolerance ±10%.

Cable heaters can run on both ac and dc. Contact your Watlow representative for amperage limitations.

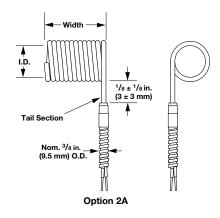
### **Coiling Tolerances**

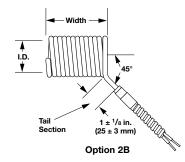
|               | Coiled Wid           | Ith Tolerances                                     | Coiled I.D. Tolerances |                  |                |              |  |
|---------------|----------------------|----------------------------------------------------|------------------------|------------------|----------------|--------------|--|
| Cable         | Coiled Width         | Tolerances                                         |                        | . Range          | Tolerances     |              |  |
| Diameters     | in. (mm)             | in. (mm)                                           | in.                    | (mm)             | in.            | (mm)         |  |
| All Diameters | Below 6 (152)        | + 0 - <sup>1</sup> /8 (+0.00 - 3.18)               | Below 0.625            | (Below 15.88)    | +0.000 - 0.015 | (+0 - 0.38)  |  |
|               | 6 to 10 (152 to 254) | + <sup>1</sup> /8 - <sup>3</sup> /8 (+3.18 - 9.53) | 0.625 to 0.999         | (15.88 to 25.38) | +0.000 - 0.030 | (+0 - 0.76)  |  |
|               | Over 10 (Over 254)   | + <sup>1</sup> /4 - <sup>1</sup> /4(+6.35 - 6.35)  | 1.000 to 1.999         | (25 to 50.78)    | +0.000 - 0.062 | (+0 - 1.58)  |  |
|               |                      |                                                    | 2.000 to 2.999         | (51 to 76.18)    | +0.000 - 0.125 | (+0 - 3.18)  |  |
|               |                      |                                                    | 3.000 to 3.999         | (76 to 101.58)   | +0.000 - 0.250 | (+0 - 6.35)  |  |
|               |                      |                                                    | 4.000 to 4.999         | (102 to 126.98)  | +0.000 - 0.375 | (+0 - 9.53)  |  |
|               |                      |                                                    | 5.000 and Over         | (127 and Over)   | +0.000 - 0.500 | (+0 - 13.00) |  |

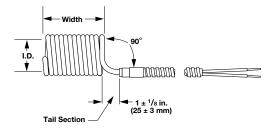
When the O.D. of the coil is required as the critical dimension, it must be specified at the time of ordering so that proper coiling procedures can be determined. I.D. and O.D. dimensions cannot be held on the same unit. Please contact your Watlow representative prior to ordering coiled cable heaters requiring other than standard tolerances.

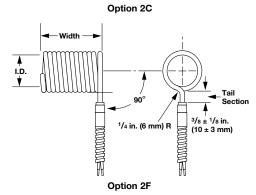
### **Cable Straight Length Tolerances**

| Length    | ≤ 24 in. | >24 in. ≤ 60 in. | >60 in. ≤ 100 in. | >100 in. |
|-----------|----------|------------------|-------------------|----------|
| Tolerance | ±³/8 in. | ±¹/2 in.         | ±1 in.            | ±1%      |


### **Coil/Cable Heaters**


### **Formation Options**


### **Coil Heaters**


The coil heater can be tight wound or open pitch.

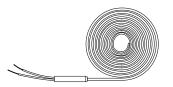
### **Lead Orientation Options for Coiled Cable Heaters**











### **Closed Coil without Distributed Wattage**



### **Closed Coil with Distributed Wattage**



### **Flat Spiral**



Flat, spiral formations are used to heat flat circular surfaces. This formation is often used in semiconductor and medical applications.







Flat Spiral with 2A Type Lead Orientation

Flat Spiral with 2C Type Lead Orientation

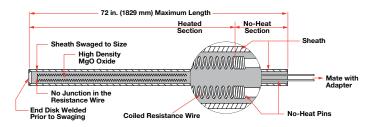
Flat Spiral with 2F Type Lead Orientation

|                              | Flat Spiral Inside Diameter Standards |         |                                      |                                         |                            |                                         |                                         |  |  |  |  |  |  |
|------------------------------|---------------------------------------|---------|--------------------------------------|-----------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|--|--|--|--|--|--|
|                              |                                       |         |                                      | Cable                                   | Diamete                    | er—in.                                  |                                         |  |  |  |  |  |  |
|                              |                                       |         | <sup>1</sup> / <sub>16</sub> (0.062) | <sup>3</sup> / <sub>32</sub><br>(0.094) | 1/ <sub>8</sub><br>(0.125) | <sup>5</sup> / <sub>32</sub><br>(0.156) | <sup>3</sup> / <sub>16</sub><br>(0.188) |  |  |  |  |  |  |
|                              | 5/8                                   | (0.625) | 1                                    | 1                                       | 1                          |                                         |                                         |  |  |  |  |  |  |
| .≐                           | 3/4                                   | (0.75)  |                                      | 1                                       | 1                          | 1                                       | 1                                       |  |  |  |  |  |  |
| ē                            | 7/8                                   | (0.875) |                                      |                                         | 1                          | 1                                       |                                         |  |  |  |  |  |  |
| me.                          | 1                                     | (1.0)   |                                      |                                         | 1                          | 1                                       | 1                                       |  |  |  |  |  |  |
| Dia                          | 1 <sup>3</sup> /16                    | (1.187) |                                      |                                         | 1                          |                                         |                                         |  |  |  |  |  |  |
| g                            | 1 <sup>1</sup> /4                     | (1.25)  |                                      |                                         | 1                          |                                         |                                         |  |  |  |  |  |  |
| Insi                         | 1 <sup>1</sup> /2                     | (1.5)   |                                      |                                         | 1                          | 1                                       | 1                                       |  |  |  |  |  |  |
| Spiral Inside Diameter – in. | 2                                     | (2.0)   |                                      |                                         | 1                          |                                         |                                         |  |  |  |  |  |  |
| Spi                          | 2 <sup>1</sup> / <sub>2</sub>         | (2.5)   |                                      |                                         | 1                          |                                         |                                         |  |  |  |  |  |  |
|                              | 3                                     | (3.0)   |                                      |                                         | 1                          | 1                                       | 1                                       |  |  |  |  |  |  |

Note: Maximum outside diameter is 6 inches.

### **Coil/Cable Heaters**

### Formation Options (Continued)


#### **Star Wound**

Star wound formations are usually inserted into pipes or ducts and used to heat moving air or liquids. The offset coils increase and induce turbulent flow. This allows the flowing material to have better contact with the heater surface to provide efficient heat transfer.



#### Internal Construction

## Sheath with Coiled Internal Resistance Wire

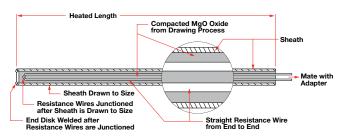


Resistance wire wound into a small coil is loaded into insulating cores, then into metal tubing and swaged to final size. This construction method is called **coil wire or parallel coil.** 

The coil method allows for a no-heat section in the sheath. The length of either the heated section or the no-heat section is variable as long as the combined length does not exceed 72 in. (1829 mm). Other features of this construction method include:

- Variable ohms/foot within a minimum and maximum range
- Variable location of the thermocouple junction
- Grounded or ungrounded thermocouple junction
- No-heat sections
- 304 stainless steel
- A variety of diameters and shapes:

0.094 in. (2.4 mm) round


0.125 in. (3.2 mm) round (minimum diameter with internal thermocouple)

0.102 in. (2.6 mm) square

0.128 in. (3.3 mm) square

0.102 in. X 0.156 in. (2.6 mm X 4 mm) rectangular

## Sheath with Straight (Uncoiled) Resistance Wire



Straight resistance wires are positioned inside a large diameter metal tube. The tube assembly is repeatedly pulled through draw dies until the desired diameter is achieved. Though limited to fixed incremental ohms/foot and without no-heat sections, this **straight wire or drawn cable** construction method allows:

- Essentially no limit on cable length
- Thermocouple junction only at the disk end of the sheath
- Grounded or ungrounded thermocouple junction
- · Full length of the sheath is heated
- 304 stainless steel
- A variety of diameters and shapes:

0.040 in. (1.0 mm) round

0.062 in. (1.6 mm) round

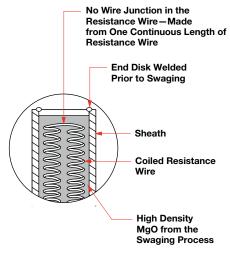
0.094 in. (2.4 mm) round

0.125 in. (3.2 mm) round (minimum diameter with internal thermocouple)

0.157 in. (4.0 mm) round

0.188 in. (4.8 mm) round

0.128 in. (3.3 mm) square\*


0.102 in. X 0.156 in.\* (2.6 mm X 4 mm) rectangular

\* Maximum length is 140 in. (3556 mm)

### **Coil/Cable Heaters**

### Internal Construction (Continued)

#### **Disk End of Sheath**



Coiled Internal Resistance Wire

The end of the heater sheath opposite from the lead exit end is called the disk end.

With coil construction methods, the internal resistance wires form a 180° bend inside the sheath and do not require a junction. After the end cap has been welded in place, the entire area at the end of the sheath is swaged to provide maximum density of the magnesium oxide (MgO).

### **Thermocouples**

Internal thermocouples are available in ASTM Type J or K calibration with both the coil or straight construction methods.

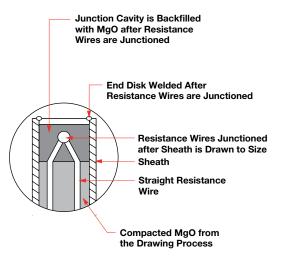
#### Coil:

0.125 in. (3.2 mm) round

0.128 x 0.128 in. (3.3 x 3.3 mm) square

0.102 x 0.156 in. (2.6 x 4.0 mm) rectangular

#### Straight:


0.125 in. (3.2 mm) round

0.157 in. (4.0 mm) round

0.188 in. (4.8 mm) round

0.128 x 0.128 in. (3.3 x 3.3 mm) square

0.102 x 0.156 in. (2.6 x 4.0 mm) rectangular



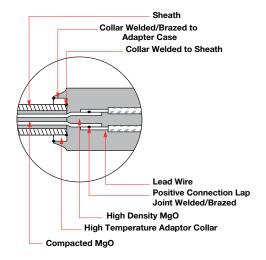
#### Straight (Uncoiled) Resistance Wire

With straight construction, the internal wires—whether resistance or thermocouple—must be junctioned before the heater sheath can be finished. MgO is removed from the tip of the sheath to expose the wires which are junctioned by welding. MgO powder is backfilled into the cavity surrounding the junctioned wires and lightly compacted. The end cap is inserted and welded into place.

471

### **Coil/Cable Heaters**

### Options - Internal Construction


### **Adapters**

Adapters are transition sections where lead wires are attached and connected with the internal wires from the heater sheath.

The **positive connection** lap joint brazes or welds the wire lap joint before the adapter is compacted. Positive connection is used in all standard applications and adds protection in high temperature environments.

An extended length adapter collar, or **high temperature** collar, is used as a heat sink enabling the heater to operate in high temperature, demanding applications.

The positive connection and collar are used in conjunction with both power leads and thermocouple leads.



### **External Construction**

#### **Lead Wire**

100 percent nickel, copper, nickel plated copper or silver plated copper.

### Insulation

PTFE, fiberglass or a high temperature variety such as MGT or MGE.

#### **Lead Protection**

Stainless steel hose, stainless steel braid or fiberglass braid.

Contact your Watlow representative for details.

### **Coil/Cable Heaters**

Cable Heater Units (Internal thermocouple is not available)

| Straight Cable<br>Length<br>in. (mm) | Volts      | Watts       | Watt Density<br>W/in² (W/cm²) | No-Heat<br>Length<br>in. (mm) | Lead Wire                                | Part<br>Number        |
|--------------------------------------|------------|-------------|-------------------------------|-------------------------------|------------------------------------------|-----------------------|
| 0.062 in. (1.6 m                     | m) Diamete | er Round (w | ith ±10% wattage tole         | rance) 0.250 in. x 1.12       | 5 in. adapter                            |                       |
| 24 (610)                             | 120        | 240         | 51 (7.9)                      | 0 (0)                         |                                          | 62H24A6X-1138         |
| 36 (914)                             | 120        | 400         | 57 (8.8)                      | O (O)                         | 36 in. (914) mm                          | 62H36A5X-1015         |
| 56 (1422)                            | 120        | 330         | 30 (4.7)                      | O (O)                         | swaged-in fiberglass                     | 62H56A4X-942          |
| 65 (1651)                            | 120        | 500         | 39 (6.0)                      | O (O)                         | -                                        | 62H65A3X-1111         |
| 0.094 in. (2.4 m                     | m) Diamete | r Round (w  | ith ±5% wattage tolera        | ance) 0.132 in. x 1.250       | in. adapter— Lead pro                    | tection not available |
| 30 (762)                             | 230        | 125         | 17 (2.6)                      | 5 (127)                       | 48 in. (1219) mm                         | 94PC30A1X             |
| 30 (762)                             | 230        | 250         | 34 (5.3)                      | 5 (127)                       | swaged-in PTFE leads only                | 94PC30A2X             |
| 0.125 in. (3.2 m                     | m) Diamete | r Round (w  | ith ±10% wattage tole         | rance) 0.250 in. x 1.12       | 5 in. adapter, *0.375 in.                | x 2.000 in. adapter   |
| 18 (457)                             | 240        | 250         | 35 (5.4)                      | 1.5 (38)                      |                                          | 125CH18A4X-1066       |
| 19 (483)                             | 120        | 165         | 21 (3.3)                      | 1.5 (38)                      | -                                        | 125CH19A1X-879        |
| 24 (610)                             | 120        | 275         | 29 (4.5)                      | 1.5 (38)                      | -                                        | 125CH24A1X-1049       |
| 24 (610)                             | 240        | 275         | 29 (4.5)                      | 1.5 (38)                      | -                                        | 125CH24A14X-806       |
| 38 (965)                             | 240        | 325         | 21 (3.3)                      | 1.5 (38)                      | -                                        | 125CH38A1X-631        |
| 38 (965)                             | 120        | 175         | 12 (1.9)                      | 1.5 (38)                      | -                                        | 125CH38A2X-246        |
| 47 (1194)                            | 240        | 260         | 14 (2.2)                      | 1.5 (38)                      | 36 in. (914) mm<br>swaged-in fiberglass  | 125CH47A1X-108        |
| 47 (1194)                            | 120        | 235         | 12 (1.9)                      | 1.5 (38)                      | - swagoa iii liborgiaos                  | 125CH47A2X-182        |
| 47 (1194)                            | 120        | 375         | 20 (3.1)                      | 1.5 (38)                      |                                          | 125CH47A3X-986        |
| 47 (1194)                            | 240        | 345         | 19 (2.9)                      | 1.5 (38)                      |                                          | 125CH47A4X-1081       |
| 65 (1651)                            | 240        | 420         | 16 (2.5)                      | 1.5 (38)                      |                                          | 125CH65A1X-940        |
| 65 (1651)                            | 240        | 675         | 27 (4.2)                      | 1.5 (38)                      |                                          | 125CH65A2X-1115       |
| 95 (2413)                            | 240        | 1000        | 28 (4.3)                      | 0 (0)                         |                                          | 125CH93A1X-1154       |
| 126 (3200)                           | 240        | 1500        | 30 (4.7)                      | 0 (0)                         | 10 '- (1010)                             | 125H126A4A-969        |
| 150 (3810)                           | 240        | 2000        | 34 (5.3)                      | 0 (0)                         | 48 in. (1219) mm<br>swaged-in fiberglass | 125H150A3A-1168*      |
| 223 (5664)                           | 240        | 3000        | 34 (5.3)                      | 0 (0)                         |                                          | 125H223A1A-1057*      |
| 0.128 in. (3.3 m                     | m) Square  | Cross-Sec   | tion (with ±10% watta         | age tolerance) 0.250 in       | . x 1.125 in. adapter                    |                       |
| 12 (305)                             | 120        | 200         | 36 (5.6)                      | 1.5 (38)                      |                                          | 125PS12A24A-647       |
| 12 (305)                             | 240        | 200         | 36 (5.6)                      | 1.5 (38)                      |                                          | 125PS12A23A-155       |
| 20 (508)                             | 120        | 300         | 31 (4.8)                      | 1.5 (38)                      | 06 in (014)                              | 125PS20A37A-537       |
| 20 (508)                             | 240        | 300         | 31 (4.8)                      | 1.5 (38)                      | 36 in. (914) mm<br>swaged-in fiberglass  | 125PS20A38A-142       |
| 30 (762)                             | 120        | 450         | 30 (4.7)                      | 1.5 (38)                      |                                          | 125PS30A47A-159       |
| 30 (762)                             | 240        | 450         | 30 (4.7)                      | 1.5 (38)                      |                                          | 125PS30A48A1019       |
| 38 (965)                             | 240        | 600         | 31 (4.8)                      | 1.5 (38)                      |                                          | 125PS38A23A-562       |

Note: Lead protection is available upon request.



**WATLOW**<sup>®</sup> 473

### **Coil/Cable Heaters**

### Cable Heater Units (Type J internal thermocouple)

| L        | ght Cable<br>ength<br>. (mm)             | Volts               | Watts       | Watt Density<br>W/in <sup>2</sup> (W/cm <sup>2</sup> ) | No-Heat<br>Length<br>in. (mm) | Lead Wire                                | Part<br>Number       |
|----------|------------------------------------------|---------------------|-------------|--------------------------------------------------------|-------------------------------|------------------------------------------|----------------------|
|          | in. (3.2 m)<br>n. x 1.125 in. a          |                     | r Round (w  | ith ±10% wattage toler                                 | ance), thermocouple l         | ocated in center of heat                 | ed section,          |
| 24       | (610)                                    | 120                 | 275         | 29 (4.5)                                               | 1.5 (38)                      |                                          | 125CH24A13X          |
| 38       | (965)                                    | 120                 | 175         | 12 (1.9)                                               | 1.5 (38)                      | 48 in. (1219) mm                         | 125CH38A18X          |
| 47       | (1194)                                   | 120                 | 235         | 13 (2.0)                                               | 1.5 (38)                      | swaged-in fiberglass                     | 125CH47A21X          |
| 65       | (1651)                                   | 240                 | 675         | 26 (4.0)                                               | 1.5 (38)                      | -                                        | 125CH65A26X          |
| 0.375 in | in. (4 mm)<br>n. x 2.000 in. a<br>(3150) | Diameter<br>adapter | Round (with | ±10% wattage toleran                                   | ce), thermocouple loc         | ated at the disk end of t                | he cable, 157CH124AX |
| 150      | (3810)                                   | 240                 | 2000        | 27 (4.2)                                               | 0 (0)                         | 48 in. (1219) mm<br>swaged-in fiberglass | 157CH150AX           |
| 220      | (5588)                                   | 240                 | 3000        | 28 (4.3)                                               | 0 (0)                         | - wagoa iii iiborgiaco                   | 157CH220AX           |
|          | in. (3.3 m<br>n. x 1.125 in. a           |                     | Cross-Sect  | t <b>ion</b> (with ±10% watta                          | age tolerance), thermo        | couple located in center                 | of heated section,   |
| 12       | (305)                                    | 240                 | 200         | 36 (5.6)                                               | 1.5 (38)                      |                                          | 125PS12A22A          |
| 20       | (508)                                    | 120                 | 300         | 31 (4.8)                                               | 1.5 (38)                      | , ,,,                                    | 125PS20A35A          |
| 20       | (508)                                    | 240                 | 300         | 31 (4.8)                                               | 1.5 (38)                      | 48 in. (1219) mm<br>swaged-in fiberglass | 125PS20A36A          |
| 30       | (762)                                    | 240                 | 450         | 30 (4.7)                                               | 1.5 (38)                      |                                          | 125PS30A46A          |
| 38       | (965)                                    | 240                 | 600         | 31 (4.8)                                               | 1.5 (38)                      |                                          | 125PS38A24A          |

Note: Lead protection is available upon request.



| Strip/Clamp-On Heaters | Sheath Materials    | Max. Or<br>Tempe<br>°F |     | Typica<br>Watt D<br>W/in² | Page |     |
|------------------------|---------------------|------------------------|-----|---------------------------|------|-----|
| Mineral Insulated (MI) | 304 stainless steel | 1400                   | 760 | 140                       | 21.7 | 477 |
| 375 High-Temperature   | Aluminized steel    | 1100                   | 595 | 100                       | 15.5 | 481 |
| FIREBAR® Clamp-On      | Alloy 800           | 1400                   | 760 | 120                       | 18.6 | 400 |
|                        | 304 stainless steel | 1200                   | 650 | 120                       | 18.6 | 489 |
| Thick Film Conduction  | 430 stainless steel | 1025                   | 550 | 75                        | 11.6 | 490 |





### **Mineral Insulated (MI) Strip Heaters**

The MI strip heater is a thin, responsive heater that uses the most advanced heater construction techniques. A nickel-chromium element wire is embedded in Watlow's exclusive mineral insulation material, which has a much higher thermal conductivity than the mica and hard ceramic insulators used in conventional heaters. This thin layer of insulation brings the element wire closer to the heater sheath. The result is heat flows easily from the element wire to the sheath allowing the wire to run cooler than conventional heaters and increasing heater life.

### **Performance Capabilities**

- Sheath temperatures up to 1400°F (760°C)
- Watt densities up to 140 W/in<sup>2</sup> (21.7 W/cm<sup>2</sup>)
- Maximum voltage up to 480VAC
- UL® component recognition for most 240VAC or less designs (UL® File #E52951)

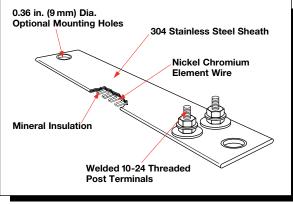
### **Features and Benefits**

### Higher watt densities than any other strip heater

Provides faster heat up

### **Exclusive mineral insulation**

- Combines dielectric strength and superior thermal conductivity
- Transfers heat rapidly to the sheath


#### 304 stainless steel sheath

- Maintains the high compaction of mineral insulation
- Produces a rigid heater

### **Typical Applications**

- Solder pots
- Zinc die-casting equipment
- Die and mold heating
- High-temperature resins
- Tank and platen heating
- Ovens
- Packaging equipment







### **Mineral Insulated (MI) Strip Heaters**

### Applications and Technical Data

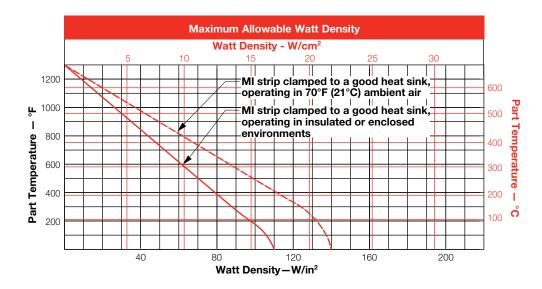
### **Calculating Watt Density**

Watt density is the amount of wattage per square inch of heated area. To determine watt density, divide the total wattage by the heated area.

Watt Density = 
$$\frac{\text{Wattage}}{\text{Heated Area}}$$

To apply this equation, the heated area is the total contact surface of the heater less areas of no-heat found around terminals, mounting holes, etc.

# Heated Area = Total Contact Area - No-Heat Area To calculate the heated area:


- 1. Using the chart below, locate the **no-heat factor** corresponding to the type of heater being considered.
- 2. To use the formula below, insert the no-heat factors, length and width (in inches).

## Heated Area = (Overall Length - No-Heat Factor) x Width

| Туре                                                | No-Heat Factor<br>(in.) |
|-----------------------------------------------------|-------------------------|
| 1 in. Wide                                          | 4.75                    |
| 1 in. wide post terminal 1 on 1                     | 1.75                    |
| 1 in. wide post terminal 1 on 1 with mounting holes | 3.00                    |
| For all other widths 2 on 1 post terminal           | 1.18                    |
| 2 on 1 with mounting holes                          | 3.18                    |

The drawings on the next page and the graph on this page will help in selecting the correct watt density for a particular application. First, refer to the drawings to determine the heated area of the heater. Then, use the

watt density formula and graph to ensure that the maximum watt density of the heater does not exceed the specific application requirements.



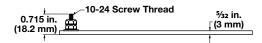
### **Mineral Insulated (MI) Strip Heaters**

Applications and Technical Data (Continued)

### **Specifications**

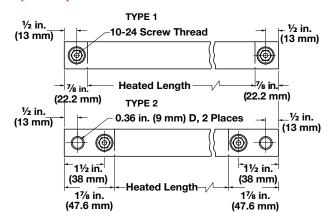
#### Width

• 1,  $1^{1/2}$  and 2 in. (25, 38, 51 mm), tolerance  $\pm^{1/32}$ 

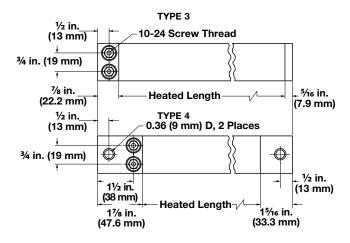

### Length

8 to 30 in. (203 to 762 mm), tolerance ±<sup>1</sup>/8

### **Terminations**


• 1 in. (25 mm) wide—post terminals one-on-one 11/2 to 2 in. (38 to 51 mm)—post terminals two-on-one

### **All Widths**

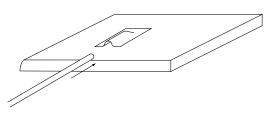



**Note:** In most applications, mounting holes alone do not provide adequate clamping. A clamp bar should be used for each 4 in. (102 mm) of heater length.

#### 1 in. (25 mm) Wide



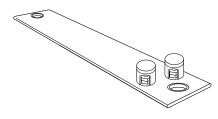
### 1<sup>1</sup>/<sub>2</sub> in. – 2 in. (38 – 51 mm) Wide




### **Mineral Insulated (MI) Strip Heaters**

Applications and Technical Data (Continued)

### **Options**


### **Thermocouple Pocket**



A thermocouple pocket welded to the back surface accepts a 0.063 in. (1.6 mm) diameter thermocouple. This option provides accurate temperature sensing and easy thermocouple replacement. Thermocouple not included.

### **Accessories**

### **Ceramic Terminal Covers**



Ceramic terminal covers offer a convenient and economic method to insulate post terminals. They are sized for standard length posts with 10-24 screw thread size, supplied as an accessory item and shipped separately. Specify Z4918 and quantity.

Parallel Terminals Part Numbers - Type 3 and 4

| Width<br>in. (mm)                  | Length<br>in. (mm) | Volts | Power<br>(Watts) | Watt Density<br>W/in <sup>2</sup> (W/cm <sup>2</sup> ) | Approx.<br>Net Wt.<br>Ibs. (kg) | Туре | Part<br>Number         |
|------------------------------------|--------------------|-------|------------------|--------------------------------------------------------|---------------------------------|------|------------------------|
| 1 <sup>1</sup> / <sub>2</sub> (38) | 8 (203)            | 240   | 500              | 50 (7.8)                                               | 0.3 (0.15)                      | 3    | MS1J8AS3               |
| 11/2 (38)                          | 12 (305)           | 120   | 350              | 26 (4.0)                                               | 0.5 (0.2)                       | 4    | MS1J12AV2 <sup>1</sup> |
| 11/2 (38)                          | 12 (305)           | 240   | 350              | 26 (4.0)                                               | 0.5 (0.2)                       | 4    | MS1J12AV3 <sup>1</sup> |
| 11/2 (38)                          | 12 (305)           | 240   | 800              | 49 (7.6)                                               | 0.5 (0.2)                       | 3    | MS1J12AS2              |
| 1 <sup>1</sup> / <sub>2</sub> (38) | 18 (457)           | 120   | 1000             | 40 (6.2)                                               | 0.8 (0.3)                       | 3    | MS1J18AS1              |
| 11/2 (38)                          | 18 (457)           | 240   | 1000             | 40 (6.2)                                               | 0.8 (0.3)                       | 3    | MS1J18AS2              |

<sup>&</sup>lt;sup>①</sup> Denotes units with mounting holes. Mounting holes are 0.36 in. (9 mm) in diameter and are intended for use with <sup>1</sup>/<sub>4</sub> in. (6 mm) bolts.

Centers of mounting holes are located  $^{1}/_{2}$  in. (13 mm) from the ends of the heater.



 Next day shipmen up to 5 pieces

### 375 High-Temperature Strip Heaters

Named for its 0.375 in. (9.5 mm) thickness, the rugged Watlow<sup>®</sup> 375 strip heater is capable of both high temperatures and high watt densities.

Watlow begins construction by accurately placing a coiled, nickel-chromium element wire in the center of the heater. The element wire is then embedded in magnesium oxide (MgO)-based insulation compacted into a solid mass creating excellent heat conductivity and high dielectric strength. The heater is then enclosed in aluminized steel or 430 stainless steel sheathing.

### **Performance Capabilities**

- Aluminized steel sheath temperatures up to 1100°F (595°C)
- 430 stainless steel sheath temperatures up to 1200°F (650°C)
- Watt densities up to 100 W/in<sup>2</sup> (15.5 W/cm<sup>2</sup>)
- UL® approved up to 240VAC (File No. E52951)
- CSA approved up to 480VAC (File No. LR7392)

#### **Features and Benefits**

## Nickel-chromium element wire is centered in the heater

· Assures uniform heat

#### Aluminized steel sheath

- Operates at higher temperatures and resists corrosion better than iron-sheathed heaters
- Minimizes heat-up time

#### Optional 430 stainless steel sheath

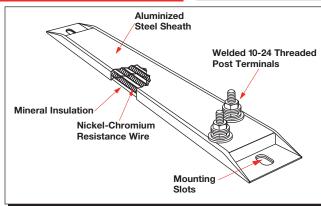
 Meets temperature requirements that reach up to 1200°F (650°C)

#### Post terminals, welded to the element wire

• Produces strong, trouble-free connections

### Rigid <sup>3</sup>/<sub>8</sub> in. (9.5 mm) thick design

• Enables the heater to fit into many existing applications


## Over 100 in-stock models in popular sizes and ratings

Allows next day shipment

# Available dimensions are $1^{1}/2$ in. (38 mm) wide and $5^{1}/2$ to 48 in. (140 to 1219 mm) long

Fits a variety of application needs





### **Typical Applications**

- Food warming
- Freeze and moisture protection
- Tank and platen heating
- Packaging
- Dies and mold heating
- Autoclaves
- Ovens
- Telecom



WATLOW® \_\_\_\_\_\_ 481

### **375 High-Temperature Strip Heaters**

### Applications and Technical Data

### **Calculating Watt Density**

Use the *Maximum Allowable Watt Density* graphs and formulas to ensure the allowable watt density for the heater does not exceed the specific application requirements. **Watt density is calculated for one side of the heater only.** 

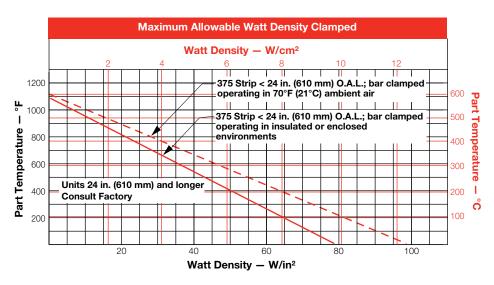
### **Formulas**

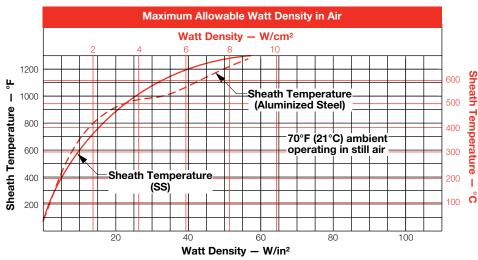
Heated Area

(Offset Terminals) = [Overall Length (A)  $\times$  1.5 in.] - 6 in<sup>2</sup>

=  $[Overall Length (A) \times 38 \text{ mm}] - 38.7 \text{ cm}^2$ 

Heated Area

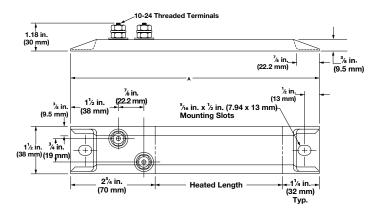

(Parallel Terminals) = [Overall Length (A) x 1.5 in.] - 4.7 in<sup>2</sup>


=  $[Overall Length (A) \times 38 \text{ mm}] - 30.3 \text{ cm}^2$ 

Heated Area

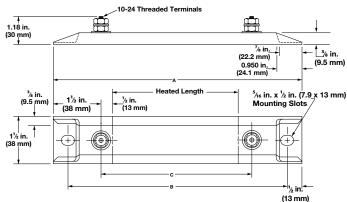
(One-on-One Terminals) = [Overall Length (A)  $\times$  1.5 in.] - 6 in<sup>2</sup>

= [Overall Length (A)  $\times$  38 mm] - 38.7 cm<sup>2</sup>



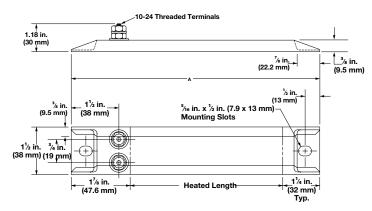



### 375 High-Temperature Strip Heaters


### **Termination Options**

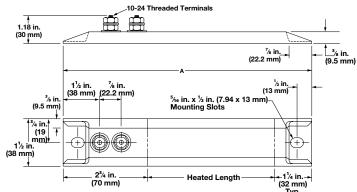
### **Offset Terminals**




Two 10-24 threaded post terminals are offset from each other on the same end.

### **One-on-One Terminals**




Two 10-24 threaded post terminals are placed one on each end.

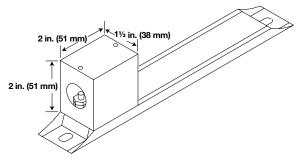
### **Parallel Terminals**



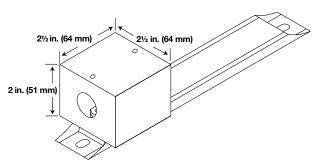
Two 10-24 threaded post terminals are used; both terminals on one end.

### **In-Line Terminals**




Two 10-24 threaded post terminals are in-line with each other on the same end.

WATLOW® \_\_\_\_\_\_ 483

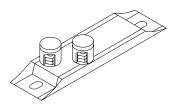

### 375 High-Temperature Strip Heaters

**Termination Options** (Continued)

### **Metallic Terminal Boxes - Variations**

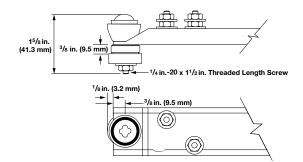


Available on in-line terminals only.




Available on offset terminals from stock and manufactured.

Metallic terminal boxes are available from stock on offset terminals. Terminal boxes act as a safety feature by covering the terminals. A conduit may be attached to the box through <sup>7</sup>/s in. (22.2 mm) diameter holes in the ends of the box. To order, specify **terminal box**.


### **Accessories**

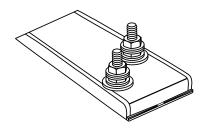
#### **Ceramic Terminal Covers**



Ceramic terminal covers offer a convenient and economic method to insulate post terminals. They are sized for standard length posts with 10-24 screw thread size, supplied as an accessory item and shipped separately. Specify **Z4918** and quantity.

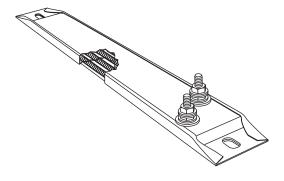
### **Secondary Insulation Bushings**




Insulators are suitable when air heating and/or voltage to ground is a concern. A secondary insulation bushing kit, part number **Z5230**, contains one set of bushings for one heater. To accommodate bushings,  $^{17}/_{32}$  x  $^{11}/_{16}$  inch diameter mounting holes **must** be specified when ordering the heater.



# **Extended Capabilities For 375 High-Temperature Strip Heaters**


### **Options**

### **Tab Removal**



Length without tabs equals total length including tabs minus  $1^{1/2}$  in. (38 mm).

### **Flat Tabs**



Mounting tabs can be formed flat to allow bar clamping.

### **Moisture Protection**

Improved Insulation Resistance Value (IIRV)
Treatment—This process coats the MgO insulation.
The treated insulation fends off moisture when unheat

The treated insulation fends off moisture when unheated for long periods of time. It is also ideal for heaters that are exported to customers around the world, where high humidity may be a problem.

### **Ground Studs and Mounting Studs**

Standard  $^{1}/_{4}$ -20 x  $1^{1}/_{2}$  in. (38 mm) or M6-1 x 40 steel studs are welded to the heater. Contact your Watlow representative for exact locations on specific heaters.

### **375 High-Temperature Strip Heaters**

#### **Heater Part Numbers**

| ricator   |                                |       |                  |             |            | V        | Vatt    | Approx. |        |          |                          | Chromalox <sup>®</sup> | Part No. 1   | Wellman® F       | Part No.①   |
|-----------|--------------------------------|-------|------------------|-------------|------------|----------|---------|---------|--------|----------|--------------------------|------------------------|--------------|------------------|-------------|
| Width     | Le                             | ngth  |                  |             | Power      |          | nsity   | T .     | et Wt. |          | Part                     | Rust Resist.           | Chrome Stl.  | Aluminized       | Chrome Stl. |
| in. (mm)  |                                | (mm)  | Term.            | Volts       | (Watts)    |          | (W/cm²) |         | (kg)   | Delivery |                          | Iron Sheath            | Sheath       | Steel Sheath     | Sheath      |
| 11/2 (38) | 5 <sup>1</sup> /2              | (140) | Parallel         | 120         | 125        | 35       | (5.4)   | 0.4     | (0.18) | RS       | SGA1J5JP1                | PT-512                 | _            | _                | _           |
| 1 /2 (00) | 51/2                           | (140) | Parallel         | 120         | 250        | 70       | (10.8)  | 0.4     | (0.18) | RS       | SGA1J5JP2                | _                      | PT-502       | _                | _           |
|           | 6                              | (152) | Parallel         | 120         | 150        | 35       | (5.4)   | 0.4     | (0.18) | RS       | SGA1J6AP2                | PT-615                 | -            | _                | _           |
|           | 6                              | (152) | Parallel         | 240         | 150        | 35       | (5.4)   | 0.4     | (0.18) | RS       | SGA1J6AP3                | PT-615                 | _            | _                | _           |
|           | 6                              | (152) | Parallel         | 120         | 300        | 70       | (10.8)  | 0.4     | (0.18) | RS       | SGA1J6AP4                | _                      | PT-603       | _                | _           |
|           | 6                              | (152) | Parallel         | 240         | 300        | 70       | (10.8)  | 0.4     | (0.18) | RS       | SGA1J6AP5                | _                      | PT-603       | _                | _           |
|           | 71/2                           | (191) | Offset           | 120         | 150        | 29       | (4.5)   | 0.5     | (0.23) | RS       | SGA1J7J01                | OT-715                 | _            | SS1041           | _           |
|           | 71/2                           | (191) | Offset           | 240         | 150        | 29       | (4.5)   | 0.5     | (0.23) | М        | SGA1J7JO2                | OT-715                 | _            | SS1052           | _           |
|           | 7 <sup>1</sup> / <sub>2</sub>  | (191) | Offset           | 240         | 200        | 38       | (5.9)   | 0.5     | (0.23) | RS       | SGA1J7JO3                | _                      | OT-702       | _                | SS2052      |
|           | 8                              | (203) | Offset           | 120         | 150        | 25       | (3.9)   | 0.5     | (0.23) | RS       | SGA1J8AO1                | OT-815                 | _            | SS1061           | _           |
|           | 8                              | (203) | Offset           | 240         | 150        | 25       | (3.9)   | 0.5     | (0.23) | RS       | SGA1J8AO5                | OT-815                 | _            | SS1072           | _           |
|           | 8                              | (203) | Offset           | 120         | 175        | 29       | (4.5)   | 0.5     | (0.23) | RS       | SGA1J8AO6                | OT-817                 | _            | SS1081           | _           |
|           | 8                              | (203) | Offset           | 240         | 175        | 29       | (4.5)   | 0.5     | (0.23) | М        | SGA1J8AO7                | OT-817                 | _            | SS1092           | _           |
|           | 8                              | (203) | Offset           | 120         | 250        | 42       | (6.5)   | 0.5     | (0.23) | RS       | SGA1J8AO2                | _                      | OT-802       | _                | SS2061      |
|           | 8                              | (203) | Offset           | 240         | 250        | 42       | (6.5)   | 0.5     | (0.23) | RS       | SGA1J8AO8                | _                      | OT-802       | _                | SS2072      |
|           | 8                              | (203) | Offset           | 120         | 400        | 67       | (10.4)  | 0.5     | (0.23) | RS       | SGA1J8AO9                | _                      | OT-804       | _                | SS2081      |
|           | 8                              | (203) | Offset           | 240         | 400        | 67       | (10.4)  | 0.5     | (0.23) | RS       | SGA1J8AO10               | _                      | OT-804       | _                | SS2092      |
|           | 8                              | (203) | Offset           | 120         | 500        | 83       | (12.9)  | 0.5     | (0.23) | RS       | SGA1J8AO3                | _                      | _            | _                | _           |
|           | 8                              | (203) | Offset           | 240         | 500        | 83       | (12.9)  | 0.5     | (0.23) | RS       | SGA1J8AO4                | _                      | _            | _                | _           |
|           | 8                              | (203) | 1-on-1           | 120         | 150        | 24       | (3.7)   | 0.5     | (0.23) | RS       | SGA1J8AT1                | S-815                  | _            | SD1021           | _           |
|           | 8                              | (203) | 1-on-1           | 240         | 150        | 24       | (3.7)   | 0.5     | (0.23) | М        | SGA1J8AT2                | S-815                  | _            | SD1032           | _           |
|           | 91/2                           | (241) | 1-on-1           | 120         | 200        | 23       | (3.6)   | 0.6     | (0.27) | М        | SGA1J9JT1                | S-920                  | _            | SD1041           | _           |
|           | 10 <sup>1</sup> /2             | (267) | Offset           | 120         | 250        | 26       | (4.0)   | 0.7     | (0.32) | RS       | SGA1J10J01               | OT-1025                | _            | SS1101           | _           |
|           | 10 <sup>1</sup> /2             | (267) | Offset           | 240         | 250        | 26       | (4.0)   | 0.7     | (0.32) | RS       | SGA1J10J02               | OT-1025                | _            | SS1102           | _           |
|           |                                | (267) | Offset           | 120         | 350        | 36       | (5.6)   | 0.7     | (0.32) | RS       | SGA1J10J08               | _                      | OT-1003      | _                | SS2101      |
|           | 10 <sup>1</sup> / <sub>2</sub> | (267) | Offset           | 240         | 350        | 36       | (5.6)   | 0.7     | (0.32) | RS       | SGA1J10J05               | _                      | OT-1003      | _                | SS2112      |
|           |                                | (267) | Offset           | 120         | 400        | 41       | (6.4)   | 0.7     | (0.32) | RS       | SGA1J10J06               | _                      | OT-1004      | _                | SS2131      |
|           | 10 <sup>1</sup> /2             | (267) | Offset           | 240         | 400        | 41       | (6.4)   | 0.7     | (0.32) | RS       | SGA1J10J07               | _                      | OT-1004      | _                | SS2132      |
|           | 12                             | (305) | Offset           | 120         | 250        | 21       | (3.3)   | 0.8     | (0.32) | RS       | SGA1J12AO1               | OT-1225                | OT-1202      | SS1141           | _           |
|           | 12                             | (305) | Offset           | 240         | 250        | 21       | (3.3)   | 0.8     | (0.32) | RS       | SGA1J12AO2               | OT-1225                | OT-1202      | SS1152           | _           |
|           | 12                             | (305) | Offset           | 120         | 350        | 29       | (4.5)   | 0.8     | (0.36) | RS       | SGA1J12AO5               | _                      | OT-1203      | _                | SS2141      |
|           | 12                             | (305) | Offset           | 240         | 350        | 29       | (4.5)   | 0.8     | (0.36) | RS       | SGA1J12AO6               | _                      | OT-1203      | _                | SS2152      |
|           | 12                             | (305) | Offset           | 120         | 500        | 42       | (6.5)   | 0.8     | (0.36) | RS       | SGA1J12AO3               | _                      | OT-1205      | _                | SS2161      |
|           | 12                             | (305) | Offset           | 240         | 500        | 42       | (6.5)   | 0.8     | (0.36) | RS       | SGA1J12AO4               | -                      | OT-1205      | -                | SS2172      |
|           | 12                             | (305) | 1-on-1           | 120         | 250        | 20       | (3.1)   | 0.8     | (0.36) | M        | SGA1J12AT1               | S-1225                 | S-1202       | SD1061           | SD2071      |
|           | 12                             | (305) | 1-on-1           | 240         | 250        | 20       | (3.1)   | 0.8     | (0.36) | RS       | SGA1J12AT2               | S-1225                 | S-1202       | SD1072           | SD2082      |
|           | 12                             |       | 1-on-1           | 240         | 500        | 40       | (6.2)   |         | (0.36) | RS       | SGA1J12AT3               | —<br>OT 1400           | S-1205       | -                | SD2122      |
|           | 14                             |       | Offset           | 120         | 300        | 20       | (3.1)   |         | (0.41) |          | SGA1J14A02               |                        | _            | SS1181           | _           |
|           | 14                             | (356) | Offset           | 240         | 300        | 20       | (3.1)   | 0.9     | (0.41) | RS       | SGA1J14A01               | OT-1430                | —<br>OT 1405 | SS1192           | -           |
|           | 14                             | (356) | Offset           | 120         | 500        | 33       | (5.1)   |         | . ,    | RS       | SGA1J14A03               | _                      | OT-1405      | _                | SS2181      |
|           | 14                             | (356) | Offset           | 240         | 500        | 33       | (5.1)   | 0.9     | (0.41) | RS       | SGA1J14A04               | -<br>C 1420            | OT-1405      | -<br>CD1101      | SS2192      |
|           | 14                             | (356) |                  | 120         | 300        | 20       | (3.1)   | 0.9     | (0.41) | M        | SGA1J14AT1               | S-1430                 | _            | SD1131           | _           |
|           |                                | (387) | Offset<br>Offset | 120<br>240  | 325<br>325 | 19<br>19 | (2.9)   |         | (0.45) | M<br>M   | SGA1J15EO2<br>SGA1J15EO3 | OT-1532<br>OT-1532     | _            | SS1201<br>SS1212 | _           |
|           |                                |       | Offset           | 240         | 500        | 30       | (2.9)   |         | (0.45) |          | SGA1J15E03               |                        | OT-1505      | -                | SS2212      |
|           | 10'/4                          | (007) | Olisel           | <b>24</b> U | 300        | 30       | (4.6)   | 1.0     | (0.45) | nδ       | 3GA 13 13EU4             | _                      | 01-1000      |                  |             |
|           |                                |       |                  |             |            |          |         |         |        |          |                          |                        |              |                  | CONTINUED   |

CONTINUED

①Chromalox® and Wellman® part numbers are used as a cross reference to help select the equivalent Watlow part number. Chromalox® sizes 27 in. (686 mm) and longer, and all Wellman® sizes have mounting slot center to center distances ¹/8 in. (3.2 mm) less than Watlow spacing.



M - Manufacturing lead times

### **375 High-Temperature Strip Heaters**

**Heater Part Numbers** (Continued)

|                                    |                                   |      |                  |            |            | W        | att     | Ap  | Approx. |          |                          | Chromalox®        | Part No. 1        | Wellman® F           | Part No. ①       |
|------------------------------------|-----------------------------------|------|------------------|------------|------------|----------|---------|-----|---------|----------|--------------------------|-------------------|-------------------|----------------------|------------------|
| Width                              | Leng                              | ıth  |                  |            | Power      | Dei      | nsity   | _   | et Wt.  |          | Part                     | Rust Resist.      | Chrome Stl.       | Aluminized           | Chrome Stl.      |
| in. (mm)                           | in. (r                            |      | Term.            | Volts      | (Watts)    |          | (W/cm²) |     | (kg)    | Delivery |                          | Iron Sheath       | Sheath            | Steel Sheath         | Sheath           |
| 1 <sup>1</sup> / <sub>2</sub> (38) | 17 <sup>7</sup> /8 (4             | - 1  | Offset           | 120        | 350        | 17       | (2.6)   |     | (0.54)  | RS       | SGA1J17RO4               | OT-1835           | _                 | SS1221               | SS2221           |
| . , _ (00)                         | 17 <sup>7</sup> /8 (4             | -    | Offset           | 240        | 350        | 17       | (2.6)   | 1.2 | (0.54)  | М        | SGA1J17RO5               | OT-1835           | _                 | SS1232               | SS2232           |
|                                    | 17 <sup>7</sup> /8 (4             |      | Offset           | 120        | 375        | 18       | (2.8)   | 1.2 | (0.54)  | RS       | SGA1J17RO6               | OT-1837           | -SS1261           | SS2241               | _                |
|                                    | 17 <sup>7</sup> /8 (4             |      | Offset           | 240        | 375        | 18       | (2.8)   | 1.2 | (0.54)  | М        | SGA1J17RO7               | OT-1837           | _                 | SS1252               | _                |
|                                    | 17 <sup>7</sup> /8 (4             |      | Offset           | 120        | 500        | 24       | (3.7)   | 1.2 | (0.54)  | RS       | SGA1J17RO1               | OT-1850           | _                 | SS1261               | SS2241           |
|                                    | 17 <sup>7</sup> /8 (4             |      | Offset           | 240        | 500        | 24       | (3.7)   | 1.2 | (0.54)  | RS       | SGA1J17RO2               | OT-1850           | _                 | SS1272               | SS2252           |
|                                    | 17 <sup>7</sup> /8 (4             | 454) | Offset           | 120        | 750        | 36       | (5.6)   | 1.2 | (0.54)  | RS       | SGA1J17RO9               | _                 | OT-1807           | - SS2261             |                  |
|                                    | 17 <sup>7</sup> /8 (4             | 454) | Offset           | 240        | 750        | 36       | (5.6)   | 1.2 | (0.54)  | RS       | SGA1J17RO8               | _                 | OT-1807           | - SS2272             |                  |
|                                    | 17 <sup>7</sup> /8 (4             | 454) | Offset           | 120        | 1000       | 48       | (7.4)   | 1.2 | (0.54)  | RS       | SGA1J17RO10              | _                 | OT-1801           | - SS2281             |                  |
|                                    | 17 <sup>7</sup> /8 (4             | 454) | Offset           | 240        | 1000       | 48       | (7.4)   | 1.2 | (0.54)  | RS       | SGA1J17RO3               | _                 | OT-1801           | - SS2292             |                  |
|                                    | 17 <sup>7</sup> /8 (4             | 454) | 1-on-1           | 120        | 500        | 24       | (3.7)   | 1.2 | (0.54)  | М        | SGA1J17RT1               | S-1850            | S-1805            | SD1211               | SD2171           |
|                                    | 17 <sup>7</sup> /8 (4             | 454) | 1-on-1           | 240        | 500        | 24       | (3.7)   | 1.2 | (0.54)  | RS       | SGA1J17RT2               | S-1850            | S-1805            | SD1222               | SD2182           |
|                                    | 17 <sup>7</sup> /8 (4             | 454) | 1-on-1           | 240        | 750        | 35       | (5.4)   | 1.2 | (0.54)  | М        | SGA1J17RT3               | _                 | S-1807            | - SD2202             |                  |
|                                    | 17 <sup>7</sup> /8 (4             |      | 1-on-1           | 120        | 1000       | 47       | (7.3)   | 1.2 | (0.54)  | М        | SGA1J17RT4               | _                 | S-1801            | - SD2211             |                  |
|                                    | 17 <sup>7</sup> /8 (4             |      | 1-on-1           | 240        | 1000       | 47       | (7.3)   | 1.2 | (0.54)  | М        | SGA1J17RT5               | _                 | S-1801            | - SD2222             |                  |
|                                    | 19 <sup>1</sup> /2 (4             |      | Offset           | 240        | 350        | 15       | (2.3)   | 1.3 | (0.59)  | М        | SGA1J19JO6               | OT-1935           | _                 | SS1301               | _                |
|                                    | 19 <sup>1</sup> /2 (4             |      | Offset           | 120        | 500        | 22       | (3.4)   | 1.3 | (0.59)  | М        | SGA1J19J07               | OT-1950           | OT-1905           | - SS2301             |                  |
|                                    | 19 <sup>1</sup> /2 (4             |      | Offset           | 240        | 500        | 22       | (3.4)   | 1.3 | (0.59)  | RS       | SGA1J19JO4               | OT-1950           | OT-1905           | - SS2312             |                  |
|                                    | 19 <sup>1</sup> /2 (4             |      | Offset           | 240        | 750        | 32       | (5.0)   | 1.3 | (0.59)  | RS       | SGA1J19JO8               | _                 | OT-1907           |                      |                  |
|                                    | 19 <sup>1</sup> /2 (4             | -    | Offset           | 240        | 1000       | 43       | (6.7)   | 1.3 | (0.59)  | RS       | SGA1J19JO1               |                   | OT-1901           | - SS2332             |                  |
|                                    | 191/2 (4                          |      | 1-on-1           | 240        | 750        | 32       | (5.0)   | 1.3 | (0.59)  | М        | SGA1J19JT1               |                   | S-1907            | - SD2262             |                  |
|                                    |                                   | 533) | Offset           | 120        | 500        | 20       | (3.1)   | 1.4 | (0.64)  | M        | SGA1J21AO1               | OT-2150           | _                 | SS1341               | _                |
|                                    |                                   | 533) | Offset           | 240        | 500        | 20       | (3.1)   | 1.4 | (0.64)  | RS       | SGA1J21A02               | OT-2150           | —<br>OT 0407      | SS1352               | _                |
|                                    |                                   | 533) | Offset           | 120        | 750        | 29<br>29 | (4.5)   | 1.4 | (0.64)  | M        | SGA1J21AO3               | _                 | OT-2107           | - SS2341<br>- SS2352 |                  |
|                                    |                                   | 533) | Offset           | 240        | 750        |          | (4.5)   | 1.4 | (0.64)  | RS       | SGA1J21AO4               |                   | OT-2107           |                      | SD2291           |
|                                    | 21 (s                             | 533) | 1-on-1<br>Offset | 120<br>120 | 500<br>500 | 19<br>17 | (2.9)   | 1.4 | (0.64)  | M<br>RS  | SGA1J21AT1<br>SGA1J23NO5 | S-2050<br>OT-2450 | S-2005<br>OT-2405 | SD1291<br>SS1361     | SD2291<br>SS2361 |
|                                    | 23 <sup>3</sup> /4 (6             |      | Offset           | 240        | 500        | 17       | (2.6)   | 1.5 | (0.68)  | RS       | SGA1J23NO6               | OT-2450           | OT-2405           | SS1372               | SS2372           |
|                                    | 23 <sup>3</sup> /4 (6             |      | Offset           | 120        | 750        | 25       | (3.9)   | 1.5 | (0.68)  | M        | SGA1J23NO1               | OT-2430           | OT-2403           | SS1391               | SS2381           |
|                                    | 23 <sup>3</sup> /4 (6             |      | Offset           | 240        | 750        | 25       | (3.9)   | 1.5 | (0.68)  | RS       | SGA1J23NO2               | OT-2475           | OT-2407           | SS1402               | SS2392           |
|                                    | 23 <sup>3</sup> /4 (              |      | Offset           | 120        | 1000       | 34       | (5.3)   | 1.5 | (0.68)  | RS       | SGA1J23NO7               | -                 | OT-2401           | - SS2401             | 302002           |
|                                    | 23 <sup>3</sup> /4 (6             |      | Offset           | 240        | 1000       | 34       | (5.3)   | 1.5 | (0.68)  | RS       | SGA1J23NO3               | _                 | OT-2401           | - SS2412             |                  |
|                                    | 23 <sup>3</sup> /4 (              |      | Offset           | 240        | 1500       | 51       | (7.9)   | 1.5 | (0.68)  | RS       | SGA1J23NO4               | _                 | OT-2415           |                      |                  |
|                                    | 23 <sup>3</sup> /4 (              |      | 1-on-1           | 240        | 250        | 8        | (1.2)   | 1.5 | (0.68)  | М        | SGA1J23NT1               | S-2425            | -                 | SD1322               | _                |
|                                    |                                   | 603) | 1-on-1           | 240        | 500        | 17       | (2.6)   | 1.5 | (0.68)  | М        | SGA1J23NT3               | S-2450            | S-2404            | SD1342               | SD2322           |
|                                    | 23 <sup>3</sup> /4 (6             |      | 1-on-1           | 240        | 750        | 25       | (3.9)   | 1.5 | (0.68)  | RS       | SGA1J23NT5               | _                 | S-2407            | - SD2352             |                  |
|                                    |                                   |      | 1-on-1           | 120        | 1000       | 33       | (5.1)   | 1.5 | (0.68)  | М        | SGA1J23NT6               | _                 | S-2401            | - SD2361             |                  |
|                                    |                                   |      | 1-on-1           | 240        | 1000       | 33       | (5.1)   | 1.5 | (0.68)  | М        | SGA1J23NT7               | _                 | S-2401            | - SD2372             |                  |
|                                    | 233/4 (                           | 603) | 1-on-1           | 240        | 1500       | 50       | (7.8)   | 1.5 | (0.68)  | М        | SGA1J23NT8               | _                 | S-2415            |                      |                  |
|                                    | 25 <sup>1</sup> / <sub>2</sub> (6 | 648) | Offset           | 120        | 500        | 16       | (2.5)   | 1.7 | (0.77)  | RS       | SGA1J25JO1               | OT-2550           | _                 | SS1421               | _                |
|                                    | 25 <sup>1</sup> / <sub>2</sub> (6 | ,    |                  | 240        | 500        | 16       | (2.5)   | 1.7 | (0.77)  | RS       | SGA1J25JO2               | OT-2550           | _                 | SS1432               | _                |
|                                    | 25 <sup>1</sup> / <sub>2</sub> (6 |      |                  | 120        | 750        | 23       | (3.6)   | 1.7 | . ,     | М        | SGA1J25JO3               | OT-2575           | OT2507            | SS1441               | SS2421           |
|                                    | 25 <sup>1</sup> / <sub>2</sub> (  |      |                  | 240        | 750        | 23       | (3.6)   | 1.7 | (0.77)  | RS       | SGA1J25JO4               | OT-2575           | OT-2507           | SS1452               | SS2432           |
|                                    | 25 <sup>1</sup> /2 (              | 648) | Offset           | 240        | 1000       | 31       | (4.8)   | 1.7 | (0.77)  | RS       | SGA1J25J05               | _                 | OT-2501           | - SS2452             |                  |

①Chromalox® and Wellman® part numbers are used as a cross reference to help select the equivalent Watlow part number. Chromalox® sizes 27 in. (686 mm) and longer, and all Wellman® sizes have mounting slot center to center distances <sup>1</sup>/<sub>8</sub> in. (3.2 mm) less than Watlow spacing.

CONTINUED

• M - Manufacturing lead times

### **375 High-Temperature Strip Heaters**

**Heater Part Numbers** (Continued)

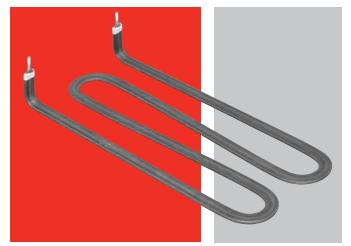
|                                    |                                |        |        | (     | ii ia aa |       |         |     |        |          |            |                        |             |              |             |
|------------------------------------|--------------------------------|--------|--------|-------|----------|-------|---------|-----|--------|----------|------------|------------------------|-------------|--------------|-------------|
|                                    |                                |        |        |       |          | V     | Vatt    | Ap  | prox.  |          |            | Chromalox <sup>®</sup> | Part No. 1  | Wellman® I   | Part No. 1  |
| Width                              | Le                             | ngth   |        |       | Power    | De    | nsity   | Ne  | t Wt.  |          | Part       | Rust Resist.           | Chrome Stl. | Aluminized   | Chrome Stl. |
| in. (mm)                           | in.                            | (mm)   | Term.  | Volts | (Watts)  | W/in² | (W/cm²) | lbs | (kg)   | Delivery | Number     | Iron Sheath            | Sheath      | Steel Sheath | Sheath      |
| 1 <sup>1</sup> / <sub>2</sub> (38) | 26 <sup>3</sup> /4             | (680)  | Offset | 240   | 700      | 21    | (3.3)   | 1.7 | (0.77) | RS       | SGA1J26NO1 | OT-2670                | _           | SS1472       | _           |
|                                    | 26 <sup>3</sup> /4             | (680)  | Offset | 240   | 1000     | 29    | (4.5)   | 1.7 | (0.77) | RS       | SGA1J26NO2 | _                      | OT-2601     | _            | SS2472      |
|                                    | 301/2                          | (775)  | Offset | 120   | 750      | 19    | (2.9)   | 2.0 | (0.91) | М        | SGA1J30J02 | OT-3075                | OT-3007     | SS1481       | _           |
|                                    | 30 <sup>1</sup> /2             | (775)  | Offset | 240   | 750      | 19    | (2.9)   | 2.0 | (0.91) | RS       | SGA1J30JO3 | OT-3075                | OT-3007     | SS1492       | SS2482      |
|                                    | 30 <sup>1</sup> / <sub>2</sub> | (775)  | 1-on-1 | 240   | 750      | 19    | (2.9)   | 2.0 | (0.91) | RS       | SGA1J30JT1 | S-3075                 | S-3007      | SD1452       | _           |
|                                    | 331/2                          | (851)  | Offset | 240   | 750      | 17    | (2.6)   | 2.2 | (1.0)  | RS       | SGA1J33J01 | OT-3375                | OT-3307     | SS1522       | SS2522      |
|                                    | 33 <sup>1</sup> /2             | (851)  | 1-on-1 | 240   | 1000     | 22    | (3.4)   | 2.2 | (1.0)  | М        | SGA1J33JT1 | _                      | S-3301      | _            | SD2472      |
|                                    | 35 <sup>7</sup> /8             | (911)  | Offset | 120   | 1000     | 21    | (3.3)   | 2.3 | (1.0)  | М        | SGA1J35RO4 | OT-3610                | _           | SS1531       | _           |
|                                    | 35 <sup>7</sup> /8             | (911)  | Offset | 240   | 1000     | 21    | (3.3)   | 2.3 | (1.0)  | RS       | SGA1J35RO3 | OT-3610                | _           | SS1542       | SS2532      |
|                                    | 35 <sup>7</sup> /8             | (911)  | Offset | 240   | 1500     | 31    | (4.8)   | 2.3 | (1.0)  | RS       | SGA1J35RO1 | _                      | OT-3601     | SS2552       | _           |
|                                    | 35 <sup>7</sup> /8             | (911)  | 1-on-1 | 240   | 1000     | 21    | (3.3)   | 2.3 | (1.0)  | RS       | SGA1J35RT1 | S-3610                 | S-3601      | SD1492       | SD2492      |
|                                    | 38 <sup>1</sup> / <sub>2</sub> | (978)  | Offset | 120   | 1000     | 19    | (2.9)   | 2.5 | (1.1)  | М        | SGA1J38J02 | OT-3810                | OT-3801     | SS1581       | SS2561      |
|                                    | 38 <sup>1</sup> / <sub>2</sub> | (978)  | Offset | 240   | 1500     | 29    | (4.5)   | 2.5 | (1.1)  | RS       | SGA1J38JO3 | _                      | OT-3815     | _            | _           |
|                                    | 421/2                          | (1080) | Offset | 240   | 1500     | 26    | (4.0)   | 2.8 | (1.3)  | RS       | SGA1J42J01 | _                      | OT-4315     | SS1632       | SS2632      |
|                                    | 47 <sup>7</sup> /8             | (1216) | Offset | 240   | 2250     | 34    | (5.3)   | 3.1 | (1.4)  | RS       | SGA1J47RO1 | _                      | OT-4822     | _            | _           |

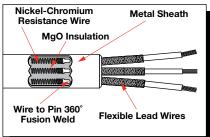
①Chromalox® and Wellman® part numbers are used as a cross reference to help select the equivalent Watlow part number. Chromalox® sizes 27 in. (686 mm) and longer, and all Wellman® sizes have mounting slot center to center distances <sup>1</sup>/<sub>8</sub> in. (3.2 mm) less than Watlow spacing.

• RS - Next day shipment

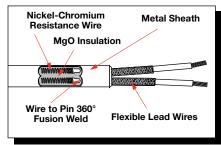
• M - Manufacturing lead times

Note: 5/16 in. x 1/2 in. (7.9 mm x 13 mm) mounting slots are supplied on all 375 strip heaters. Note that the Watlow part number specifies that the 375 strip heater includes an aluminized steel sheath. If a special sheath material is required, such as stainless steel, please contact your Watlow representative for material availability.


### FIREBAR® Clamp-On Heaters


FIREBAR® heating elements provide added heating performance over standard round tubular heating elements—especially for immersion applications in petroleum based liquids requiring high kilowatts.

The FIREBAR's unique flat surface geometry packs more power in shorter elements and assemblies, along with a host of other performance improvements. These include:


- Minimizing coking and fluid degrading
- Enhancing the flow of fluid past the element's surface to carry heat from the sheath
- Improving heat transfer with a significantly larger boundary layer allowing much more liquid to flow up and across the sheath's surface

FIREBAR elements are available in single- and double-ended constructions with one inch or <sup>5</sup>/8 inch heights. These two configuration variables make it possible to use FIREBAR elements instead of round tubular elements in virtually all applications.





One-Inch Double-Ended FIREBAR Element and Lead Configurations



%-Inch Double-Ended FIREBAR Element and Lead Configurations

For detailed product and technical data, see the full FIREBAR product section located on pages 93 through 111.

### **Thick Film Conduction Heaters**

The Watlow 430 stainless steel thick film conduction heater is ideal for many applications where fast response and uniformity are essential. A clamp-on, thick film heater provides the best possible combination of heat transfer, thermal efficiency, temperature response and uniformity in a low profile package.

This high-performance heater can be used in areas where space is limited or where conventional heaters cannot be used due to limited voltage and wattage combinations.

Thick film conduction heaters provide a low profile in a variety of shapes including two-dimensional circular and rectangular forms. Direct contact of thick film heaters to surfaces ensures efficient heat transfer through thermally stable substrates and precise resistance trace patterns.

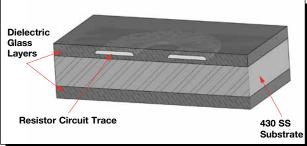
### **Performance Capabilities**

- Maximum substrate temperature up to 1022°F (550°C).
   Contact your Watlow representative for applications over 842°F (450°C)
- Watt densities up to 75 W/in<sup>2</sup> (11.6 W/cm<sup>2</sup>)
- Voltages up to 240V

#### **Features and Benefits**

## Watt densities up to 75 W/in<sup>2</sup> (11.6 W/cm<sup>2</sup>) for clamp-on applications

 Allows precise, repeatable wattage distribution and uniform temperature profile


#### Threaded stud termination

 Produces strong, trouble-free connections, see Termination Assembly drawing on page 464

#### Agency approvals

• UL® component recognition available upon request





### **Typical Applications**

- Food warming cabinets
- Load dump resistors
- Seal bars
- Deposition chamber lids

For detailed product and technical data, see the full Thick Film Conduction product section located on pages 463 through 46(.

|                        |                  | Max. Op<br>Tempe |     | Typica<br>Watt D |       |      |
|------------------------|------------------|------------------|-----|------------------|-------|------|
| Band/Barrel Heaters    | Sheath Materials | °F               | °C  | W/in²            | W/cm² | Page |
| Mineral Insulated (MI) | Stainless steel  | 1400             | 760 | 100              | 15.5  | 493  |



**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 491



### **Mineral Insulated (MI) Band Heaters**

The mineral insulated (MI) band heater from Watlow® is a high-performance heater that incorporates Watlow's exclusive mineral insulation. This material offers much higher thermal conductivity than mica and hard ceramic insulators that are used in conventional heaters.

A thin layer of the "high" thermally conductive MI material electrically insulates the element wire from the inside diameter of the heater sheath. A thicker, low thermally conductivity layer backs up the element wire directing the heat inward toward the part being heated. The result is more efficient heat transfer, which lowers element wire temperatures and increases heater life.

### **Performance Capabilities**

- Heater operating temperatures up to 1400°F (760°C)
- Watt densities up to 100 W/in<sup>2</sup> (15.5 W/cm<sup>2</sup>) available on large diameter barrel bands
- Maximum voltage to 480V

#### **Features and Benefits**

## High thermal conductivity of MI and low mass construction

- Provides an almost instant response to temperature control
- Eliminates thermal lag and temperature overshoot associated with ceramic insulated heaters

### Operating temperatures up to 1400°F (760°C)

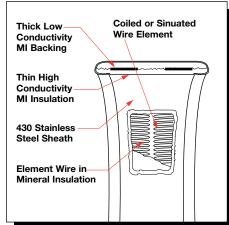
 Allows safe melting of resins such as PEEK™, Teflon®, Ultem® and Zytel®

### **Higher watt densities**

Contributes to faster heat-up and throughput for increased productivity

### Stainless steel cover and side fold design

 Resists contamination from overflow of plastic or other free-flowing materials


#### Attached clamp bars

• Eliminates cumbersome clamping straps to ease installation

### **Typical Applications**

- Extruders
- Blown film dies
- Injection molding machines
- Other cylinder heating applications





WATLOW<sup>®</sup> 493

### **Mineral Insulated (MI) Band Heaters**

### Applications and Technical Data

The *Physical Limitations of Variations* table shows the availability of widths, inside diameters and terminations for Watlow's MI band, barrel and nozzle heaters. To ensure available terminations meet application needs, refer to the termination variation illustrations in this section.

If the application requires a heater exceeding limitations shown, contact your Watlow representative.

### **Physical Limitations of Variations**

|                   |       |                               |        |      |       |       | I.D. | . Avail | able | – in | . (mm) |     |        |      |       |       |                            |
|-------------------|-------|-------------------------------|--------|------|-------|-------|------|---------|------|------|--------|-----|--------|------|-------|-------|----------------------------|
|                   |       | 1                             | pc. Co | nstr | uctic | n     |      | Exp     | anda | able |        | 2   | pc. Co | onst | ructi | on    |                            |
| W                 | /idth | M                             | in.    |      | 1     | Max.  | 1    | Min.    |      |      | Max.   |     | Min.   |      | - N   | lax.  |                            |
| in.               | (mm)  | in.                           | (mm)   |      | in.   | (mm)  | in.  | (mm)    |      | in.  | (mm)   | in. | (mm)   |      | in.   | (mm)  | Available Terminations     |
| 1                 | (25)  | 1                             | (25)   | -    | 6     | (152) | 3    | (76)    | -    | 12   | (305)  | 3   | (76)   | -    | 12    | (305) | All                        |
| 1 <sup>3</sup> /8 | (35)  | 1                             | (25)   | -    | 3     | (76)  | 3    | (76)    | _    | 6    | (152)  | 3   | (76)   | -    | 6     | (152) | All - Except SLE           |
| 11/2              | (38)  | 1                             | (25)   | -    | 14    | (356) | 3    | (76)    | -    | 14   | (356)  | 3   | (76)   | -    | 28    | (711) | All                        |
| 2                 | (51)  | 11/4                          | (32)   | -    | 14    | (356) | 3    | (76)    | -    | 14   | (356)  | 3   | (76)   | -    | 28    | (711) | All                        |
| 21/2              | (64)  | 1 <sup>1</sup> / <sub>4</sub> | (32)   | _    | 14    | (356) | 3    | (76)    | _    | 14   | (356)  | 3   | (76)   | -    | 28    | (711) | All                        |
| 3                 | (76)  | 1 <sup>1</sup> /2             | (38)   | -    | 14    | (356) | 3    | (76)    | -    | 14   | (356)  | 3   | (76)   | -    | 28    | (711) | All                        |
| 31/2              | (89)  | 1 <sup>3</sup> /4             | (45)   | -    | 14    | (356) | 3    | (76)    | -    | 14   | (356)  | 3   | (76)   | -    | 28    | (711) | All - Except 90° "B" Leads |
| 4                 | (102) | 2                             | (51)   | -    | 14    | (356) | 3    | (76)    | _    | 14   | (356)  | 3   | (76)   | -    | 28    | (711) | All                        |
| 41/2              | (114) | 2 <sup>1</sup> / <sub>4</sub> | (57)   | -    | 14    | (356) | 3    | (76)    | _    | 14   | (356)  | 3   | (76)   | -    | 28    | (711) | All                        |
| 5                 | (127) | 2 <sup>1</sup> / <sub>2</sub> | (64)   | -    | 14    | (356) | 3    | (76)    | -    | 14   | (356)  | 4   | (102)  | -    | 28    | (711) | All - Except 90° "B" Leads |
| 5 <sup>1</sup> /2 | (140) | 2 <sup>3</sup> /4             | (70)   | -    | 14    | (356) | 3    | (76)    | -    | 14   | (356)  | 4   | (102)  | -    | 28    | (711) | Post Terminals, SLE only   |
| 6                 | (152) | 3                             | (76)   | -    | 14    | (356) | 3    | (76)    | -    | 14   | (356)  | 4   | (102)  | -    | 28    | (711) | All                        |

#### **General Limitations**

- Maximum width of 1 in. (25 mm) diameter heater: 1<sup>1</sup>/<sub>2</sub> in. (38 mm)
- Maximum heater width: 2x heater diameter
- Minimum I.D. for Type B, C, E and H leads:
  1 in. (25 mm)
- Minimum I.D. for Type B-90° leads: 11/8 in. (29 mm)
- Maximum lead amperes: 12.5A per pair
- SLE maximum: 17.0A
- Maximum amperes (post terminals): 30A per pair
- Minimum diameter and width for SLE: 4 in. x 1<sup>1</sup>/<sub>2</sub> in. (102 mm x 38 mm) width
- 90° leads not available over 250VAC
- Minimum I.D. for post terminals: 11/4 in. (32 mm)
- Actual width for 7 in. (178 mm) wide heater:  $6^7/8$  in. (175 mm)

#### Gaps

- $\leq 3$  in. =  $^{1}/8$  in. nominal
- 3 in.  $\leq$  6 in. =  $^{1}/_{4}$  in. nominal  $\pm$   $^{1}/_{8}$  in.
- 6 in.  $\leq 14$  in. = 3/8 in. nominal  $\pm 1/8$  in.
- >14 in. =  $\frac{1}{2}$  in. nominal  $\pm \frac{1}{4}$  in.

### **Mineral Insulated (MI) Band Heaters**

### Applications and Technical Data (Continued)

### **Calculating Watt Density**

Watt density is the amount of wattage per square inch of heated area. To determine watt density, divide the total wattage by the heated area.

Watt Density = 
$$\frac{\text{Total Watts}}{\text{Heated Area}}$$

To apply this equation, the term "heated area" must be defined. Heated area is the total contact surface of the heater less the areas of no-heat found around terminals, mounting holes, etc.

Heated Area = Total Contact Area - No-Heat Area

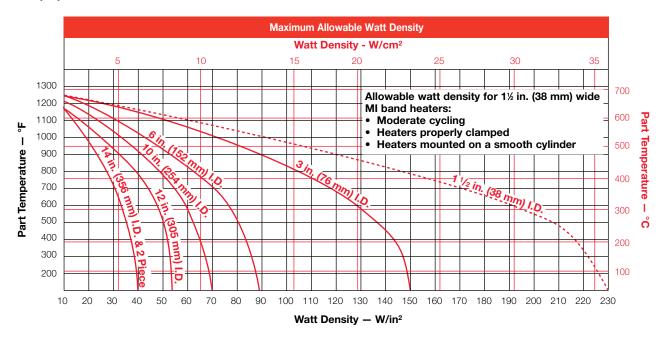
#### To calculate the heated area:

1. Locate the **no-heat factor** from the chart below that corresponds to the type of heater being considered.

| Туре                                    | No-Heat Factor in. |
|-----------------------------------------|--------------------|
| 1 pc. lead unit Type B, C, H, E or 90°B | 1.37               |
| 1 pc. post terminal                     | 1.60               |
| 1 pc. expandable post term              | 3.18               |
| 1 pc. expandable lead unit              | 3.00               |
| True 2 pc. post term                    | 3.20               |
| True 2 pc. leads                        | 2.74               |
| SLE                                     | 3.68               |

2. To use the formula below, insert the no-heat factors, diameter and width (in inches).

Heated Area = (3.14 x Diameter - No-Heat Factor) x Width

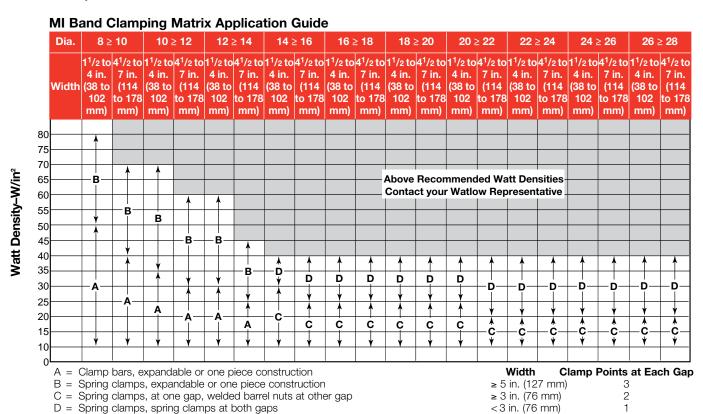

### **Maximum Allowable Watt Density**

The following derating factors apply to the *Maximum Allowable Watt Density* chart, which are displayed in both inches and millimeters. Review these factors and the chart to determine the correct watt density curve for the application.

#### **Derating Factors:**

• For units over 2 in. (51 mm) in width, multiply the watt density by 0.80.

- For applications where unusual operating conditions are present, such as irregular mounting surfaces, contact your Watlow representative for watt density limitations.
- For two-piece units used in vertical applications, refer to *Clamping Matrix Application Guide* on page 496.
- For applications where insulating blankets are used, multiply watt density by 0.75.



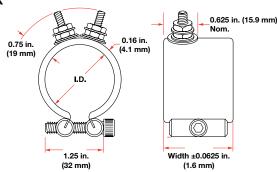

WATLOW® \_\_\_\_\_\_ 495

### **Mineral Insulated (MI) Band Heaters**

### Applications and Technical Data (Continued)

- Review the Watt Density chart to ensure the application does not exceed the maximum watt density at operating temperature after applying derating factors.
- Locate clamping guideline for unit diameter, width and watt density.
- Description of guideline letters are at the bottom of the MI Band Clamping Matrix Application Guide.
- **Note:** Upward arrows are up to and not including specified watt density. Downward arrows are greater than or equal to specified watt density.




**Note:** 1 in. (25 mm) wide heaters use welded barrel nuts rather than clamp bars.

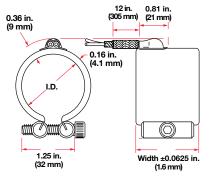
### **Mineral Insulated (MI) Band Heaters**

### **Termination Variations**

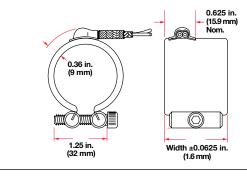
### **Post Terminals**

Stock

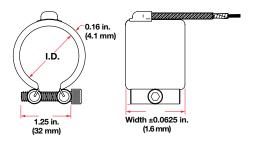



Post terminals provide optimum connections. Screw thread is 10-24. To order, specify **post terminals** (metric threads available).

### **Lead Wire**


Heaters rated at less than 250VAC use UL® approved lead insulation for operations to 480°F (250°C) as standard. Lead insulation UL® rated for operation to 840°F (450°C) is available for high-temperature applications where the leads are shrouded or enclosed with the heater. These leads are available in any of the Type B with loose braid as well as Types E, F and H lead configurations. All heaters rated at more than 250VAC use this wire. When ordering, specify **850°F (450°C) wire.** 

Leads Type B, Type B - 90° rotation, Type B - 180° rotation or Type C: Two fiberglass-insulated lead wires exit in a single metal braid for good abrasion protection, lead flexibility and wiring convenience. Leads are 2 in. (51 mm) longer than braid. Shipped with 12 in. (305 mm) leads, unless longer length is specified. To order, specify **type** and **length.** 


Type B Stock

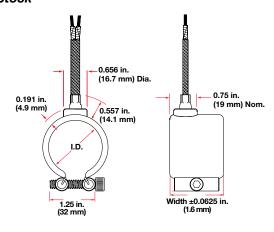


Type B - 90° Rotation Non-Stock

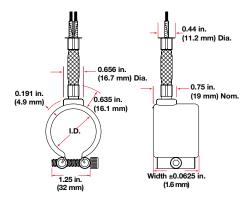


Type B - 180° Rotation Stock



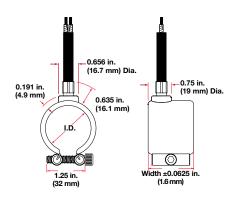

WATLOW<sup>®</sup> 497

### **Mineral Insulated (MI) Band Heaters**


### **Termination Variations** (Continued)

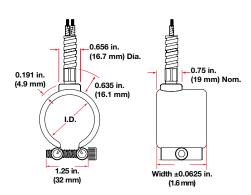
### Lead Wire (Continued)

## Type C Stock




## Type E Stock




Type E: Loose metal braid encloses two fiberglass leads for good abrasion protection, lead flexibility and wiring convenience. Leads are 2 in. (51 mm) longer than the braid. Shipped with 12 in. (305 mm) leads, unless longer length is specified. To order, specify **Type E** and **length**.

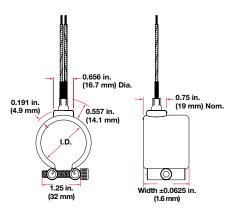
## Type F Stock



Type F: Loose fiberglass sleeving encloses two fiberglass leads for additional insulation protection where high temperature or minor abrasion is present. Leads are 2 in. (51 mm) longer than the sleeving. To order, specify **Type F** and **length**.

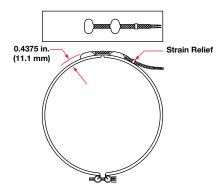
## Type H Stock




Type H: A flexible steel hose encloses the leads for maximum abrasion protection. Leads are 2 in. (51 mm) longer than hose. Shipped with 12 in. (305 mm) leads, unless longer length is specified. To order, specify **Type H** and **length.** 

### **Mineral Insulated (MI) Band Heaters**

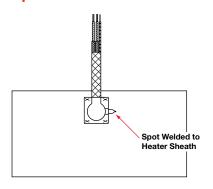
### Termination Variations (Continued)


### Lead Wire (Continued)

## Type K Stock

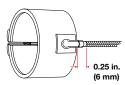


Type K: Flexible lead wires exit vertically from the heater. These leads can be bent adjacent to the heater for a quick and easy connection. To order, specify **Type K** and **length**.


### Type SLE



Two fiberglass lead wires exit a single, tightly woven metal braid at a right angle on the expandable construction vs. two sets of leads. The minimum diameter capability is 4 in. (102 mm). Minimum width capability is 1<sup>1</sup>/<sub>2</sub> in. (38 mm). To order, specify **Type SLE** and **length.** 


### **Variations**

### **Thermocouple**



ASTM Type J or K thermocouples are available on lead Type B with loose braid and fiberglass sleeving. They are also available on E, F and H leads. The thermocouple junction, spot-welded to the heater sheath, provides a signal for measuring relative heater temperature. A separate thermocouple is available.

### **Heavy Duty Strain Relief**



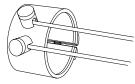
Heavy duty strain relief is recommended for applications where there is great stress or continued flexing of the leads. The strain relief is available on Type B, Type B - 90° and Type B - 180° leads only. To order, specify **heavy-duty strain relief. Note:** not available with loose braid or fiberglass sleeving.

WATLOW<sup>®</sup> 499

### **Mineral Insulated (MI) Band Heaters**

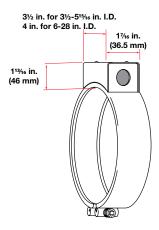
Variations (Continued)

# **Expandable Heaters With Post Terminals or Leads**



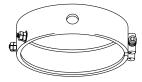

Expandable heaters are two-piece units with a common top metal allowing the heater to expand open to the full diameter of the barrel. On expandable bands, each half will be one half of the total wattage. Plus, on both expandable and two-piece bands, each half will be rated at full operating voltage, unless otherwise specified.

**MI band heaters 11/2 in. (38 mm) wide** or greater have post terminals located next to the expansion joint. Leads may be located anywhere along the circumference except near the gap and at the expansion joint. Two sets of leads required.


**On 1 in. (25 mm) wide** MI band heaters, post terminals will be located 90° from the expansion joint. Leads may be located anywhere along the circumference except near the gap and at the expansion joint. Two sets of leads are required. To order, specify **expandable.** Expandable heaters are designed to be opened for new installation only.

#### **Ceramic Terminal Cover**




Ceramic covers, with openings for leads, are screwed on to post terminals, providing a convenient, economical insulator. To order, specify part number **Z-4918** and **quantity.** For metric sizes specify thread needed. **Note:** Ceramic terminal covers will not fit on some stock expandable MI bands or nozzles. Contact your Watlow representative for more information.

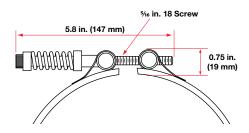
#### Metallic Terminal Box



Metallic terminal boxes are available from stock on  $3^{1/2}$  in. inside diameter x  $1^{1/2}$  in. wide (89 mm x 38 mm) or larger heaters. Terminal boxes, which attach directly to the heater, act as a safety feature by covering the terminals. Conduit may be attached to the box through  $^{7/8}$  in. (22 mm) diameter holes in the ends of the box. Two-piece heaters require two boxes. To order, specify **terminal box.** 

### **MI Band Heater with Holes**



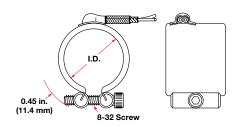

MI band heaters with holes are available on all widths except 1 in. (25 mm) wide. Contact your Watlow representative for hole sizes and location constraints. To order, specify **hole size** and **location**. The inside diameter minimum is 3 in. (76 mm). **Note:** a minimum charge per line item applies.

500 WATLOW<sup>®</sup>

### **Mineral Insulated (MI) Band Heaters**

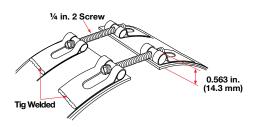
### **Clamping Variations**

# Tig-Welded Barrel Nuts with Spring Loaded Clamping




Welded barrel nuts with spring loaded clamping are used to maintain a tight heater fit on large barrels during start-up. This clamping variation is recommended for all MI band heaters greater than 14 in. (356 mm) in diameter and 1½ in. (38 mm) or greater in width. Refer to MI Band Clamping Matrix Application Guide. For smaller diameter heaters, it is an option and must be ordered separately. To order, specify **spring loaded clamping.** 

### **Low-Profile Tig-Welded Barrel Nuts**

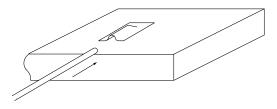

Low-profile barrel nuts are available on all widths and provide a clearance of 0.470 in. (12 mm). However, this value can be higher depending on how far the clamp screw extends past the barrel nut. To order, specify **low-profile tig-welded barrel nuts**.

### **Low-Profile Clamp Bars**



Low-profile clamp bars are available on both 1 in. (25 mm) and 1<sup>1</sup>/<sub>2</sub> in. (38 mm) wide heaters, for wider widths contact your Watlow representative. Watlow recommends not using low-profile clamping on diameters and widths greater than 3 in. (76 mm). The bars are <sup>1</sup>/<sub>4</sub> in. (6 mm) diameter with an 8-32 screw. To order, specify **low-profile clamp bars.** 

### **Tig-Welded Barrel Nuts**




Tig-welded barrel nuts can function like a hinge to allow two-piece heaters to be more easily installed. If a large gap is specified to provide access for instrumentation, tig-welded barrel nuts can be situated in such a way that the clamp screws do not interfere with the sensor. To order, specify **gap size and sensor location**.

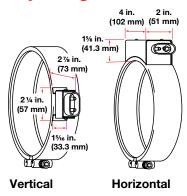
**Note:** a gap greater than 1 in. (25 mm) wide is considered extended capability.

### **Options**

### **Thermocouple Pocket**



A thermocouple pocket welded to the surface accepts a 0.063 in. (2 mm) diameter thermocouple (not included). This option provides accurate temperature sensing of the heater and easy thermocouple replacement.

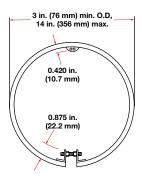

WATLOW® \_\_\_\_\_ 501



# Extended Capabilities For Mineral Insulated (MI) Band Heaters

### **Variations**

# **High Temperature "Quick Disconnect" European Style Plugs**




They provide the simplest and safest way to apply power to band heaters. The combination of high-temperature male and female "quick disconnect" plug assemblies eliminates all live exposed terminals and electrical wiring that can be a potential hazard to employees or machine. Maximum 15 amperes at 240VAC, maximum 240V. To order, specify **vertical** or **horizontal** European plug.

### **Ground Wire**

Insulated ground wire is available, contact your Watlow representative.

### **Outside Diameter Heater**



Two fiberglass-insulated lead wires rated to 840°F (450°C) exit a metal braid 180° opposite from gap, Type B outside diameter designed and constructed to mate with inside diameter of cylinders. Maximum width for outside diameter heaters is 6 in. (152 mm). To order, specify **outside diameter and width** of heater.

### **Mineral Insulated (MI) Band Heaters**

#### **Heater Part Numbers**

| <b>m)</b> 5) | in.  1 1 1 1 1 1 1 1 <sup>1</sup> / <sub>2</sub> 1 <sup>1</sup> / <sub>2</sub> 1 <sup>1</sup> / <sub>2</sub> 1 <sup>1</sup> / <sub>2</sub> 1 1 1                            | (mm) (25) (25) (25) (25) (25) (38) (38) (38) (38) (38) (25)                                                                   | 1 pc 1 pc 1 pc 1 pc 1 pc 1 pc 1 pc 1 pc                                                                                                                                                                                         | Volts  120  120  120  240  240  120  240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Watts  150  100  200  200  300  300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (W/cm²)<br>(14.2)<br>(9.4)<br>(18.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Termination  Type B,C,E, F or H  Type B,C,E, F or H  Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (kg)<br>(0.05)<br>(0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS<br>RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number<br>MB1A1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 1<br>1<br>1<br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1<br>1                   | (25)<br>(25)<br>(25)<br>(38)<br>(38)<br>(38)<br>(38)<br>(38)<br>(38)                                                          | 1 pc<br>1 pc<br>1 pc<br>1 pc<br>1 pc<br>1 pc<br>1 pc<br>1 pc                                                                                                                                                                    | 120<br>120<br>240<br>240<br>120<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100<br>200<br>200<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61<br>122<br>122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (9.4)<br>(18.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2)           | 1<br>1<br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1<br>1                        | (25)<br>(25)<br>(38)<br>(38)<br>(38)<br>(38)<br>(38)<br>(38)                                                                  | 1 pc<br>1 pc<br>1 pc<br>1 pc<br>1 pc<br>1 pc<br>1 pc                                                                                                                                                                            | 120<br>240<br>240<br>120<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200<br>200<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122<br>122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (18.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΜΒ1Δ1ΔΝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)           | 1<br>1 <sup>1</sup> / <sub>2</sub><br>1 | (25)<br>(38)<br>(38)<br>(38)<br>(38)<br>(38)                                                                                  | 1 pc<br>1 pc<br>1 pc<br>1 pc<br>1 pc                                                                                                                                                                                            | 240<br>240<br>120<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Type B C F F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2)           | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1      | (38)<br>(38)<br>(38)<br>(38)<br>(38)                                                                                          | 1 pc<br>1 pc<br>1 pc<br>1 pc                                                                                                                                                                                                    | 240<br>120<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (40.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 y p c D, O, E, 1 O 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1A1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)           | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1                                       | (38)<br>(38)<br>(38)<br>(38)                                                                                                  | 1 pc<br>1 pc<br>1 pc                                                                                                                                                                                                            | 120<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (18.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1A1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)           | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1                                                                        | (38)<br>(38)<br>(38)                                                                                                          | 1 pc<br>1 pc                                                                                                                                                                                                                    | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (16.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1A1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)           | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1                                                                                                         | (38)<br>(38)                                                                                                                  | 1 pc                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (16.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1A1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)           | 1 <sup>1</sup> / <sub>2</sub><br>1                                                                                                                                          | (38)                                                                                                                          | ·                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (10.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1A1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)           | 1                                                                                                                                                                           |                                                                                                                               | 1 nc                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (10.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1A1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)           | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 00                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (21.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1A1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                             |                                                                                                                               | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (16.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1E1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (16.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1E1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (19.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1E1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (13.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1E1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> / <sub>2</sub>                                                                                                                                               | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (13.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1E1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (17.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1E1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3)           | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (14.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1J1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (14.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (9.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (9.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (19.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (9.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (13.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (9.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> / <sub>2</sub>                                                                                                                                               | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (17.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1J1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (9.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1J1JP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | $1^{1/2}$                                                                                                                                                                   | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (14.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J1JP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 2                                                                                                                                                                           | (51)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (8.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J2AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 2                                                                                                                                                                           | (51)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (6.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J2AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 2                                                                                                                                                                           | (51)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (19.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J2AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 3                                                                                                                                                                           | (76)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (7.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1J3AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 3                                                                                                                                                                           | (76)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1J3AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 3                                                                                                                                                                           | (76)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (16.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1J3AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5)           | 1 <sup>3</sup> /8                                                                                                                                                           | (35)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (12.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 in. 90° Type B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1N1GX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | braid w/HD strain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | relief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (7.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1N1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (7.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1N1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1 <sup>1</sup> /2                                                                                                                                                           | (38)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (17.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB1N1JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 2                                                                                                                                                                           | (51)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (13.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB1N2AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| l)           | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (11.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB2A1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (11.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB2A1AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (14.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type B,C,E, F or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB2A1AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | 1                                                                                                                                                                           | (25)                                                                                                                          | 1 pc                                                                                                                                                                                                                            | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (10.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36 in. 90° Type B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MB2A1AX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | braid w/HD strain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | relief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5)           |                                                                                                                                                                             | 1 1 1 1 1 1 1 1 1 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 2 2 3 3 3 1 3/8 1 13/8  1 11/2 1 11/2 2 1 1/2 1 1/2 1 1/2 1 1 1/2 1 1 1 | 1 (25) 1 (25) 1 (25) 1 (25) 1 (25) 1 (25) 1 (25) 1 (25) 1 (25) 1 (25) 1 (26) 1 (27) 1 (28) 1 (27) 1 (28) 1 (28) 1 (28) 2 (51) 2 (51) 2 (51) 3 (76) 3 (76) 3 (76) 3 (76) 3 (76) 1 (38) 1 (28) 1 (28) 1 (28) 1 (25) 1 (25) 1 (25) | 1       (25)       1 pc         1       (25)       1 pc         1       (25)       1 pc         1       (25)       1 pc         11/2       (38)       1 pc         2       (51)       1 pc         2       (51)       1 pc         3       (76)       1 pc         3       (76)       1 pc         3       (76)       1 pc         13/8       (35)       1 pc         11/2       (38)       1 pc <tr< td=""><td>1         (25)         1 pc         120           1         (25)         1 pc         240           1         (25)         1 pc         120           1         (25)         1 pc         120           11/2         (38)         1 pc         120           11/2         (38)         1 pc         240           2         (51)         1 pc         240           2         (51)         1 pc         240           2         (51)         1 pc         240           3         (76)         1 pc         240           3         (76)         1 pc         240           3         (76)         1 pc         240           13/8         (35)         1 pc         240           11/2         (38)         1 pc         240           11/2         (38)         1 pc         240           11/2         (38)         1 pc         240           11/2         (38)</td><td>1         (25)         1 pc         120         300           1         (25)         1 pc         240         200           1         (25)         1 pc         120         200           1         (25)         1 pc         120         300           11/2         (38)         1 pc         120         300           11/2         (38)         1 pc         240         450           11/2         (38)         1 pc         240         600           11/2         (38)         1 pc         240         300           11/2         (38)         1 pc         240         450           2         (51)         1 pc         240         450           2         (51)         1 pc         240         300           2         (51)         1 pc         240         300           2         (51)         1 pc         240         300           3         (76)         1 pc         240         350           3         (76)         1 pc         240         350           3         (76)         1 pc         240         300           13/8         (3</td><td>1         (25)         1 pc         120         300         93           1         (25)         1 pc         240         200         62           1         (25)         1 pc         120         200         62           1         (25)         1 pc         120         300         62           11/2         (38)         1 pc         120         300         62           11/2         (38)         1 pc         240         450         87           11/2         (38)         1 pc         240         300         62           11/2         (38)         1 pc         240         300         62           11/2         (38)         1 pc         240         300         62           11/2         (38)         1 pc         240         450         96           2         (51)         1 pc         240         450         57           2         (51)         1 pc         240         300         42           2         (51)         1 pc         240         300         42           3         (76)         1 pc         240         350         31</td><td>1         (25)         1 pc         120         300         93         (14.4)           1         (25)         1 pc         240         200         62         (9.6)           1         (25)         1 pc         120         200         62         (9.6)           1         (25)         1 pc         240         400         125         (19.3)           1½         (38)         1 pc         120         300         62         (9.6)           1½         (38)         1 pc         240         450         87         (13.5)           1½         (38)         1 pc         240         300         62         (9.6)           1½         (38)         1 pc         240         300         62         (9.6)           1½         (38)         1 pc         240         300         62         (9.6)           1½         (38)         1 pc         240         450         96         (14.8)           2         (51)         1 pc         240         450         96         (14.8)           2         (51)         1 pc         240         300         42         (6.5)           2</td><td>1         (25)         1 pc         120         300         93         (14.4)         Type B,C,E, F or H           1         (25)         1 pc         240         200         62         (9.6)         Type B,C,E, F or H           1         (25)         1 pc         120         200         62         (9.6)         Type B,C,E, F or H           1         (25)         1 pc         240         400         125         (19.3)         Type B,C,E, F or H           11/2         (38)         1 pc         120         300         62         (9.6)         Type B,C,E, F or H           11/2         (38)         1 pc         240         450         87         (13.5)         Type B,C,E, F or H           11/2         (38)         1 pc         240         300         62         (9.6)         Type B,C,E, F or H           11/2         (38)         1 pc         240         300         62         (9.6)         Post           11/2         (38)         1 pc         240         300         62         (9.6)         Post           11/2         (38)         1 pc         240         300         62         (9.6)         Post           2</td><td>1         (25)         1 pc         120         300         93         (14.4)         Type B,C,E, F or H         0.1           1         (25)         1 pc         240         200         62         (9.6)         Type B,C,E, F or H         0.1           1         (25)         1 pc         120         200         62         (9.6)         Type B,C,E, F or H         0.1           11/2         (38)         1 pc         240         400         125         (19.3)         Type B,C,E, F or H         0.2           11/2         (38)         1 pc         240         450         87         (13.5)         Type B,C,E, F or H         0.2           11/2         (38)         1 pc         240         450         87         (13.5)         Type B,C,E, F or H         0.2           11/2         (38)         1 pc         240         300         62         (9.6)         Type B,C,E, F or H         0.2           11/2         (38)         1 pc         240         300         62         (9.6)         Post         0.2           11/2         (38)         1 pc         240         450         96         (14.8)         Post         0.2           2</td><td>1         (25)         1 pc         120         300         93         (14.4)         Type B,C,E, F or H         0.1         (0.05)           1         (25)         1 pc         240         200         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)           1         (25)         1 pc         120         200         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)           11/2         (38)         1 pc         240         400         125         (19.3)         Type B,C,E, F or H         0.1         (0.05)           11/2         (38)         1 pc         120         300         62         (9.6)         Type B,C,E, F or H         0.2         (0.09)           11/2         (38)         1 pc         240         450         87         (13.5)         Type B,C,E, F or H         0.2         (0.09)           11/2         (38)         1 pc         240         600         116         (17.9)         Type B,C,E, F or H         0.2         (0.09)           11/2         (38)         1 pc         240         300         62         (9.6)         Post         0.2         (0.09)           11/2         (38)</td><td>1         (25)         1 pc         120         300         93         (14.4)         Type B,C,E, F or H         0.1         (0.05)         RS           1         (25)         1 pc         240         200         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)         RS           1         (25)         1 pc         120         200         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)         RS           1½         (38)         1 pc         120         300         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)         RS           1½         (38)         1 pc         120         300         62         (9.6)         Type B,C,E, F or H         0.2         (0.09)         RS           1½         (38)         1 pc         240         300         62         (9.6)         Type B,C,E, F or H         0.2         (0.09)         RS           1½         (38)         1 pc         240         300         62         (9.6)         Pype B,C,E, F or H         0.2         (0.09)         M           1½         (38)         1 pc         240         300         62         (9.6)</td></tr<> | 1         (25)         1 pc         120           1         (25)         1 pc         240           1         (25)         1 pc         120           1         (25)         1 pc         120           11/2         (38)         1 pc         120           11/2         (38)         1 pc         240           2         (51)         1 pc         240           2         (51)         1 pc         240           2         (51)         1 pc         240           3         (76)         1 pc         240           3         (76)         1 pc         240           3         (76)         1 pc         240           13/8         (35)         1 pc         240           11/2         (38)         1 pc         240           11/2         (38)         1 pc         240           11/2         (38)         1 pc         240           11/2         (38) | 1         (25)         1 pc         120         300           1         (25)         1 pc         240         200           1         (25)         1 pc         120         200           1         (25)         1 pc         120         300           11/2         (38)         1 pc         120         300           11/2         (38)         1 pc         240         450           11/2         (38)         1 pc         240         600           11/2         (38)         1 pc         240         300           11/2         (38)         1 pc         240         450           2         (51)         1 pc         240         450           2         (51)         1 pc         240         300           2         (51)         1 pc         240         300           2         (51)         1 pc         240         300           3         (76)         1 pc         240         350           3         (76)         1 pc         240         350           3         (76)         1 pc         240         300           13/8         (3 | 1         (25)         1 pc         120         300         93           1         (25)         1 pc         240         200         62           1         (25)         1 pc         120         200         62           1         (25)         1 pc         120         300         62           11/2         (38)         1 pc         120         300         62           11/2         (38)         1 pc         240         450         87           11/2         (38)         1 pc         240         300         62           11/2         (38)         1 pc         240         300         62           11/2         (38)         1 pc         240         300         62           11/2         (38)         1 pc         240         450         96           2         (51)         1 pc         240         450         57           2         (51)         1 pc         240         300         42           2         (51)         1 pc         240         300         42           3         (76)         1 pc         240         350         31 | 1         (25)         1 pc         120         300         93         (14.4)           1         (25)         1 pc         240         200         62         (9.6)           1         (25)         1 pc         120         200         62         (9.6)           1         (25)         1 pc         240         400         125         (19.3)           1½         (38)         1 pc         120         300         62         (9.6)           1½         (38)         1 pc         240         450         87         (13.5)           1½         (38)         1 pc         240         300         62         (9.6)           1½         (38)         1 pc         240         300         62         (9.6)           1½         (38)         1 pc         240         300         62         (9.6)           1½         (38)         1 pc         240         450         96         (14.8)           2         (51)         1 pc         240         450         96         (14.8)           2         (51)         1 pc         240         300         42         (6.5)           2 | 1         (25)         1 pc         120         300         93         (14.4)         Type B,C,E, F or H           1         (25)         1 pc         240         200         62         (9.6)         Type B,C,E, F or H           1         (25)         1 pc         120         200         62         (9.6)         Type B,C,E, F or H           1         (25)         1 pc         240         400         125         (19.3)         Type B,C,E, F or H           11/2         (38)         1 pc         120         300         62         (9.6)         Type B,C,E, F or H           11/2         (38)         1 pc         240         450         87         (13.5)         Type B,C,E, F or H           11/2         (38)         1 pc         240         300         62         (9.6)         Type B,C,E, F or H           11/2         (38)         1 pc         240         300         62         (9.6)         Post           11/2         (38)         1 pc         240         300         62         (9.6)         Post           11/2         (38)         1 pc         240         300         62         (9.6)         Post           2 | 1         (25)         1 pc         120         300         93         (14.4)         Type B,C,E, F or H         0.1           1         (25)         1 pc         240         200         62         (9.6)         Type B,C,E, F or H         0.1           1         (25)         1 pc         120         200         62         (9.6)         Type B,C,E, F or H         0.1           11/2         (38)         1 pc         240         400         125         (19.3)         Type B,C,E, F or H         0.2           11/2         (38)         1 pc         240         450         87         (13.5)         Type B,C,E, F or H         0.2           11/2         (38)         1 pc         240         450         87         (13.5)         Type B,C,E, F or H         0.2           11/2         (38)         1 pc         240         300         62         (9.6)         Type B,C,E, F or H         0.2           11/2         (38)         1 pc         240         300         62         (9.6)         Post         0.2           11/2         (38)         1 pc         240         450         96         (14.8)         Post         0.2           2 | 1         (25)         1 pc         120         300         93         (14.4)         Type B,C,E, F or H         0.1         (0.05)           1         (25)         1 pc         240         200         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)           1         (25)         1 pc         120         200         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)           11/2         (38)         1 pc         240         400         125         (19.3)         Type B,C,E, F or H         0.1         (0.05)           11/2         (38)         1 pc         120         300         62         (9.6)         Type B,C,E, F or H         0.2         (0.09)           11/2         (38)         1 pc         240         450         87         (13.5)         Type B,C,E, F or H         0.2         (0.09)           11/2         (38)         1 pc         240         600         116         (17.9)         Type B,C,E, F or H         0.2         (0.09)           11/2         (38)         1 pc         240         300         62         (9.6)         Post         0.2         (0.09)           11/2         (38) | 1         (25)         1 pc         120         300         93         (14.4)         Type B,C,E, F or H         0.1         (0.05)         RS           1         (25)         1 pc         240         200         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)         RS           1         (25)         1 pc         120         200         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)         RS           1½         (38)         1 pc         120         300         62         (9.6)         Type B,C,E, F or H         0.1         (0.05)         RS           1½         (38)         1 pc         120         300         62         (9.6)         Type B,C,E, F or H         0.2         (0.09)         RS           1½         (38)         1 pc         240         300         62         (9.6)         Type B,C,E, F or H         0.2         (0.09)         RS           1½         (38)         1 pc         240         300         62         (9.6)         Pype B,C,E, F or H         0.2         (0.09)         M           1½         (38)         1 pc         240         300         62         (9.6) |

RAPID SHIP

• RS - Next day shipment up to 5 pieces

• M - Manufacturing lead times

#### Notes

All lead units are available with any length Type B, C, E, F or Type H leads. Type B  $90^\circ$  rotation not available as RAPID SHIP.

### **Mineral Insulated (MI) Band Heaters**

**Heater Part Numbers** (Continued)

| I.D.               |       |                                     |              |         |       |                   | Watt                 |                                                    | Approx. |        |          | Part      |
|--------------------|-------|-------------------------------------|--------------|---------|-------|-------------------|----------------------|----------------------------------------------------|---------|--------|----------|-----------|
|                    |       | Width                               |              |         |       | Density           |                      |                                                    |         | t Wt.  |          |           |
| in.                | (mm)  | in. (mm)                            | Construction | Volts   | Watts | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | Termination                                        | lbs     | (kg)   | Delivery | Number    |
| 2 (5               | (51)  | 1 <sup>1</sup> /2 (38)              | 1pc          | 240     | 400   | 53                | (8.2)                | Type B,C,E, F or H                                 | 0.3     | (0.14) | RS       | MB2A1JN1  |
|                    |       | 1 <sup>1</sup> / <sub>2</sub> (38)  | 1pc          | 240     | 1000  | 132               | (20.4)               | Type B,C,E, F or H                                 | 0.3     | (0.14) | М        | MB2A1JN2  |
|                    |       | 2 (51)                              | 1pc          | 240     | 750   | 75                | (11.6)               | Type B,C,E, F or H                                 | 0.4     | (0.18) | М        | MB2A2AN1  |
|                    |       | 2 (51)                              | 1pc          | 240     | 1200  | 125               | (19.3)               | Type B,C,E, F or H                                 | 0.4     | (0.18) | RS       | MB2A2AN2  |
|                    |       | 2 (51)                              | 1pc          | 240     | 750   | 75                | (11.6)               | 36 in. 90° Type B<br>braid w/HD strain<br>relief   | 0.2     | (0.09) | RS       | MB2A2AX2A |
| 21/4               | (57)  | 2 (51)                              | 1pc          | 240     | 750   | 63                | (9.7)                | 120 in. 180° Type B<br>braid w/HD strain<br>relief | 0.2     | (0.09) | RS       | MB2E2AX7  |
|                    |       | 21/2 (64)                           | 1 pc         | 240     | 1000  | 72                | (11.2)               | Type B,C,E, F or H                                 | 0.5     | (0.23) | RS       | MB2E2JN1  |
| 21/2               | (64)  | 1 (25)                              | 1 pc         | 240     | 400   | 63                | (9.7)                | Type B,C,E, F or H                                 | 0.2     | (0.09) | RS       | MB2J1AN1  |
|                    | •     | 11/2 (38)                           | 1 pc         | 240     | 500   | 50                | (7.7)                | Type B,C,E, F or H                                 | 0.4     | (0.18) | RS       | MB2J1JN1  |
| 3                  | (76)  | 1 (25)                              | 1 pc         | 240     | 400   | 54                | (8.4)                | Post                                               | 0.3     | (0.14) | М        | MB3A1AP1  |
|                    |       | 1 <sup>1</sup> /2 (38)              | 1 pc         | 240     | 500   | 40                | (6.2)                | Post                                               | 0.4     | (0.18) | RS       | MB3A1JP1  |
|                    |       | 1 <sup>1</sup> /2 (38)              | 2 рс ехр     | 230/460 | 525   | 53                | (8.2)                | Post                                               | 0.4     | (0.18) | М        | ME3A1JP10 |
| 31/2               | (89)  | 2 (51)                              | 1 pc         | 240     | 800   | 42                | (6.5)                | Post                                               | 0.7     | (0.32) | RS       | MB3J2AP2  |
| 3 <sup>5</sup> /8  | (92)  | 1 <sup>1</sup> / <sub>2</sub> (38)  | 2 pc exp     | 230/460 | 650   | 51                | (7.9)                | Post                                               | 0.5     | (0.23) | М        | ME3L1JP5  |
| 4 (1               | (102) | 1 (25)                              | 1 pc         | 240     | 700   | 62                | (9.6)                | Post                                               | 0.4     | (0.18) | RS       | MB4A1AP1  |
|                    |       | 1 <sup>1</sup> /2 (38)              | 1 pc         | 240     | 800   | 48                | (7.4)                | Post                                               | 0.6     | (0.27) | RS       | MB4A1JP2  |
|                    |       | 1 <sup>1</sup> /2 (38)              | 2 pc exp     | 230/460 | 625   | 43                | (6.7)                | Post                                               | 0.6     | (0.27) | RS       | ME4A1JP11 |
|                    |       | 1 <sup>1</sup> / <sub>2</sub> (38)  | 2 pc exp     | 230/460 | 725   | 50                | (7.8)                | Post                                               | 0.6     | (0.27) | RS       | ME4A1JP12 |
| $4^{1}/2$          | (114) | 2 <sup>1</sup> / <sub>2</sub> (64)  | 1pc          | 240     | 1250  | 40                | (6.2)                | Post                                               | 1.0     | (0.45) | RS       | MB4J2JP1  |
| 5                  | (127) | 1 <sup>1</sup> / <sub>2</sub> (38)  | 2 pc exp     | 240/480 | 1000  | 52                | (8.1)                | Post                                               | 0.8     | (0.36) | RS       | ME5A1JP8  |
| $5^{1/4}$          | (133) | 1 <sup>1</sup> / <sub>2</sub> (38)  | 2 pc exp     | 240/480 | 1000  | 48                | (7.4)                | Post                                               | 0.8     | (0.36) | М        | ME5E1JP1  |
|                    |       | 1 <sup>1</sup> /2 (38)              | 2 pc exp     | 230/460 | 600   | 29                | (4.5)                | Post                                               | 0.7     | (0.32) | М        | ME5E1JP9  |
|                    |       | 3 (76)                              | 2 pc exp     | 230/460 | 1700  | 40                | (6.2)                | Post                                               | 1.5     | (0.68) | RS       | ME5E3AP5  |
|                    |       | 4 <sup>1</sup> / <sub>2</sub> (114) | 2 pc exp     | 230/460 | 2400  | 38                | (5.9)                | Post                                               | 2.2     | (1.00) | RS       | ME5E4JP2  |
|                    |       | 4 <sup>1</sup> / <sub>2</sub> (114) | 2 pc exp     | 230/460 | 2700  | 43                | (6.6)                | Post                                               | 2.2     | (1.00) | М        | ME5E4JP3  |
| 51/2               | (140) | 11/2 (38)                           | 2 pc exp     | 240/480 | 1000  | 46                | (7.1)                | Post                                               | 0.9     | (0.40) | RS       | ME5J1JP1  |
| 6                  | (152) | 11/2 (38)                           | 2 pc exp     | 240/480 | 1000  | 41                | (6.4)                | Post                                               | 0.9     | (0.40) | М        | ME6A1JP2  |
| 61/2               | (165) | 1 <sup>1</sup> / <sub>2</sub> (38)  | 2 pc exp     | 240/480 | 1250  | 47                | (7.3)                | Post                                               | 1.0     | (0.45) | RS       | ME6J1JP5  |
| $6^{3}/4$          | (171) | 11/2 (38)                           | 2 pc exp     | 230/460 | 815   | 29                | (4.5)                | Post                                               | 0.9     | (0.40) | М        | ME6N1JP6  |
|                    |       | 11/2 (38)                           | 2 pc exp     | 230/460 | 1000  | 36                | (5.6)                | Post                                               | 0.9     | (0.40) | M        | ME6N1JP7  |
|                    |       | 4 (102)                             | 2 pc exp     | 230/460 | 2600  | 35                | (5.4)                | Post                                               | 2.5     | (1.10) | M        | ME6N4AP2  |
|                    |       | 5 (127)                             | 2 pc exp     | 230/460 | 3700  | 40                | (6.2)                | Post                                               | 3.2     | (1.50) | M        | ME6N5AP3  |
|                    |       | 6 (152)                             | 2 pc exp     | 230/460 | 3750  | 33                | (5.1)                | Post                                               | 3.8     | (1.70) | M        | ME6N6AP5  |
| 7                  | (178) | 1 <sup>1</sup> / <sub>2</sub> (38)  | 2 pc exp     | 240/480 | 1250  | 43                | (6.6)                | Post                                               | 1.1     | (0.50) | M        | ME7A1JP4  |
| 71/2               | (191) | 11/2 (38)                           | 2 pc exp     | 240/480 | 1500  | 47                | (7.3)                | Post                                               | 1.1     | (0.50) | M        | ME7J1JP4  |
| 75/8               | (194) | 3 (76)                              | 2 pc exp     | 230/460 | 1800  | 28                | (4.3)                | Post                                               | 2.2     | (1.00) | M        | ME7L3AP1  |
| 8                  | (203) | 1 <sup>1</sup> / <sub>2</sub> (38)  | 2 pc exp     | 240/480 | 1250  | 37                | (5.7)                | Post                                               | 1.2     | (0.54) | M        | ME8A1JP4  |
| 9                  | (229) | 11/2 (38)                           | 2 pc exp     | 240/480 | 1500  | 39                | (6.0)                | Post                                               | 1.4     | (0.64) | М        | ME9A1JP1  |
| 91/2               | (241) | 3 (76)                              | 2 pc exp     | 230/460 | 3000  | 37                | (5.7)                | Post                                               | 2.6     | (1.20) | M        | ME9J3AP2  |
| 11 <sup>1</sup> /4 | (286) | 3 (76)                              | 2 pc exp     | 230/460 | 2400  | 24                | (3.7)                | Post                                               | 3.2     | (1.50) | M        | ME11E3AP2 |
|                    |       | 5 (127)                             | 2 pc exp     | 230/460 | 5100  | 31                | (4.8)                | Post                                               | 5.2     | (2.40) | M        | ME11E5AP1 |



• **RS** - Next day shipment up to 5 pieces

• M - Manufacturing lead times

#### Notes:

All lead units are available with any length Type B, C, E, F or Type H leads. Type B  $90^{\circ}$  rotation not available as RAPID SHIP.

|                        |                  | Max. Օր<br>Tempe | perating<br>ratures |       | Typical Max.<br>Watt Densities |      |  |
|------------------------|------------------|------------------|---------------------|-------|--------------------------------|------|--|
| Nozzle Heaters         | Sheath Materials | °F               | °C                  | W/in² | W/cm²                          | Page |  |
| Mineral Insulated (MI) | Stainless steel  | 1400             | 760                 | 230   | 35.6                           | 507  |  |
| Pre-Coiled Cable       | Stainless steel  | 1200             | 650                 | 152   | 23.5                           | 509  |  |





# **Mineral Insulated (MI) Nozzle Heaters**

The mineral insulated (MI) nozzle heater is a high-performance heater that incorporates Watlow's exclusive mineral insulation technology. This material offers much higher thermal conductivity than mica and hard ceramic insulators used in conventional heaters.

A thin layer of the high thermal conductive MI material electrically insulates the element wire from the inside diameter of the heater sheath. A thicker, low thermal conductivity layer backs up the element wire, directing the heat inward toward the heated part. The result is more efficient heat transfer—a performance solution that lowers element wire temperatures and increases heater life.

## **Performance Capabilities**

- Heater operating temperatures up to 1400°F (760°C)
- Watt densities up to 230 W/in<sup>2</sup> (35.6 W/cm<sup>2</sup>) are available on small diameter nozzle
- Maximum voltage up to 240V

#### **Features and Benefits**

#### Operating temperatures up to 1400°F (760°C)

 Melts resins such as PEEK<sup>®</sup>, Teflon<sup>®</sup>, Ultem<sup>®</sup> and Zytel<sup>®</sup> safely

#### **Higher watt densities**

Contributes to faster heat-up and throughput for increased productivity

# High thermal conductivity of MI and low mass construction

- Provides an almost instant response to temperature control
- Eliminates thermal lag and temperature overshoot

#### Stainless steel cover and side fold design

Resists contamination by overflow of plastic or other free-flowing materials

#### Permanently attached clamp bars

Eliminates cumbersome clamping straps to ease installation



## **Typical Applications**

- Extruders
- Blown film dies
- · Injection molding machines
- Other cylinder heating applications

For MI nozzle heater part numbers see next page.

For detailed product and technical data,

see the full MI Band Heater product

section located on pages 493 through 502.

# **Mineral Insulated (MI) Nozzle Heaters**

#### **Heater Part Numbers**

| I.D.                               | r Part Numbers    |              | Width        |            |            | Watt              | Density     |                                                 | Approx. Net Wt |        |          | Part                 |
|------------------------------------|-------------------|--------------|--------------|------------|------------|-------------------|-------------|-------------------------------------------------|----------------|--------|----------|----------------------|
| in. (mm)                           | in.               | (mm)         | Construction | Volts      | Watts      | W/in <sup>2</sup> |             | Termination                                     | lbs.           | (kg)   | Del.     | Number               |
| • •                                |                   | <u> </u>     |              | 120        | 150        | 92                | · ,         |                                                 | 0.1            |        |          |                      |
| 1 (25)                             | 1                 | (25)<br>(25) | 1 pc<br>1 pc | 120        | 100        | 61                | (14)<br>(9) | Type B, C, E, F or H Type B, C, E, F or H       | 0.1            | (0.05) | RS<br>RS | MB1A1AN1<br>MB1A1AN2 |
|                                    | 1                 | (25)         | 1 pc         | 120        | 200        | 122               | (19)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1A1AN3             |
|                                    | 1                 | (25)         | 1 pc         | 240        | 200        | 122               | (19)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1A1AN4             |
|                                    | 11/2              | (38)         | 1 pc         | 240        | 300        | 106               | (16)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1A1JN1             |
|                                    | 11/2              | (38)         | 1 pc         | 120        | 300        | 106               | (16)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1A1JN2             |
|                                    | 11/2              | (38)         | 1 pc         | 240        | 200        | 70                | (11)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1A1JN3             |
|                                    | 11/2              | (38)         | 1 pc         | 120        | 200        | 70                | (11)        | Type B, C, E, F or H                            | 0.1            | (0.05) | М        | MB1A1JN4             |
|                                    | 11/2              | (38)         | 1 pc         | 240        | 400        | 141               | (22)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1A1JN5             |
| 1 <sup>1</sup> / <sub>4</sub> (32) | 1                 | (25)         | 1 pc         | 240        | 250        | 104               | (16)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1E1AN1             |
| , (- ,                             | 1                 | (25)         | 1 pc         | 120        | 250        | 104               | (16)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1E1AN2             |
|                                    | 1                 | (25)         | 1 pc         | 240        | 300        | 124               | (19)        | Type B, C, E, F or H                            | 0.1            | (0.05) | М        | MB1E1AN3             |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 240        | 350        | 87                | (13)        | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB1E1JN1             |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 120        | 350        | 87                | (13)        | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB1E1JN2             |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 240        | 450        | 112               | (17)        | Type B, C, E, F or H                            | 0.2            | (0.09) | М        | MB1E1JN3             |
| 1 <sup>1</sup> /2 (38)             | 1                 | (25)         | 1 pc         | 240        | 300        | 93                | (14)        | Type B, C, E, F or H                            | 0.1            | (0.05) | М        | MB1J1AN1             |
|                                    | 1                 | (25)         | 1 pc         | 120        | 300        | 93                | (14)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1J1AN2             |
|                                    | 1                 | (25)         | 1 pc         | 240        | 200        | 62                | (10)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1J1AN3             |
|                                    | 1                 | (25)         | 1 pc         | 120        | 200        | 62                | (10)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1J1AN4             |
|                                    | 1                 | (25)         | 1 pc         | 240        | 400        | 125               | (19)        | Type B, C, E, F or H                            | 0.1            | (0.05) | RS       | MB1J1AN5             |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 120        | 300        | 58                | (9)         | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB1J1JN1             |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 240        | 450        | 87                | (14)        | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB1J1JN2             |
|                                    | 11/2              | (38)         | 1 pc         | 240        | 300        | 58                | (9.0)       | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB1J1JN3             |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 240        | 600        | 116               | (18)        | Type B, C, E, F or H                            | 0.2            | (0.09) | М        | MB1J1JN4             |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 240        | 300        | 64                | (10)        | Post                                            | 0.2            | (0.09) | M        | MB1J1JP4             |
|                                    | 11/2              | (38)         | 1 pc         | 240        | 450        | 96                | (15)        | Post                                            | 0.2            | (0.09) | RS       | MB1J1JP6             |
|                                    | 2                 | (51)         | 1 pc         | 240        | 450        | 57                | (9)         | Type B, C, E, F or H                            | 0.3            | (0.14) | RS       | MB1J2AN1             |
|                                    | 2                 | (51)         | 1 pc         | 240        | 300        | 42                | (7)         | Type B, C, E, F or H                            | 0.3            | (0.14) | RS       | MB1J2AN2             |
|                                    | 3                 | (51)         | 1 pc         | 240        | 900<br>500 | 125               | (19)        | Type B, C, E, F or H                            | 0.3            | (0.14) | RS<br>RS | MB1J2AN3             |
|                                    | 3                 | (76)<br>(76) | 1 pc         | 240<br>240 | 350        | 45<br>31          | (7)         | Type B, C, E, F or H Type B, C, E, F or H       | 0.4            | (0.18) | M        | MB1J3AN1<br>MB1J3AN2 |
|                                    | 3                 | (76)         | 1 pc<br>1 pc | 240        | 1000       | 104               | (5)<br>(16) | Type B, C, E, F or H                            | 0.4            | (0.18) | M        | MB1J3AN3             |
| 1 <sup>3</sup> / <sub>4</sub> (45) | 1 <sup>3</sup> /8 | (35)         | 1 pc         | 240        | 450        | 83                | (13)        | 36 in. 90° Type B braid w/HD strain relief      |                | (0.09) | RS       | MB1N1GX3A            |
|                                    | 11/2              | (38)         | 1 pc         | 240        | 300        | 47                | (7)         | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB1N1JN1             |
|                                    | 11/2              | (38)         | 1 pc         | 120        | 300        | 50                | (8)         | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB1N1JN2             |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 240        | 700        | 110               | (17)        | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB1N1JN3             |
|                                    | 2                 | (51)         | 1 pc         | 240        | 750        | 86                | (13)        | Type B, C, E, F or H                            | 0.3            | (0.14) | М        | MB1N2AN1             |
| 2 (51)                             | 1                 | (25)         | 1 pc         | 240        | 350        | 73                | (11)        | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB2A1AN1             |
|                                    | 1                 | (25)         | 1 pc         | 120        | 350        | 73                | (11)        | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB2A1AN2             |
|                                    | 1                 | (25)         | 1 pc         | 240        | 450        | 94                | (15)        | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB2A1AN3             |
|                                    | 1                 | (25)         | 1 pc         | 240        | 350        | 79                | (12)        | 36 in. 90° Type B braid<br>w/HD strain relief   | 0.2            | (0.09) | RS       | MB2A1AX6B            |
|                                    | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 240        | 400        | 53                | (8)         | Type B, C, E, F or H                            | 0.3            | (0.14) | RS       | MB2A1JN1             |
|                                    | 11/2              | (38)         | 1 pc         | 240        | 1000       | 132               | (21)        | Type B, C, E, F or H                            | 0.3            | (0.14) | М        | MB2A1JN2             |
|                                    | 2                 | (51)         | 1 pc         | 240        | 750        | 73                | (11)        | Type B, C, E, F or H                            | 0.4            | (0.18) | М        | MB2A2AN1             |
|                                    | 2                 | (51)         | 1 pc         | 240        | 1200       | 125               | (19)        | Type B, C, E, F or H                            | 0.4            | (0.18) | RS       | MB2A2AN2             |
|                                    | 2                 | (51)         | 1 pc         | 240        | 750        | 75                | (12)        | 36 in. 90° Type B braid<br>w/HD strain relief   | 0.2            | (0.09) | RS       | MB2A2AX2A            |
| 2 <sup>1</sup> /4 (57)             | 2                 | (51)         | 1 pc         | 240        | 750        | 63                | (10)        | 120 in. 180° Type B<br>braid w/HD strain relief | 0.2            | (0.09) | RS       | MB2E2AX7             |
|                                    | 21/2              | (64)         | 1 pc         | 240        | 1000       | 72                | (11)        | Type B, C, E, F or H                            | 0.5            | (0.23) | RS       | MB2E2JN1             |
| 21/2 (64)                          | 1                 | (25)         | 1 pc         | 240        | 400        | 63                | (10)        | Type B, C, E, F or H                            | 0.2            | (0.09) | RS       | MB2J1AN1             |
| . ,                                | 1 <sup>1</sup> /2 | (38)         | 1 pc         | 240        | 500        | 50                | (8)         | Type B, C, E, F or H                            | 0.4            | (0.18) | RS       | MB2J1JN1             |



• RS - Next day shipment

• M - Manufacturing lead times

#### **Pre-Coiled Cable Nozzle Heaters**

The Watlow pre-coiled, cable nozzle heater has been formed into a compact, tightly wound coil to supply 360 degrees of heat. This heater features a 5 in. (127 mm) long, no-heat tail section, which eliminates failures in the adapter area due to overheating.

This cable nozzle heater is manufactured with Watlow's swaged compaction process. This process provides a greater compaction of the MgO insulation than the competitor's rolling process. Compacting MgO insulation into a solid mass results in excellent heat conductivity and high dielectric strength.

## **Performance Capabilities**

- Watt density up to 100 W/in² (15.5 W/cm²)
- Possible operating temperature up to 1200°F (650°C) (Dependent on type of element wire used)
- 230 and 240V constructions

#### **Features and Benefits**

#### Low-profile construction

 Provides easy installation in the tight environment of multiple-gate molds

#### No-heat tail section

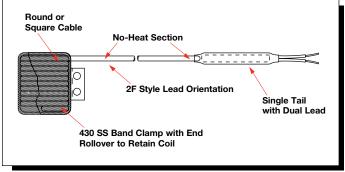
 Reduces temperature at the adapter eliminating failures due to overheating

#### Single tail with dual lead

Occupies less space in the wire raceway

#### 360° circumference heat

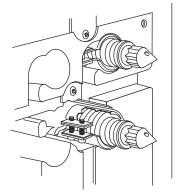
· Provides even heating


# Optional externally welded thermocouple to the sheath

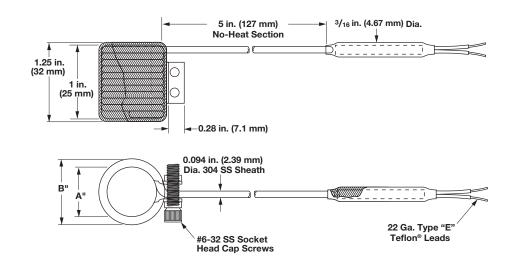
• Provides temperature measurement capabilities

### **Typical Applications**

- Plastic injection molding equipment
- Hot runner molds







WATLOW® \_\_\_\_\_\_ 509

## **Pre-Coiled Cable Nozzle Heaters**

#### **Technical Data**

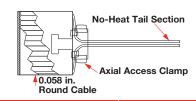


Coiled Nozzle Heaters Mounted on a 64 Cavity Plastic Injection Mold



#### Cable Heater Units (Coiled nozzle with clamp strap)

|         |                                                                                      | tto (comea nezzie     | -  -  -  -  -  -  -  -  - |                         |                |                                       |                        |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------|-----------------------|---------------------------|-------------------------|----------------|---------------------------------------|------------------------|--|--|--|--|--|
| Volts   | Watts                                                                                | Coil I.D.<br>in. (mm) | Clamp O.D.<br>in. (mm)    | Clamp Width<br>in. (mm) | No-Heat        | Lead Wire<br>(Swaged-in)<br>PTFE Only | Part Number            |  |  |  |  |  |
| 0.094 i | 0.094 in. Diameter Round (with ±5% wattage tolerance), no lead protection available. |                       |                           |                         |                |                                       |                        |  |  |  |  |  |
| 230     | 125                                                                                  | 0.75 (19.0)           | 0.98 (24.9)               | 1.25 (32)               | 5 in. (127 mm) | 36 in. (914 mm)                       | 94PC30A1A              |  |  |  |  |  |
| 230     | 125                                                                                  | 0.75 (19.0)           | 0.98 (24.9)               | 1.25 (32)               | only           | 72 in. (1829 mm)                      | 94PC30A1D              |  |  |  |  |  |
| 230     | 250                                                                                  | 0.75 (19.0)           | 0.98 (24.9)               | 1.25 (32)               |                | 36 in. (914 mm)                       | 94PC30A2A              |  |  |  |  |  |
| 230     | 250                                                                                  | 0.75 (19.0)           | 0.98 (24.9)               | 1.25 (32)               |                | 72 in. (1829 mm)                      | 94PC30A2D              |  |  |  |  |  |
| 230     | 250                                                                                  | 0.75 (19.0)           | 0.98 (24.9)               | 1.25 (32)               |                | 36 in. (914 mm)                       | 94PC30A4A <sup>①</sup> |  |  |  |  |  |


#### **0.102 in. Square Cross-Section** (with ±5% wattage tolerance), no lead protection available.

| 230 | 125 | 0.75 (19.0)  | 1    | (25.0) | 1.25 | (32) | 5 in. (127 mm) | 36 in. (914 mm)  | 102PS28A2B              |
|-----|-----|--------------|------|--------|------|------|----------------|------------------|-------------------------|
| 230 | 125 | 0.75 (19.0)  | 1    | (25.0) | 1.25 | (32) | only           | 72 in. (1829 mm) | 102PS28A2A              |
| 230 | 250 | 0.75 (19.0)  | 1    | (25.0) | 1.25 | (32) |                | 36 in. (914 mm)  | 102PS28A1B              |
| 230 | 250 | 0.75 (19.0)  | 1    | (25.0) | 1.25 | (32) |                | 72 in. (1829 mm) | 102PS28A4A <sup>①</sup> |
| 230 | 250 | 0.875 (22.2) | 1.12 | (28.5) | 1.25 | (32) |                | 36 in. (914 mm)  | 102PS32A1A              |

<sup>•</sup> Manufacturing lead times

#### 0.058 in. Diameter Round Mini-Cable Nozzle Heater

(Coiled nozzle with axial clamp) (with ±5% wattage tolerance)



| Coil | I.D. |       |       | Lead | i Length | Clamp Width |      |            |               |
|------|------|-------|-------|------|----------|-------------|------|------------|---------------|
| in.  | (mm) | Volts | Watts | in.  | (mm)     | in.         | (mm) | Cable Type | Part No.      |
| 0.75 | (19) | 240   | 268   | 72   | (1829)   | 1.25        | (32) | Round      | <b>Z</b> 5969 |
| 0.75 | (19) | 240   | 149   | 72   | (1829)   | 1.25        | (32) | Round      | Z5968         |

<sup>•</sup> Manufacturing lead times

Note: An optional Type J or Type K thermocouple can be externally brazed to the sheath O.D.

 $<sup>^{\</sup>odot}$  Units have a 36 in. (914 mm) fiberglass insulated Type J thermocouple externally brazed to the heater sheath O.D.

|                                                |                                    | Tempe | perating<br>eratures | Watt D | Typical Max.<br>Watt Densities |      |
|------------------------------------------------|------------------------------------|-------|----------------------|--------|--------------------------------|------|
| Radiant Heaters                                | Sheath Materials                   | °F    | °C                   | W/in²  | W/cm <sup>2</sup>              | Page |
| RAYMAX® Panel                                  | Stainless steel/<br>Alumized steel | 2000  | 1095                 | 30     | 4.7                            | 513  |
| Mineral Insulated (MI) Band and Strip Emitters | Stainless steel                    | 1300  | 700                  | 30     | 4.7                            | 527  |





## **RAYMAX® Panel Heaters**

The RAYMAX® radiant panel heater product line from Watlow® solves virtually any application requiring radiant heat from contamination-resistant surfaces to fast responding high-temperature panels.

Watlow's engineering staff has the training and expertise required to meet the most complicated application requirements. Technical support includes calculating watt density and temperature requirements and recommending system components such as sensors and controllers.

## **Performance Capabilities**

- Maximum face temperature up to 2000°F (1095°C)
- Maximum watt densities up to 30 W/in<sup>2</sup> (4.7 W/cm<sup>2</sup>)

#### **Features and Benefits**

#### Variety of styles

 Match the ideal temperature and watt density requirements of the application

#### Watlow engineering and application support

Assures projects run smoothly

#### **Custom designs**

· Adapts to specific needs

# Watlow sensors and controllers are compatible with RAYMAX heaters

 Offers a single-source thermal system that is reliable and designed for your application



## **Typical Applications**

- Thermoforming
- Food warming
- · Paint and epoxy curing
- Heat treating
- High-temperature furnaces
- Tempering and annealing processes



#### Caution: Fire Hazard

Radiant heaters must not be operated in the presence of flammable vapors, gases or combustible materials without proper ventilation and safety precautions. Radiant heaters must be properly wired and controlled to comply with all applicable electrical codes.

WATLOW<sup>®</sup> 513

#### **RAYMAX Panel Heaters**

#### RAYMAX 1010

Designed to resist contamination, the RAYMAX 1010 is ideal for use in screen printing, food warming and other low-heat applications. The heater's "sealed face" keeps contaminants away from the heating element, and the metal surface can be easily wiped or brushed clean whenever needed.

Rugged, all-metal construction creates a shock-proof, shatter-proof heater, which is durable and long lasting.

#### **Performance Capabilities**

- Face temperature: 1000°F (540°C) maximum
- Watt densities: 10 W/in<sup>2</sup> (1.5 W/cm<sup>2</sup>) maximum
- 50 amperes maximum
- Maximum voltage up to 480V

#### **Features and Benefits**

#### Uniform full-surface heat source

· Provides more even heat

#### Convenient ready-to-use package

• Makes installation easier

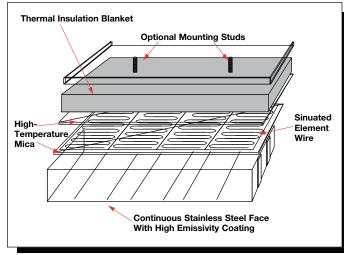
#### One-inch thick backside insulation

Reduces losses

#### Totally sealed version available

Suitable for hose down applications

## Repeatable temperature sensing options


Increases accuracy

#### UL® component recognized versions are available

#### **Typical Applications**

- Drying screen-printed textiles
- Curing process coatings on circuit boards
- Food warming/cooking
- Epoxy curing
- Thermoforming





#### **RAYMAX Panel Heaters**

# RAYMAX 1010 Applications and Technical Data

## **Sizes and Ratings**

Thickness: 13/4 in. (45 mm)

Voltage: Customer specified up to 480V.

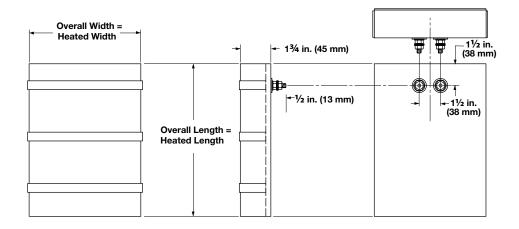
**Note:** Small heaters may not be able to be built at high voltages. Contact your Watlow representative for

specific application requirements.

Watt density: Up to 10 W/in<sup>2</sup> (1.5 W/cm<sup>2</sup>), 50A max.

Face temperature: Up to 1000°F (540°C)

Typical peak energy wavelength: 3.5-4 microns


Note: New designs require a minimum charge per design.

## **Specifications**

| Heater Dimensions                        | ı  | vin.  | ı   | Max.   | Incre | ements |
|------------------------------------------|----|-------|-----|--------|-------|--------|
| Width: in. (mm)                          | 4  | (102) | 20  | (508)  | 2     | (50.8) |
| Length: in. (mm)                         | 10 | (254) | 68  | (1727) | 0.06  | (1.6)  |
| Area: in <sup>2</sup> (cm <sup>2</sup> ) |    |       | 864 | (5574) |       | Any    |

Note: Less than maximum length x width may exceed the

maximum area.



#### **Options**

- Terminal box
- Thermowell (VAT style thermocouple required)
- Thermocouple pocket (thermocouple required)
- Thermocouple welded to hot face
- Mounting studs
- Zoning
- Totally sealed construction
- Food-safe surface treatment

WATLOW<sup>®</sup> 515

#### **RAYMAX Panel Heaters**

#### RAYMAX 1120

The RAYMAX 1120 radiant heater panel is lightweight, yet sturdy and durable. The emitter sheath is stainless steel with a black coating providing a highly efficient radiating surface. The heater's low mass allows rapid start-up and fast response to controllers.

The patented RAYMAX heater features 1 in. (25 mm) wide emitter strips which are individually replaceable for lower maintenance costs. Weighing only 5.5 lbs/ft² (26.8 kg/m²), the heater is easy to mount.

# **Performance Capabilities**

- Face temperature: 1100°F (595°C) maximum
- Watt density: 20 W/in<sup>2</sup> (3 W/cm<sup>2</sup>) maximum
- Maximum voltage up to 480V
- UL® component recognized versions are available

#### **Features and Benefits**

#### Replaceable emitters

Reduces cost

#### High temperature mica

 Insulates nickel chromium resistance wire, permitting longer heater life

#### High emissivity coating on emitter strips

Improves radiant heating efficiency

## <sup>7</sup>/8 in. (22.2 mm) thick thermal insulation

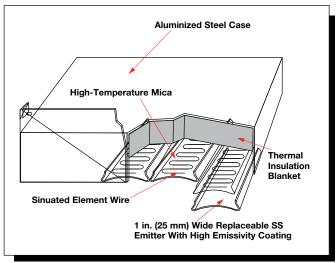
Backs the emitter strips to reduce backside losses

#### Uniform full surface heat source

· Provides better, more even heat

#### Special requirements are easily met

Ensures availability of custom sizes and ratings


#### Next day shipment on RAPID SHIP heaters

Provides quick delivery to meet customer's needs

## **Typical Applications**

- Thermoforming
- Textile drying
- Paint curing
- Powder coating fusing
- Shrink wrapping
- Circuit board soldering





#### **RAYMAX Panel Heaters**

# RAYMAX 1120 Applications and Technical Data

## **Sizes and Ratings**

Face Temperature: 1100°F (595°C) max.

Wattage: Watt densities up to 20 W/in² (3 W/cm²)
Voltage: Customer specified up to 480V. Balanced
3-phase available on unit widths divisible by three.
Note: Small heaters may not be able to be built at high voltages. Contact your Watlow representative to

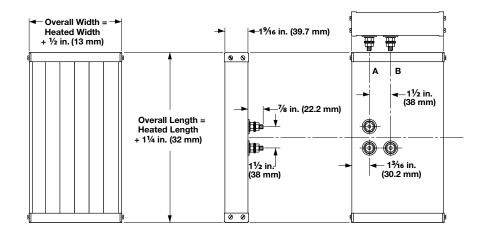
discuss specific application requirements. **Terminals:** Non-standard locations are available.

Please specify.

**Tolerance:**  $\pm \frac{1}{16}$  in. (1.6 mm)

Typical Peak Energy Wavelength: 3-3.5 microns

Note: New designs require a minimum charge per design.


## **Specifications**

| Heater Dimensions                        | ı | Min.  |     | Max.   | Incre | ements |
|------------------------------------------|---|-------|-----|--------|-------|--------|
| Width: in. (mm)                          | 1 | (25)  | 24  | (610)  | 1     | (25.0) |
| Length: in. (mm)                         | 6 | (152) | 72  | (1829) | 0.06  | (1.5)  |
| Area: in <sup>2</sup> (cm <sup>2</sup> ) | 6 | (39)  | 864 | (5574) | А     | ny     |

 $\mbox{\bf Note}:$  Less than maximum length x width may exceed the maximum area.

#### **Options**

- Terminal box
- Thermowell
- Thermocouple welded to hot face
- Thermocouple pocket
- Mounting studs



| C  | Panel<br>Overall Size in. (mm) |       | m)                             | He     | Panel<br>leated Size in. (mm) |       |    |        |             | Watt   | Density           | App<br>Net           | rox.<br>Wt. |       | Part     |            |
|----|--------------------------------|-------|--------------------------------|--------|-------------------------------|-------|----|--------|-------------|--------|-------------------|----------------------|-------------|-------|----------|------------|
|    | Wid                            | th    | Len                            | gth    | V                             | /idth | Le | ength  | Volts       | Watts  | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs         | (kg)  | Delivery | Number     |
| 6  | $\frac{1}{2}$                  | (165) | 25 <sup>1</sup> /4             | (641)  | 6                             | (152) | 24 | (610)  | 240         | 2880   | 20                | (3.1)                | 6           | (2.7) | RS       | P0624AX050 |
| 12 | 1/2                            | (318) | 13 <sup>1</sup> / <sub>4</sub> | (337)  | 12                            | (305) | 12 | (305)  | 240         | 2880   | 20                | (3.1)                | 6           | (2.7) | RS       | P1212AX030 |
| 12 | 1/2                            | (318) | 25 <sup>1</sup> /4             | (641)  | 12                            | (305) | 24 | (610)  | 240         | 5760   | 20                | (3.1)                | 12          | (5.4) | RS       | P1224AX062 |
| 12 | 1/2                            | (318) | 49 <sup>1</sup> /4             | (1251) | 12                            | (305) | 48 | (1219) | 480 3-phase | 11,520 | 20                | (3.1)                | 24 (1       | 10.8) | RS       | P1248AX073 |



• RS - Next day shipment

Notes: • Panels are equipped with a terminal box, a thermocouple well with bayonet adapter and mounting studs.

Radiant panels must be properly applied for safe operation.

Please contact your Watlow representative with the application before ordering.

#### **RAYMAX Panel Heaters**

#### RAYMAX 1220 and 2030

Easy to install and capable of high surface temperatures, the RAYMAX 1220 and 2030 panel heaters are ideal for many process heating applications requiring "hot-face" temperatures above 1000°F (540°C).

Each unit consists of a ceramic fiber heater mounted in a  $2^{1}/2$  in. (64 mm) deep sheet metal case providing thermal insulation. The case includes post terminals for electrical connections and a mounting system that can be used with virtually any flat ceramic fiber unit. Since any flat unit heating element configuration can be used—exposed sinuated, embedded coil or foil elements—watt density and temperature capabilities can be tailored to meet a specific radiant application.

## **Performance Capabilities**

- RAYMAX 2030 (uses sinuated or coil elements): temperatures up to 2000°F (1095°C); watt densities up to 30 W/in² (4.7 W/cm²)
- RAYMAX 1220 (uses an etched foil element): temperatures up to 1200°F (650°C); watt densities up to 20 W/in² (3 W/cm²)
- Maximum voltage up to 600V

#### **Features and Benefits**

#### Lightweight, low mass design

Allows fast response to controllers

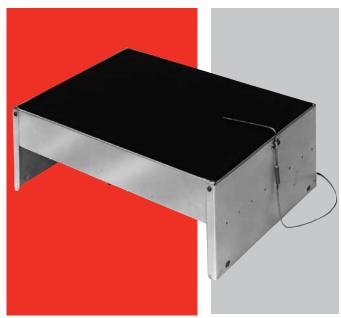
# Self insulation with 2<sup>1</sup>/<sub>2</sub> in. (64 mm) thick mounting case

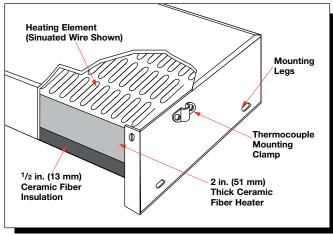
Provides high efficiency

## Thermocouple mounting clamp

Makes process system control easier

#### **Aluminized steel case**


• Handles temperatures up to 1100°F (595°C)


#### Special hot-face heating patterns

 Provides a design made specifically for an application using an etched foil RAYMAX 1220

#### **Typical Applications**

- Conveyor furnaces
- · High-temperature vessel heating
- Tempering and annealing processes for glass, wire, ceramics and metals
- Coating, curing and drying of inks, paints, plastics and films





## **RAYMAX Panel Heaters**

# RAYMAX 1220 and 2030 Applications and Technical Data

## **Application Hints**

A thermocouple mounting clamp is provided on one end of the case, with holes on both ends for alternate locations. The clamp can be used with <sup>1</sup>/8 in. (3.2 mm) outside diameter sheath thermocouples. The clamp is <sup>3</sup>/<sub>16</sub> in. (4.8 mm) high, but can be removed for flush mounting\*.

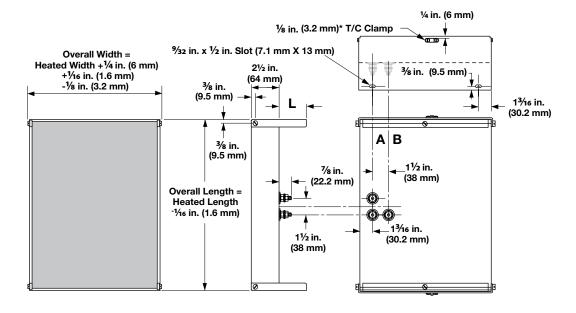
The heater's maximum recommended surface temperature is based on the rating of the ceramic fiber heater module. This can vary from 2000°F (1095°C) at lower watt densities, to higher watt densities at reduced surface temperatures.

**Note:** Maximum wattages cannot be achieved at the maximum temperatures simultaneously.

 $^{*}$  13/16 in. (4.8 mm) and 1/4 in. (6 mm) are available upon request.

# **Specifications**

Weight: Under 6.5 lbs/ft<sup>2</sup> (31.75 kg/m<sup>2</sup>)


**Voltage and Wattage:** Ratings are based on the ceramic fiber heater module mounted inside of the case. Up to 600VAC is possible.

**Terminals:** Terminals are <sup>1</sup>/4-20 threaded studs. Two terminals plus ground for single-phase, and three terminals plus ground for 3-phase. These are located on the center line of the length unless otherwise specified. Terminals can be located anywhere along lines A and B (see illustration below), but not closer than 2 in. (51 mm) to the case ends.

**Mounting Legs:** Mounting legs are available in either 1 in. (25 mm) or 3 in. (76 mm) length options. For made-to-order units, mounting legs can be supplied in any incremental length **L** from <sup>1</sup>/<sub>2</sub> in. (13 mm) to 3 in. (76 mm). Slots are not provided in legs less than 1 in. (25 mm) long.

| Heater Dimensions | ı | Min.  | N  | lax.   | Increments |  |  |
|-------------------|---|-------|----|--------|------------|--|--|
| Width: in. (mm)   | 2 | (51)  | 30 | (762)  | Any        |  |  |
| Length: in. (mm)  | 6 | (152) | 52 | (1320) | Any        |  |  |

**Note:** Units are <sup>1</sup>/<sub>4</sub> in. (6 mm) wider than the nominal size of the ceramic fiber heater. Overall length is equal to heater length, but a thermocouple clamp is not included in the length.



## **Options**

Several options are available with RAYMAX 1220 and 2030 models. Contact your Watlow representative for more information on options.

- Single-phase, non-standard location power terminals
- Terminal box
- Zoning

- · Mounting studs and legs
- 3-phase construction
- Thermocouple mounting tubes
- Alternate case materials

## **RAYMAX Panel Heaters**

## RAYMAX 1220

#### **Ceramic Fiber with Foil Element**

| Panel Overall Size ±1/16 in. (1.5 mm) |          | Pa<br>Nominal Heate |          |       | Watt  | Density           |                      | rox.<br>t Wt. |       | Part     |                        |
|---------------------------------------|----------|---------------------|----------|-------|-------|-------------------|----------------------|---------------|-------|----------|------------------------|
| Width                                 | Length   | Width               | Length   | Volts | Watts | W/in <sup>2</sup> | (W/cm <sup>2</sup> ) | lbs           | (kg)  | Delivery | Number                 |
| 4 <sup>1</sup> / <sub>4</sub> (108)   | 12 (305) | 4 (102)             | 12 (305) | 120   | 950   | 19.8              | (3.1)                | 2.8           | (1.3) | М        | VP504A12F              |
| 4 <sup>1</sup> / <sub>4</sub> (108)   | 24 (610) | 4 (102)             | 24 (610) | 240   | 1900  | 19.8              | (3.1)                | 4.8           | (2.2) | М        | VP504A24F              |
| 8 <sup>1</sup> / <sub>4</sub> (210)   | 12 (305) | 8 (203)             | 12 (305) | 240   | 1900  | 19.8              | (3.1)                | 4.5           | (2.1) | М        | VP508A12F <sup>1</sup> |
| 8 <sup>1</sup> / <sub>4</sub> (210)   | 24 (610) | 8 (203)             | 24 (610) | 240   | 3800  | 19.8              | (3.1)                | 7.7           | (3.5) | М        | VP508A24F              |

<sup>•</sup> M - Manufacturing lead times

All units in this table are suitable for use up to 1200°F (650°C) maximum surface temperature.

## **RAYMAX 2030**

#### **Ceramic Fiber with Sinuated Element**

| H  | ominal<br>leated<br>Width<br>(mm) | Не | minal<br>eated<br>ength<br>(mm) | Volts | Watts | Watt I<br>W/in <sup>2</sup> | Density<br>(W/cm²) | App<br>Net<br>Ibs |       | Delivery | Part<br>Number         |
|----|-----------------------------------|----|---------------------------------|-------|-------|-----------------------------|--------------------|-------------------|-------|----------|------------------------|
| 4  | (102)                             | 6  | (152)                           | 30    | 500   | 20.8                        | (3.2)              | 1.9               | (0.9) | М        | VP504A06T              |
|    |                                   | 12 | (305)                           | 120   | 925   | 19.3                        | (3.0)              | 3.1               | (1.4) | М        | VP504A12T <sup>①</sup> |
|    |                                   | 18 | (457)                           | 120   | 1400  | 19.4                        | (3.0)              | 4.1               | (1.9) | М        | VP504A18T <sup>①</sup> |
|    |                                   | 24 | (610)                           | 240   | 1850  | 19.5                        | (3.0)              | 5.2               | (2.4) | М        | VP504A24T <sup>①</sup> |
|    |                                   | 30 | (762)                           | 240   | 2250  | 19.6                        | (3.1)              | 6.3               | (2.9) | М        | VP504A30T <sup>①</sup> |
|    |                                   | 36 | (914)                           | 240   | 3200  | 22.2                        | (3.4)              | 7.4               | (3.3) | М        | VP504A36T <sup>®</sup> |
| 6  | (152)                             | 6  | (152)                           | 60    | 650   | 18.1                        | (2.8)              | 2.4               | (1.1) | М        | VP506A06T <sup>®</sup> |
|    |                                   | 12 | (305)                           | 120   | 1250  | 17.4                        | (2.7)              | 4.1               | (1.9) | М        | VP506A12T              |
|    |                                   | 18 | (457)                           | 240   | 2000  | 18.5                        | (2.9)              | 5.8               | (2.6) | М        | VP506A18T              |
|    |                                   | 24 | (610)                           | 120   | 2500  | 17.4                        | (2.7)              | 7.4               | (3.3) | М        | VP506A24T              |
|    |                                   | 24 | (610)                           | 240   | 2500  | 17.4                        | (2.7)              | 7.4               | (3.3) | М        | VP506A24U              |
|    |                                   | 30 | (762)                           | 240   | 3400  | 18.9                        | (2.9)              | 9.0               | (4.1) | М        | VP506A30T              |
|    |                                   | 36 | (914)                           | 240   | 4000  | 18.5                        | (2.9)              | 10.6              | (4.8) | М        | VP506A36T              |
| 8  | (203)                             | 12 | (305)                           | 120   | 1800  | 18.8                        | (2.9)              | 4.7               | (2.4) | М        | VP508A12T              |
|    |                                   | 18 | (457)                           | 240   | 3000  | 20.8                        | (3.2)              | 7.4               | (3.3) | М        | VP508A18U <sup>①</sup> |
|    |                                   | 24 | (610)                           | 240   | 3600  | 18.8                        | (2.9)              | 9.5               | (4.3) | М        | VP508A24T              |
|    |                                   | 30 | (762)                           | 240   | 5000  | 20.8                        | (3.2)              | 11.7              | (5.3) | М        | VP508A30T              |
|    |                                   | 36 | (914)                           | 240   | 6000  | 20.8                        | (3.2)              | 13.9              | (6.3) | М        | VP508A36T              |
| 10 | (254)                             | 12 | (305)                           | 120   | 2000  | 16.7                        | (2.6)              | 6.3               | (2.9) | М        | VP510A12T              |
|    |                                   | 18 | (457)                           | 120   | 3600  | 20.0                        | (3.1)              | 9.0               | (4.1) | М        | VP510A18T              |
|    |                                   | 24 | (610)                           | 240   | 4500  | 17.9                        | (2.8)              | 11.7              | (5.3) | М        | VP510A24T              |
|    |                                   | 30 | (762)                           | 240   | 6000  | 20.0                        | (3.1)              | 14.4              | (6.5) | М        | VP510A30T              |
|    |                                   | 36 | (914)                           | 240   | 7200  | 19.4                        | (3.0)              | 17.1              | (7.8) | М        | VP510A36T              |

CONTINUED

All units in this table are suitable for use up to 1800°F (982°C) maximum surface temperature.

520 WATLOW<sup>®</sup>

 $<sup>^{\</sup>scriptsize \scriptsize (1)}$  Thermocouple clasp is not included in the length.

<sup>•</sup> M - Manufacturing lead times

<sup>&</sup>lt;sup>①</sup>Vee sinuated

# **RAYMAX Panel Heaters**

RAYMAX 2030 (Continued)

#### **Ceramic Fiber with Sinuated Element**

| Н  | Nominal Heated Width In. (mm)  Nominal Heated Length in. (mm) |    | ated<br>ngth | Volts   | Watts |      | Watt Density<br>W/in <sup>2</sup> (W/cm <sup>2</sup> ) |      | rox.<br>Wt.<br>(kg) | Delivery | Part<br>Number         |
|----|---------------------------------------------------------------|----|--------------|---------|-------|------|--------------------------------------------------------|------|---------------------|----------|------------------------|
| 12 | (305)                                                         | 12 | (305)        | 120     | 2500  | 17.4 | (2.7)                                                  | 7.4  | (3.3)               | М        | VP512A12T              |
|    |                                                               | 12 | (305)        | 240     | 2500  | 17.4 | (2.7)                                                  | 7.4  | (3.3)               | М        | VP512A12U <sup>①</sup> |
|    |                                                               | 18 | (457)        | 240     | 4000  | 18.5 | (2.9)                                                  | 10.6 | (4.8)               | М        | VP512A18T              |
|    |                                                               | 24 | (610)        | 240     | 6000  | 20.8 | (3.2)                                                  | 13.9 | (6.3)               | М        | VP512A24T              |
|    |                                                               | 30 | (762)        | 240     | 7200  | 20.0 | (3.1)                                                  | 17.1 | (7.8)               | М        | VP512A30T              |
|    |                                                               | 36 | (914)        | 240     | 8400  | 19.4 | (3.0)                                                  | 20.3 | (9.2)               | М        | VP512A36T <sup>1</sup> |
| 14 | (356)                                                         | 12 | (305)        | 240     | 3500  | 20.8 | (3.2)                                                  | 8.5  | (3.8)               | М        | VP514A12T              |
|    |                                                               | 18 | (457)        | 240     | 4900  | 19.4 | (3.0)                                                  | 12.2 | (5.5)               | М        | VP514A18T              |
|    |                                                               | 24 | (610)        | 240     | 7000  | 20.8 | (3.2)                                                  | 16.0 | (7.3)               | М        | VP514A24T              |
|    |                                                               | 30 | (762)        | 240     | 8400  | 20.0 | (3.1)                                                  | 19.8 | (9.0)               | М        | VP514A30T <sup>1</sup> |
|    |                                                               | 36 | (914)        | 240/240 | 9800  | 19.4 | (3.0)                                                  | 23.6 | (10.7)              | М        | VP514A36T              |
| 16 | (406)                                                         | 12 | (305)        | 240     | 3600  | 18.8 | (2.9)                                                  | 9.5  | (4.3)               | М        | VP516A12T              |
|    |                                                               | 18 | (457)        | 240     | 5700  | 19.8 | (3.1)                                                  | 13.9 | (6.3)               | М        | VP516A18T              |
|    |                                                               | 24 | (610)        | 240     | 7100  | 18.5 | (2.9)                                                  | 18.2 | (8.2)               | М        | VP516A24T              |
|    |                                                               | 30 | (762)        | 240/240 | 9600  | 20.0 | (3.1)                                                  | 22.5 | (10.2)              | М        | VP516A30T              |
|    |                                                               | 36 | (914)        | 240/240 | 11500 | 20.0 | (3.1)                                                  | 26.8 | (12.2)              | М        | VP516A36T              |

#### • M - Manufacturing lead times

All units in this table are suitable for use up to 1800°F (982°C) maximum surface temperature.

#### **Part Number**

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10                      | 11) | 12 | 13 | 14) |
|---|---|---|---|---|---|---|---|---|-------------------------|-----|----|----|-----|
|   |   |   |   |   |   |   |   |   | Modification<br>Options |     |    |    |     |
| V | Р | 5 | 0 | 8 | Α | 1 | 2 | Т |                         | 0   | 0  | 0  | 0   |

# 1 2 3 4 5 6 7 8 9 Base Part Number VP508A12T

| 10  | Modification Options                      |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------|--|--|--|--|--|--|--|--|
| 1 = | 3 in. (76 mm) leg height and terminal box |  |  |  |  |  |  |  |  |
| 4 = | 1/4 / 20 mounting studs                   |  |  |  |  |  |  |  |  |
| 5 = | 1/4 / 20 mounting studs and terminal box  |  |  |  |  |  |  |  |  |
| M = | 1 in. (25 mm) leg height                  |  |  |  |  |  |  |  |  |
| R=  | 1 in. (25 mm) leg height and terminal box |  |  |  |  |  |  |  |  |
| W=  | N= Terminal box in standard location      |  |  |  |  |  |  |  |  |
| Y = | 3 in. (76 mm) leg height                  |  |  |  |  |  |  |  |  |

<sup>&</sup>lt;sup>①</sup>Vee sinuated

#### **RAYMAX Panel Heaters**

#### RAYMAX 1330

The RAYMAX 1330 is the only radiant heater featuring specially insulated heater emitter strips for higher performance. Watlow's unique compacted mineral insulation electrically insulates the element wire, creating superior heat transfer and higher operating capabilities.

The RAYMAX 1330 lasts longer due to its rugged stainless steel construction. It features a high emissivity black coating and a uniform, full-surface heat source for better efficiency.

## **Performance Capabilities**

- Maximum face temperature: 1300°F (700°C)
- Maximum watt density: 30 W/in<sup>2</sup> (4.7 W/cm<sup>2</sup>)
- Typical peak energy wavelength: 3-3.6 microns
- Maximum voltage up to 480V

#### **Features and Benefits**

#### Field replaceable emitter strips

• Eliminates the cost to buy a whole new radiant heater

#### **Rugged metal construction**

• Protects the heater from contaminants

#### No reflectors

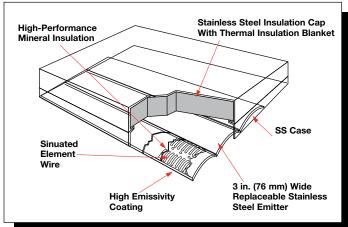
• Eliminates cleaning and replacement

#### No fragile glass or ceramic elements

• Prevents possible safety hazards

#### **Backside insulation**

Results in better heating efficiency


#### Responsive face temperature sensing options

Increases accuracy

#### **Typical Applications**

- Thermoforming plastics and composites
- · Circuit board soldering
- Heat shrinking of plastic





# **RAYMAX Panel Heaters**

# RAYMAX 1330 Applications and Technical Data

## **Sizes and Ratings**

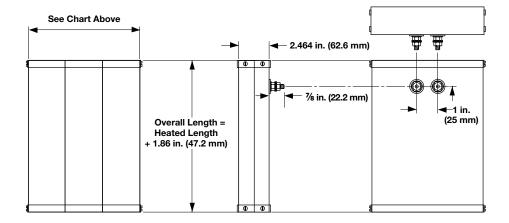
**Thickness:** 2.46 in. (62.5 mm)

**Voltage:** Customer specified up to 480V. Balanced 3-phase is available on units with three or six emitters.

**Note:** Small heaters may not be able to be built at high voltages. Contact your Watlow representative to

discuss specific application requirements.

Maximum Watt Density: 30 W/in<sup>2</sup> (4.7 W/cm<sup>2</sup>)
Maximum Face Temperature: 1300°F (700°C)
Typical Peak Energy Wavelength: 3 microns
Standard Tolerances: ±<sup>1</sup>/<sub>16</sub> in. (1.6 mm)


# **Specifications**

| Heater Dimensions | Min.     | Max.       | Increments |  |  |
|-------------------|----------|------------|------------|--|--|
| Length: in. (mm)  | 12 (305) | 30.5 (775) | 0.06 (1.5) |  |  |

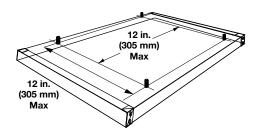
| Number of<br>Emitters | Heate<br>in. | d Width<br>(mm) | Overal<br>in. | l Width<br>(mm) |
|-----------------------|--------------|-----------------|---------------|-----------------|
| 1                     | 2.95         | (75)            | 3.36          | (85)            |
| 2                     | 6.14         | (156)           | 6.54          | (166)           |
| 3                     | 9.33         | (237)           | 9.73          | (247)           |
| 4                     | 12.51        | (318)           | 12.92         | (328)           |
| 5                     | 15.70        | (399)           | 16.11         | (409)           |
| 6                     | 18.89        | (480)           | 19.29         | (490)           |

## **Options**

- Terminal box
- Thermowell
- Thermocouple welded to hot face
- Thermocouple pocket
- Mounting studs



WATLOW® \_\_\_\_\_\_ 523

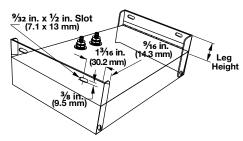

#### **RAYMAX Panel Heaters**

## **Mounting Accessories**

## **Mounting Studs**

Standard  $^{1}/_{4}$ -20 x  $^{1}/_{2}$  in. (38 mm) or (M6-1 x 40) steel studs are welded to the case. For best support, studs should be approximately located on 12 in. (305 mm) centers. Contact your Watlow representative for exact locations on specific heaters.

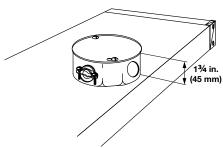
Available with RAYMAX 1010, 1120, 1220, 1330 and 2030.




## **Mounting Legs**

Mounting legs are extensions of the steel end caps with mounting slots for bolting directly to field support members. There is no extra charge for legs. They can be supplied in half inch increments from 0.5 in. (13 mm) to 3 in. (76 mm). Slots are not provided in legs less than 1 in. (25 mm) long.

For panels over 24 in. (610 mm) long, mounting studs are recommended for the best panel support.

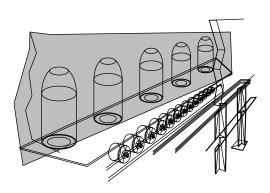

**Available with RAYMAX 1120, 1220 and 2030** (Available as an extended capability for RAYMAX 1010 and 1330.)



**Application note:** Allow for some thermal expansion of the heater case during operation. An expansion of up to one percent can occur when the case reaches its normal maximum limit of 1100°F (595°C). If the equipment has mounting screws to connect to the slots in the mounting legs, allow for a small amount of extra length. If mounting holes are used to interface with the mounting studs on the back of the RAYMAX case, make sure that the holes are oversized. Use washers and avoid overtightening the screws.

#### **Terminal Accessories**

#### **Terminal Box**




To protect electrical connections, a standard NEMA octagon terminal box is available. The standard size is  $3^9/16 \times 3^9/16 \times 1^1/2$  in. (90.5 x 90.5 x 38 mm) with knockouts for  $^1/2$  in. (13 mm) conduit. Other NEMA sizes are available as an extended capability.

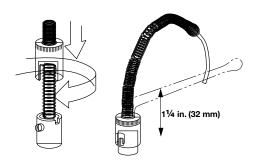
Care should be taken to use lead wire capable of withstanding the ambient temperatures.

Available with RAYMAX 1010, 1120, 1220, 1330 and 2030.

#### **Zoning**



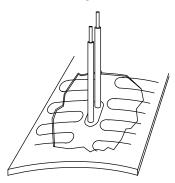
Watt densities can be varied across the entire width of RAYMAX heaters. If desired, each zone can have an individually controlled power supply.


Zoning can be very valuable when part of the product requires more heat, or when it must compensate for heat losses at the edges. Separately turning off part of the heated width enables the heater to adjust for various widths of material.

**Available with RAYMAX 1010, 1120 and 1330.** (Available as an extended capability for RAYMAX 1220 and 2030.)

#### **RAYMAX Panel Heaters**

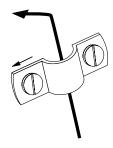
## Temperature Control


#### **Thermowells**



A thermowell allows a thermocouple to be used with a bayonet fitting to monitor heater temperature. The thermowell is located on the back of the panel to allow easy access for thermocouple replacement. A spring tension holds the tip of the thermocouple in contact for close control of the heater temperature. A thermocouple is not included.

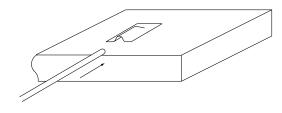
Available with RAYMAX 1010, 1120 and 1330.


## **Welded Thermocouple**



A thermocouple junction is welded to the emitting surface to provide optimum temperature sensing accuracy and responsiveness. This option permits the actual radiating face temperature to be precisely monitored and controlled. The standard length of the thermocouple wire is 12 in. (305 mm).

Available with RAYMAX 1330.


#### **Thermocouple Clamps**



A thermocouple mounting clamp can be provided on the end of the heater case. The clamp is suitable for <sup>1</sup>/<sub>8</sub> in. (3.2 mm) and <sup>1</sup>/<sub>4</sub> in. (6 mm) outside diameter sheath thermocouples bent to 90° so that the sensing tip is just above and lightly touching the hot face at an element location.

Available with RAYMAX 1220 and 2030.

# **Thermocouple Pocket**



A thermocouple pocket welded to the emitting surface accepts a 0.063 in. (1.6 mm) diameter thermocouple (not included). This option provides accurate temperature sensing and easy thermocouple replacement.

Available with RAYMAX 1010, 1120 and 1330.



# **Extended Capability For RAYMAX Panel Heaters**

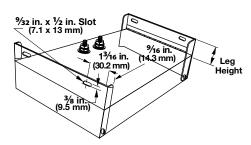
## **Specifications**

#### **RAYMAX 1120**

| Heater Dimensions                        | Min. |        |     | Max.     | Increments |        |  |
|------------------------------------------|------|--------|-----|----------|------------|--------|--|
| Width: in. (mm)                          | 24   | (610)  | 36  | (914)    | 1          | (25.0) |  |
| Length: in. (mm)                         | 6    | (152)  | 94  | (2388)   | 0.06       | (1.5)  |  |
| Area: in <sup>2</sup> (cm <sup>2</sup> ) | 6    | (38.7) | 864 | (5574.2) | А          | ny     |  |

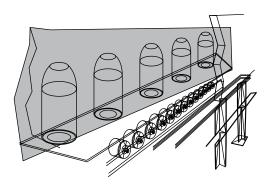
**Note:** Less than maximum length x width may exceed the maximum area.

#### **RAYMAX 1330**


| Number of | Heate | d Width | Overall Width |         |  |  |
|-----------|-------|---------|---------------|---------|--|--|
| Emitters  | in.   | (mm)    | in.           | (mm)    |  |  |
| 7         | 22.08 | (560.8) | 22.48         | (570.9) |  |  |
| 8         | 25.26 | (641.6) | 25.67         | (652.0) |  |  |

#### **Mounting Legs**

Mounting legs are extensions of the steel end caps with mounting slots for bolting directly to field support members. They can be supplied in half inch increments from 0.5 in. (13 mm) to 3 in. (76 mm). Slots are not provided in legs less than 1 in. (25 mm) long.


For panels over 24 in. (610 mm) long, mounting studs are recommended for the best panel support.

# Available as an extended capability for RAYMAX 1010 and 1330.



**Application note:** Allow for some thermal expansion of the heater case during operation. An expansion of up to one percent can occur when the case reaches its normal maximum limit of 1100°F (595°C). If the equipment has mounting screws to connect to the slots in the mounting legs, allow for a small amount of extra length. If mounting holes are used to interface with the mounting studs on the back of the RAYMAX case, make sure that the holes are oversized. Use washers and avoid overtightening the screws.

## **Zoning**




Watt densities can be varied across the entire width of RAYMAX heaters. If desired, each zone can have an individually controlled power supply.

Zoning can be very valuable when part of the product requires more heat, or when it must compensate for heat losses at the edges. Separately turning off part of the heated width enables the heater to adjust for various widths of material.

Available as an extended capability for RAYMAX 1220 and 2030.

#### Wiring Raceway



A steel raceway provides electrical and physical protection for all terminal connections. This can be particularly useful for multi-zone panels.

Available as an extended capability for RAYMAX 1010, 1120, 1220, 1330 and 2030.

526 WATLOW<sup>®</sup>



# Extended Capabilities For Mineral Insulated (MI) Band and Strip Emitters

These heaters are constructed using Watlow's exclusive mineral insulation, which features high thermal conductivity. The band and strip emitters are constructed of rugged stainless steel sheath and a high emissivity coating.

## **Performance Capabilities**

- Maximum operating temperature up to 1300°F (704°C)
- Maximum watt densities up to 30 W/in<sup>2</sup> (4.7 W/cm<sup>2</sup>)

#### **Sizes**

#### **Strip Emitters**

Width: 2 in. (51 mm), 3 in. (76 mm) Length: 6 in. (152 mm) minimum, 31 in. (787 mm) maximum

#### **Band Emitters**

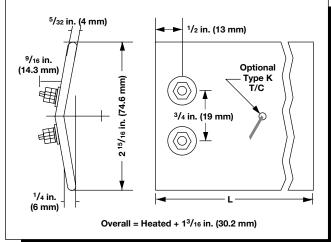
Width: 1 in. (25 mm), 2 in. (51 mm), 3 in. (76 mm) maximum

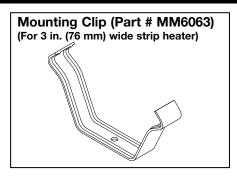
- Segment length: 6 in. (152 mm) minimum to 42 in. (1067 mm) maximum
- Contact your Watlow representative for partial arcs up to full 360° coverage
- High emissivity coating on inside is standard. For high emissivity coating on the outside, contact your Watlow representative.
- Post terminals are standard. High-temperature leads are available on bands only.

#### **Options**

- Mounting studs
- Mounting clips for 3 in. (76 mm) wide emitter strips, part #MM6063
- Thermocouple welded to sheath
- Thermocouple pocket welded to sheath

#### **Features and Benefits**


#### **Exclusive mineral insulation**


- Combines dielectric strength and superior thermal conductivity
- Transfers heat rapidly to the sheath

#### High thermal conductivity of MI

- Provides an almost instant response to temperature control
- Eliminates thermal lag and temperature overshoot associated with other heaters







## **Typical Applications**

- · Heating rotating drums and rollers
- Tube ovens
- Small spot heating
- Heat shrinking and curing wire coatings
- Heat laminating wheels

WATLOW® \_\_\_\_\_\_ 527



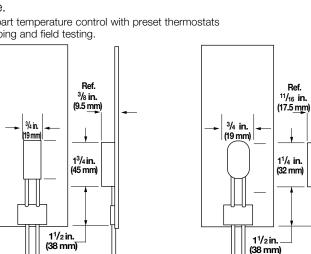
| Thermostats and Accessories | Description                                                                                                                         | Page |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| ST10 and ST207              | Pre-set thermostats used with flexible heaters are available mounted to the heater or as a separate device used to control process. | 531  |
| Bulb and Capillary          | Regulates temperature in non-critical applications within a preset range and cycles heaters on and off.                             | 534  |
| Protective Wells            | Provides protection for thermostat bulbs and other sensors while directly immersed in process fluids.                               | 539  |

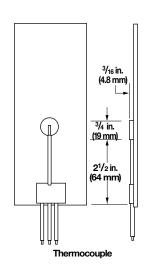




#### ST10 and ST207

## **Temperature Sensors**


Watlow® offers several styles of sensors for use with flexible heaters. These sensors are available as preset or adjustable thermostats, thermocouples, thermistors, RTDs or thermal fuses. They can be integrally mounted (encapsulated in silicone rubber) to sense the temperature of either the part or the heater sheath. The thermostats can also be ordered separate from the heater, allowing direct control of your process temperature, if desired.


#### **Pre-Set Thermostats**

Several styles of non-adjustable, pre-set thermostats are available from Watlow. Thermostats separate from the heater are encapsulated in silicone rubber, and are available with standard 12 in. (305 mm) leads unless otherwise specified.

Thermocouples, thermistors, RTDs and thermal fuses are usually mounted to the heater under a vulcanized protective cap of silicone rubber sheath material. This drawing shows a typical mounting style for a thermocouple.

**Note**: Precise part temperature control with preset thermostats requires prototyping and field testing.





ST-207

ST-207E

10-00BIB

150

**ST-10** 

### Pre-Set Thermostats (Non-Adjustable)

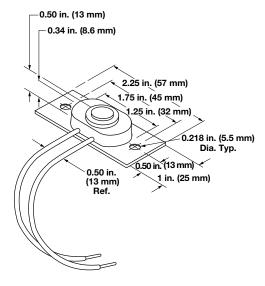
| Thermostat | Maximum | Volts   | Temperature Settings  | Agency Approvals |     |     |  |  |  |
|------------|---------|---------|-----------------------|------------------|-----|-----|--|--|--|
| Model      | Watts   | AC      | Available °F (°C)     | UR               | cUR | VDE |  |  |  |
| T-10       | 600/960 | 120/240 | 125-300±10 (50-149±5) | yes              | yes | yes |  |  |  |
| T-207      | 1500    | 120/240 | 40/55±8 (4/13±4.4)    | yes              | yes | yes |  |  |  |
|            | 1500    | 120/240 | 60/75±8 (16/24±4.4)   | yes              | yes | yes |  |  |  |
|            | 1500    | 120/240 | 95/110±8 (35/43±4.4)  | yes              | yes | yes |  |  |  |
|            | 1500    | 120/240 | 145/160±8 (63/71±4.4) | yes              | yes | yes |  |  |  |

T-207

#### Notes:

- When ordering a pre-set thermostat separate from the heater, simply add the prefix S to the model number. (Example: ST-10) See next page.
- Snap action preset temperatures on the T-207 are close/open settings.
- T-10 thermostats are manufactured for specific preset temperatures. Available in 25°F increments.
- Other temperature ranges and voltages are available on special order. Minimum quantities apply, contact your Watlow representative before ordering.

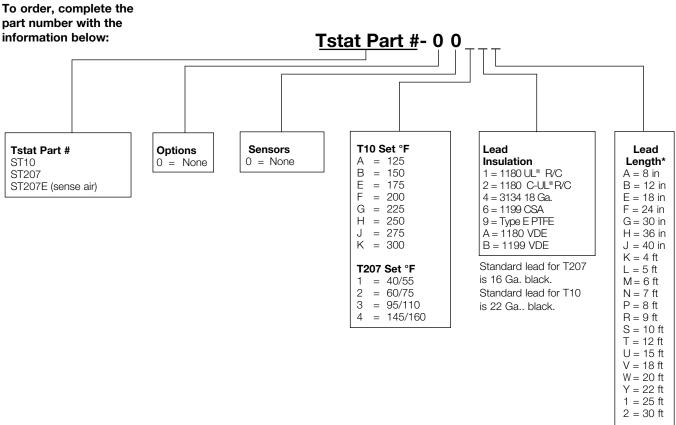
#### **ST10 and ST207**


**Temperature Sensors** (Continued)

# Separate Heater Accessories Available — Pre-Set Thermostats Separate From Heater

These are offered to allow direct control of your process temperature, so you're not limited to controlling only the heater temperature when using catalog heaters. Pre-set thermostats are encapsulated in silicone rubber with standard 12 inch leads.

The same temperature ranges, ratings and sizes are available on these thermostats. When ordering, add "S" prefix to the model number to indicate "separate" item. (Examples: ST-10 and ST-207)


Standard leads are 12 in. (305 mm) 18 gauge UL® 1180 black leads.



**Note:** For direct control of air temperature as is required in enclosure heating applications, specify thermostat model number ST-207E. This is a modified ST-207 mounted on <sup>1</sup>/<sub>32</sub> inch thick G-10 circuit board with the thermostat's metal cap exposed to sense air temperature.

#### **ST10 and ST207**

# Thermostat Ordering Information



\* Customer specified length must be noted in inches when ordering.

WATLOW® \_\_\_\_\_\_ 533

# **Bulb and Capillary**

Thermostats regulate temperature in non-critical applications. They sense temperature, within a preset range and cycle heaters on and off to maintain the set point.

Thermostats may be mounted inside a terminal enclosure or remote mounted (separate from the heater assembly). If using a remote mounted thermostat, be sure to order the sufficient capillary tube length to permit installation.

All Watlow thermostats are normally closed circuit and either single-pole, single-throw (SPST) or double pole, single-throw (DPST). They can be used with or without an enclosure.

Thermostat selection should be based on temperature range, capillary tube length and sensor bulb size (diameter/length).

#### **Remote Mount Thermostat Assemblies**

Remote mounted thermostat assemblies can be supplied with the following enclosures:

- General purpose
- Moisture resistant
- Dust resistant

#### **Pilot Light**

An optional pilot light gives visual indication whether the power supplied to the heating element(s) is on or off.

To order, please specify suffix part PL11.

#### **Thermostat Conversion Kits**

Kits are available to convert a heater's general purpose terminal enclosure to accept either a single- or double-pole thermostat. The kit contains all the necessary parts to change out the existing terminal enclosure cover and mount the thermostat inside.

These are hardware and wiring kits only.

Single-pole conversion kit covers 1,  $1^{1/4}$ , 2 and  $2^{1/2}$ inch NPT screw plugs. To order, specify part K492-000-35-(thermostat type).

**Double-pole conversion kit** covers 2 and 2<sup>1</sup>/<sub>2</sub> inch NPT screw plugs. To order, specify part K492-000-34-(thermostat type).





#### Thermostat Dial Scales

Thermostats ship standard with Fahrenheit (°F) dial scales. If your application requires a Celsius (°C) scale, order the optional dial face.

All new single-pole thermostats, as well as dual-pole thermostats (4, 5A and 7A) will be provided with dual scale (both °C and °F). All other dual pole thermostats ship standard with Fahrenheit (°F) scales. If your application requires a Celsius (°C) scale, order optional dial face.

To order, specify code CD. Scale will match thermostat temperature range.

#### Warning

Do not use thermostats for high-limit sheath protection. Thermostats fail in a closed circuit mode and will not cut power to the heaters. Limit control should be provided by an isolated, redundant sensor and control system of the appropriate type, design and installation.

Thermostats are pre calibrated at the factory. No adjustment, other than selecting the desired operating temperature, is required. All wiring should be performed by qualified personnel and comply with the National Electrical Code and other applicable state and local codes.

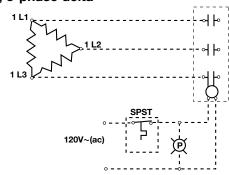
To help assure the correct thermostat is selected as well as installed and wired properly, here are a few helpful hints. Schematics are provided for interconnecting thermostats to single- and three-phase heaters.

# **Bulb and Capillary**

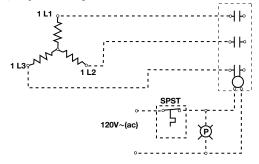
#### **Technical Information**

## **Application Hints**

- Locate the thermostat where ambient temperatures do not exceed 150°F (65°C).
- Mount the thermostat in an enclosure that is compatible with the surrounding environment.
- Immerse the entire sensing bulb in the media being heated.
- Make sure the sensing bulb is mounted away from the heating element(s) to negate any undue influence on the sensing bulb's temperature "reading."
- Keep the capillary tube insulated from electrical connections.
- Do not use a thermostat for high-accuracy temperature sensing. Use an appropriate thermocouple, RTD or thermistor and temperature control.
- Do not use thermostats as a primary power switching device. Use a disconnect switch or circuit breaker to cut power when servicing.
- Interconnect the thermostat to the heater only if:
  - The heater has one circuit
  - The heater's ampere draw is lower than the thermostat's rated ampacity at prescribed voltage.
- Interconnect either a single- or double-pole thermostat with a single-phase heater when the supply voltage does not exceed 250VAC for SPST or 480VAC for DPST.
- Only interconnect three-phase delta heaters to DPST thermostats.
- Use a single-pole thermostat for pilot duty where the thermostat is not interconnected with the heater, or heater exceeds the volt/amp rating.

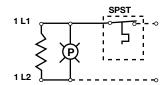

### **Pilot Duty Wiring**

#### SPST, 1-phase

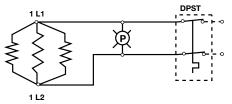



# Pilot Duty Wiring (Continued)

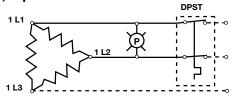
#### SPST, 3-phase delta




SPST, 3-phase wye




#### **Interconnected Wiring**

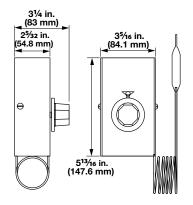

#### SPST, 1-phase



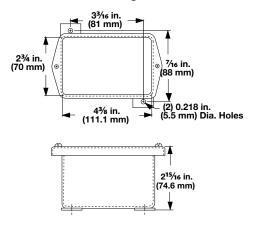
## DPST, 1-phase



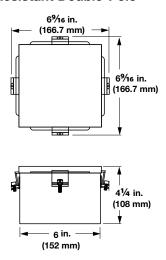
#### DPST, 3-phase delta




# **Bulb and Capillary**


**Technical Information** (Continued)

## **Thermostats with Enclosures**


#### **General Purpose Single- and Double-Pole**



### **Moisture Resistant Single-Pole**



#### **Moisture Resistant Double-Pole**



| Cross-Reference For<br>Replacement Thermostat | Order With Below<br>Part Number |
|-----------------------------------------------|---------------------------------|
| 202-0-96-2 (small knob)                       | 202-0-21-2MB                    |
| 202-0-96-4                                    | 2                               |
| 202-0-96-5                                    | 2A                              |
| 202-0-96-3                                    | 3                               |
| 202-0-94-1 (small knob)                       | 202-0-21-8M                     |
| 202-0-96-6                                    | 3 <b>A</b>                      |
| 202-0-4-2                                     | 4                               |
| 202-0-4-17                                    | 5A                              |
| 202-0-4-16                                    | 7 <b>A</b>                      |
| 202-0-3-1                                     | 8                               |
| 202-0-3-3                                     | 9                               |
| 202-0-29-2                                    | 11                              |
| 202-0-41-2 (small knob)                       | 12A                             |

If you only have the thermostat part number, use the cross-reference chart above.

# **Bulb and Capillary**

# **Technical Information** (Continued)

#### **Thermostats**

| Control<br>Mode | Туре    | Temperature<br>ype Range |          | Diffe | Ampacity @ Differential Line Voltage |     | Bulb<br>Diame |     |     | ılb<br>ıgth |      | oillary<br>ngth               | Terminal<br>Type | Part<br>No. |        | t. Net<br>Wt. |            |     |        |
|-----------------|---------|--------------------------|----------|-------|--------------------------------------|-----|---------------|-----|-----|-------------|------|-------------------------------|------------------|-------------|--------|---------------|------------|-----|--------|
|                 |         | °F                       | (°C)     | °F    | (°C)                                 | 120 | 240           | 277 | 480 | in. (m      | m)   | in.                           | (mm)             | in.         | (mm)   |               |            | lbs | s (kg) |
| On-off          | Single- | 30-250                   | (0-120)  | 13    | (7)                                  | 25  | 25            | 22  | _   | 0.250       | (6)  | 3 <sup>1</sup> /2             | (89)             | 18          | (455)  | #12 AWG       | 2          | 1   | (0.4)  |
| Temp            | Pole    | 30-250                   | (0-120)  | 13    | (7)                                  | 25  | 25            | 22  | _   | 0.250       | (6)  | 3 <sup>1</sup> / <sub>4</sub> | (85)             | 84          | (2135) | Stranded      | 2A         | 1   | (0.4)  |
| Control         | Single- | 175-550                  | (80-290) | 23    | (13)                                 | 25  | 25            | 22  | _   | 0.250       | (6)  | 2 <sup>3</sup> /4             | (70)             | 18          | (455)  | Leads or      | 3          | 1   | (0.4)  |
|                 | Throw   | 175-550                  | (80-290) | 23    | (13)                                 | 25  | 25            | 22  | _   | 0.250       | (6)  | 2 <sup>3</sup> /4             | (70)             | 84          | (2135) | #8-32         | 3 <b>A</b> | 1   | (0.4)  |
|                 | (SPST)  |                          |          |       |                                      |     |               |     |     |             |      |                               |                  |             |        | screw lug     |            |     |        |
|                 |         | 60-160                   | (15-70)  | 19    | (10)                                 | 30  | 30            | 30  | 20  | 0.250       | (6)  | 4 <sup>3</sup> /8             | (110)            | 14          | (355)  | #8-32         | 12A        | 1   | (0.4)  |
|                 | Double- | 30-110                   | (0-40)   | 12    | (7)                                  | 30  | 30            | 30  | 10  | 0.375       | (10) | 6 <sup>9</sup> /16            | (167)            | 36          | (915)  |               | 4          | 2   | (0.9)  |
|                 | Pole    | 60-250                   | (15-120) | 12    | (7)                                  | 30  | 30            | 30  | 10  | 0.250       | (6)  | 6 <sup>1</sup> /2             | (165)            | 48          | (1220) | Screw Lug     | 5A         | 2   | (0.9)  |
|                 | Single- | 100-550                  | (40-290) | 22    | (12)                                 | 30  | 30            | 30  | 10  | 0.250       | (6)  | 7 <sup>1</sup> /16            | (179)            | 48          | (1220) |               | 7A         | 2   | (0.9)  |
|                 | Throw   |                          |          |       |                                      |     |               |     |     |             |      |                               |                  |             |        |               |            |     |        |
|                 | (DPST)  |                          |          |       |                                      |     |               |     |     |             |      |                               |                  |             |        |               |            |     |        |
| On-off          | (DPST)  | 60-250                   | (15-120) | 12    | (7)                                  | 30  | 30            | 30  | _   | 0.250       | (6)  | 6 <sup>1</sup> / <sub>2</sub> | (165)            | 48          | (1220) | #10-32        | 8          | 2   | (0.9)  |
| with            | ,       | 100-550                  | (40-290) | 22    | (12)                                 | 30  | 30            | 30  | _   | 0.188       | (5)  | 12                            | (305)            | 48          | (1220) | Screw Lug     | 9          | 2   | (0.9)  |
| Manual          | (SPST)  | 350 <sup>⑨</sup>         | (180)    | _     |                                      | 30  | 30            | 20  | _   | 0.250       | (6)  | 3 <sup>1</sup> / <sub>2</sub> | (90)             | 36          | (915)  | #10-32        | 11         | 1   | (0.4)  |
| Reset           |         |                          |          |       |                                      |     |               |     |     |             |      |                               |                  |             |        | Screw Lug     |            |     |        |



**Note:** All thermostats certified by  $UL^{\circledR}$  and/or CSA for use in the United States and Canada.

**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 537

<sup>&</sup>lt;sup>9</sup> Fixed temperature rating

# **Bulb and Capillary**

# **Ordering Information**

#### **Part Number**

| Thermostat<br>Part<br>Number | Enclosure<br>(Remote<br>Mount Only) | Options |
|------------------------------|-------------------------------------|---------|
|                              |                                     |         |

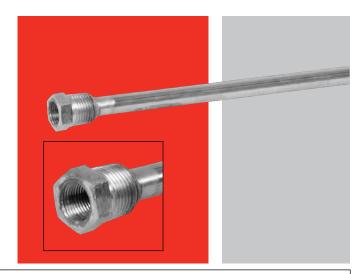
| Thermostat Part Number           |  |
|----------------------------------|--|
| Note: See chart on previous page |  |

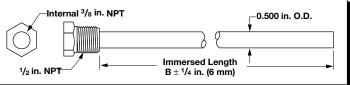
| Enclosure (Remote Mount Only) |                    |  |  |  |  |  |
|-------------------------------|--------------------|--|--|--|--|--|
| S =                           | General purpose    |  |  |  |  |  |
| W=                            | Moisture resistant |  |  |  |  |  |
| D =                           | Dust resistant     |  |  |  |  |  |

| Options                              |                                                                                                     |  |  |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CD =                                 | Celsius dial scale (Double pole only)                                                               |  |  |  |  |  |
| CB = Chrome bezel (Double pole only) |                                                                                                     |  |  |  |  |  |
| LTB =                                | Liquid-tight brass fitting (3/8 in 18 NPT)                                                          |  |  |  |  |  |
| PL11 =                               | Pilot light, 120V only available on moisture/explosion resistant and explosion resistant enclosures |  |  |  |  |  |

**Example Part Number: 2 W LTB** 

## **Protective Wells**


Protective wells isolate and protect thermostat bulbs and other temperature sensors (thermocouples, RTDs or thermistors). They allow inserting the sensing element sufficiently into the media being heated without being damaged.


Steel or stainless steel protective wells are available in three lengths. They are supplied with <sup>1</sup>/<sub>2</sub> inch NPT mounting and <sup>3</sup>/<sub>8</sub> inch-18 NPT internal thread for mating to a liquid-tight bushing (LTB).

To order, specify the appropriate part number from the table below.

#### **Protective Wells**

| Plug and Thermowell | Immersed<br>B Dimension |       | Part   | Est. Ship.<br>Wt. |       |
|---------------------|-------------------------|-------|--------|-------------------|-------|
| Material            | in.                     | (mm)  | Number | lb                | (kg)  |
|                     | 12                      | (305) | PWS12  | 1                 | (0.5) |
| Steel               | 24                      | (610) | PWS24  | 2                 | (1.0) |
|                     | 36                      | (915) | PWS36  | 2                 | (1.0) |
| Stainless           | 12                      | (305) | PWSS12 | 1                 | (0.5) |
| Steel               | 24                      | (610) | PWSS24 | 2                 | (1.0) |
|                     | 36                      | (915) | PWSS36 | 2                 | (1.0) |





WATLOW® \_\_\_\_\_\_ 539



# **Reference Data**

| Reference Data                                |                  |
|-----------------------------------------------|------------------|
| Power Calculations                            | 543              |
| Equations                                     | 549              |
| Wattage Requirements                          | <mark>551</mark> |
| Tubular Elements and Assembly Selection Guide | 553              |

WATLOW<sup>®</sup> \_\_\_\_\_\_ 541



# **Power Calculations**

# **Calculations for Required Heat Energy**

The total heat energy (kWH or BTU) required to satisfy the system needs will be either of the two values shown below depending on which calculated result is larger.

A. Heat required for start up

B. Heat required to maintain the desired temperature The power required (kW) will be the heat energy value (kWH) divided by the required start up or working cycle time. The kW rating of the heater will be the greater of these values plus a safety factor.

The calculation of start up and operating requirements consist of several distinct parts that are best handled separately. However, a short method can also be used for a quick estimate of heat energy required. Both methods are defined and then evaluated using the following formulas and methods:

#### **Short Method**

Start-up watts =  $A + C + \frac{2}{3}L + \text{safety factor}$ Operating watts = B + D + L + safety factor

Safety factor is normally 10 to 35 percent based on application.

- A = Watts required to raise the temperature of material and equipment to the operating point, within the time desired
- B = Watts required to maintain temperature of the material during the working cycle
- C = Watts required to melt or vaporize load material during start-up period
- D = Watts required to melt or vaporize load material during working cycle
- L = Watts lost from surfaces by:
  - Conduction-use equation to the right
  - · Radiation-use heat loss curves
  - · Convection-use heat loss curves

# Equation for A and B (Absorbed watts-raising temperature)

$$\frac{\text{lbs x C}_p \text{ x °F}}{\text{hrs x 3.412}}$$

- lbs = weight of material
- C<sub>p</sub> = specific heat of material (BTU/lb x °F)
- °F = temperature rise
- hrs = start-up or cycle time

# Equation for C and D (Absorbed watts-melting or vaporizing)

$$\frac{\text{lbs x BTU/lb}}{\text{hrs x 3.412}}$$

- lbs = weight of material
- BTU/lb = heat of fusion or vaporization
- hrs = start-up or cycle time

# Equation for L (Lost conducted watts)

$$\frac{k \times ft^2 \times {}^{\circ}F}{in. \times 3.412}$$

- k = thermal conductivity (BTU x in./[ft² x °F x hr])
- ft² = surface area
- °F = temperature differential to ambient
- in. = thickness of material (inches)

# **Power Calculations**

# **Conduction and Convection Heating**

# **Absorbed Energy, Heat Required to Raise** the Temperature of a Material

Because substances all heat differently, different amounts of heat are required in making a temperature change. The specific heat capacity of a substance is the quantity of heat needed to raise the temperature of a unit quantity of the substance by one degree. Calling the amount of heat added  $\boldsymbol{Q},$  which will cause a change in temperature  $\Delta \boldsymbol{T}$  to a weight of substance  $\boldsymbol{W},$  at a specific heat of material  $\boldsymbol{C_p},$  then  $Q=w\times C_p\times \Delta T.$ 

Since all calculations are in watts, an additional conversion of 3.412 BTU = 1 Wh is introduced yielding:

# **Equation 1**

$$Q_{A} or Q_{B} = \frac{w \times C_{p} \times \Delta T}{3.412}$$

Q<sub>A</sub> = heat required to raise temperature of materials during heat-up (Wh)

Q<sub>B</sub> = heat required to raise temperature of materials processed in working cycle (Wh)

w = weight of material (lb)

 $C_P$  = specific heat of material (BTU/lb x °F)

 $\Delta T$  = temperature rise of material (T<sub>Final</sub> - T<sub>Initial</sub>)(°F)

This equation should be applied to all materials absorbing heat in the application. Heated media, work being processed, vessels, racks, belts and ventilation air should be included.

**Example:** How much heat energy is needed to change the temperature of 50 lbs of copper from 10 to 70°F?

Q = 
$$W \times C_p \times \Delta T$$
  
=  $\frac{(50 \text{ lbs}) \times (0.10 \text{ BTU/[lb} \times ^{\circ}F]) \times (60^{\circ}F)}{3.412}$  = 88 (Wh)

# Heat Required to Melt or Vaporize a Material

In considering adding heat to a substance, it is also necessary to anticipate changes in state that might occur during this heating such as melting and vaporizing. The heat needed to melt a material is known as the latent heat of fusion and represented by  $\boldsymbol{H_f}.$  Another state change is involved in vaporization and condensation. The latent heat of vaporization  $\boldsymbol{H_v}$  of the substance is the energy required to change a substance from a liquid to a vapor. This same amount of energy is released as the vapor condenses back to a liquid.

### **Equation 2**

$$Q_{C} \text{ or } Q_{D} = \frac{w \times H_{f}}{3.412} \quad \text{OR} \quad \frac{w \times H_{v}}{3.412}$$

Q<sub>c</sub> = heat required to melt/vaporize materials during heat-up (Wh)

Q<sub>D</sub> = heat required to melt/vaporize materials processed in working cycle (Wh)

w = weight of material (lb)

 $H_f$  = latent heat of fusion (BTU/lb)

 $H_V$  = latent heat of vaporization (BTU/lb)

**Example:** How much energy is required to melt 50 lbs of lead?

$$Q = w \times H_f$$
=  $\frac{(50 \text{ lbs}) \times (9.8 \text{ BTU/lb})}{3.412 \text{ BTU/(Wh)}} = 144 \text{ (Wh)}$ 

Changing state (melting and vaporizing) is a constant temperature process. The  $\mathbf{C}_p$  value (from Equation 1) of a material also changes with a change in state. Separate calculations are thus required using Equation 1 for the material below and above the phase change temperature.

# **Power Calculations**

# **Conduction and Convection Heating**

#### **Conduction Heat Losses**

Heat transfer by conduction is the contact exchange of heat from one body at a higher temperature to another body at a lower temperature, or between portions of the same body at different temperatures.

### **Equation 3A—Heat Required to Replace Conduction** Losses

 $Q_{L1} = k x A x \Delta T x t_e$ 3.412 x I

 $Q_{11}$  = conduction heat losses (Wh)

= thermal conductivity (BTU x in./[ft² x°F x hour])

= heat transfer surface area (ft²)

L = thickness of material (in.)

ΔΤ = temperature difference across material  $(T_2-T_1)$  °F

= exposure time (hr) te

This expression can be used to calculate losses through insulated walls of containers or other plane surfaces where the temperature of both surfaces can be determined or estimated.

#### **Convection Heat Losses**

Convection is a special case of conduction. Convection is defined as the transfer of heat from a high temperature region in a gas or liquid as a result of movement of the masses of the fluid.

### Equation 3B-Convection Losses

 $Q_{L2} = A \times F_{SL} \times C_F$ 

 $Q_{12}$  = convection heat losses (Wh)

= surface area (in²)

 $F_{SI}$  = vertical surface convection loss factor (W/in²) evaluated at surface temperature

 $C_F$  = surface orientation factor

heated surface faces up horizontally = 1.29

vertical = 1.00

heated surface faces down horizontally = 0.63

### **Radiation Heat Losses**

Radiation losses are not dependent on orientation of the surface. Emissivity is used to adjust for a material's ability to radiate heat energy.

### Equation 3C—Radiation Losses

 $Q_{L3} = A \times F_{SL} \times e$ 

 $Q_{L3}$  = radiation heat losses (Wh)

= surface area (in²)

F<sub>SL</sub> = blackbody radiation loss factor at surface

temperature (W/in²)

= emissivity correction factor of material surface

### Example:

We find that a blackbody radiator (perfect radiator) at 500°F, has heat losses of 2.5 W/in<sup>2</sup>. Polished aluminum, in contrast, (e = 0.09) only has heat losses of 0.22 W/in<sup>2</sup> at the same temperature (2.5 W/in<sup>2</sup>  $\cdot$  0.09 = 0.22 W/in<sup>2</sup>).

### **Combined Convection and Radiation Heat Losses**

Some curves combine both radiation and convection losses. This saves you from having to use both Equations 3B and 3C. If only the convection component is required, then the radiation component must be determined separately and subtracted from the combined curve.

### Equation 3D—Combined Convection and Radiation **Heat Losses**

 $Q_{14} = A \times F_{SI}$ 

 $Q_{14}$  = surface heat losses combined convection and radiation (Wh)

= surface area (in²)

 $F_{SI}$  = combined surface loss factor at surface

temperature (W/in<sup>2</sup>)

This equation assumes a constant surface temperature.

WATLOW® • 545

# **Power Calculations**

# **Conduction and Convection Heating**

### **Total Heat Losses**

The total conduction, convection and radiation heat losses are summed together to allow for all losses in the power equations. Depending on the application, heat losses may make up only a small fraction of total power required or it may be the largest portion of the total. Therefore, do not ignore heat losses unless previous experience tells you it is alright to do.

### Equation 3E-Total Losses

 $Q_L = Q_{L1} + Q_{L2} + Q_{L3}$  If convection and radiation losses are calculated separately.

(Surfaces are not uniformly insulated and losses must be calculated separately.)

OR

 $Q_L = Q_{L1} + Q_{L4}$  If combined radiation and convection curves are used. (Pipes, ducts, uniformly insulated

bodies.)

# Start-Up and Operating Power Required

Both of these equations estimate required energy and convert it to power. Since power (watts) specifies an energy rate, we can use power to select electric heater requirements. Both the start-up power and the operating power must be analyzed before heater selection can take place.

# Equation 4—Start-Up Power (Watts)

$$P_{S} = \begin{bmatrix} \overline{Q_{A} + Q_{C}} & \frac{2}{3} & (Q_{L}) \end{bmatrix} \times (1 + S.F.)$$

Q<sub>A</sub> = heat absorbed by materials during heat-up (Wh)

Qc = latent heat absorbed during heat-up (Wh)

 $Q_L$  = conduction, convection, radiation losses (Wh)

S.F. = safety factor

t<sub>s</sub> = start-up (heat-up) time required (hr)

During start up of a system the losses are zero, and rise to 100 percent at process temperature. A good approximation of actual losses is obtained when heat losses ( $Q_L$ ) are multiplied by  $^2/_3$ .

# **Equation 5—Operating Power (Watts)**

$$P_{o} = \left[\frac{Q_{B} + Q_{D}}{t_{C}} + (Q_{L})\right] \times (1 + S.F.)$$

 $Q_{\scriptscriptstyle B}$  = heat absorbed by processed materials in working cycle (Wh)

Q<sub>D</sub> = latent heat absorbed by materials heated in working cycle (Wh)

Q<sub>L</sub> = conduction, convection, radiation losses (Wh)

S.F. = safety factor

 $t_c$  = cycle time required (hr)

# **Power Calculations**

# **Conduction and Convection Heating**

# **Radiant Heating**

When the primary mode of heat transfer is radiation, we add a step after Equation 5.

Equation 6 is used to calculate the net radiant heat transfer between two bodies. We use this to calculate either the radiant heater temperature required or (if we know the heater temperature, but not the power required) the maximum power which can be transfered to the load.

### **Equation 6—Radiation Heat Transfer Between Infinite Size Parallel Surfaces**

$$\frac{P_{R}}{A} = \frac{S (T_{1}^{4} - T_{2}^{4}) (\frac{1}{e_{f}}) F}{(144 in^{2}/ft^{2}) (3.412 BTU/Wh)}$$

 $P_{\mathbb{R}}$ = power absorbed by the load (watts) - from equation 4 or 5

Α = area of heater (in²) - known or assumed

S = Stephan Boltzman constant

=  $0.1714 \cdot 10^{-8}$  (BTU/hr. sq. ft. °R4)

 $T_1(^{\circ}R) = \text{emitter temperature (}^{\circ}F + 460)$ 

 $T_2(^{\circ}R) = load temperature (^{\circ}F + 460)$ 

= emissivity correction factor - see Emissivity  $e_{F}$ Correction Factor information to the right

F = shape factor (0 to 1.0) - see Shape Factor for Radiant Application graph to the right

### **Emissivity Correction Factor (e)**

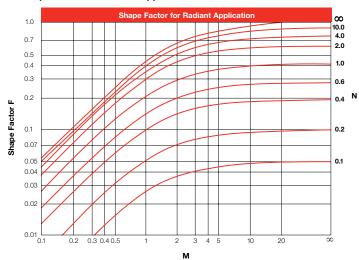
$$e_f = \frac{1}{e_S} + \frac{1}{e_I} - 1$$

plane surfaces

$$e_f = \frac{1}{e_S} + \frac{D_S}{D_L} \left( \frac{1}{e_L} - 1 \right)$$

concentric cylinders inner radiating outward

$$e_f = \ \frac{1}{e_S} + \left( \frac{D_S}{D_L} \times \frac{1}{e_L} \right) \ -1 \qquad \text{concentric cylinders} \\ \text{outer radiating inward}$$


e<sub>s</sub> = heater emissivity (from material emissivity tables)

e<sub>L</sub> = load emissivity (from material emissivity tables)

D<sub>s</sub> = heater diameter

D<sub>L</sub> = load diameter

#### **Shape Factor for Radiant Application**



#### For Two Facing Panels:

$$\mathbf{N} = \left( \frac{\text{Heated Length}}{\text{Distance to Material}} \right)$$

$$\mathbf{M} = \left(\frac{\text{Heated Width}}{\text{Distance to Material}}\right)$$

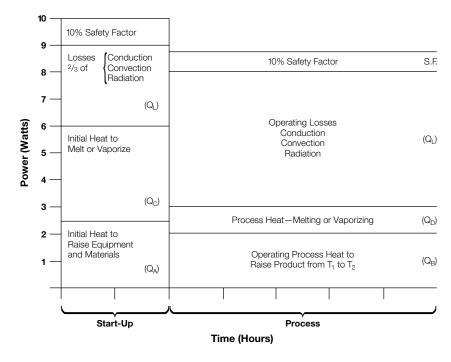
### **Power Calculations**

# **Conduction and Convection Heating**

#### **Power Evaluation**

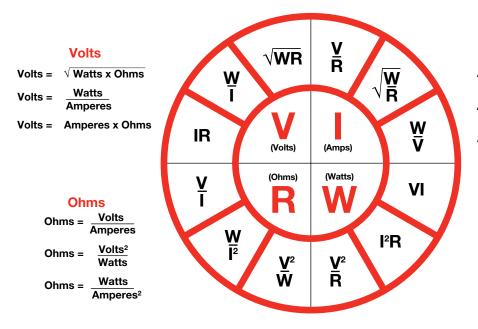
After calculating the start up and operating power requirements, a comparison must be made and various options evaluated.

Shown in the graph below are the start up and operating watts displayed in a graphic format to help you see how power requirements add up.


With this graphic aid in mind, the following evaluations are possible:

- Compare start up watts to operating watts.
- Evaluate effects of lengthening start-up time such that start-up watts equals operating watts (use timer to start system before shift).

- Recognize that more heating capacity exists than is being utilized. (A short start-up time requirement needs more wattage than the process in wattage.)
- Identify where most energy is going and redesign or add insulation to reduce wattage requirements.


Having considered the entire system, a reevaluation of start-up time, production capacity and insulating methods should be made.

### **Comparison of Start Up and Operating Power Requirements**



# **Equations**

### Ohm's Law



**Amperes** 

 $Amperes = \frac{Volts}{Ohms}$ 

Amperes =  $\frac{\text{Watts}}{\text{Volts}}$ 

 $Amperes = \sqrt{\frac{Watts}{Ohms}}$ 

**Watts** 

Watts =  $\frac{\text{Volts}^2}{\text{Ohms}}$ 

Watts = Amperes<sup>2</sup> x Ohms

Watts = Volts x Amperes

Wattage varies directly as ratio of voltages squared

$$W_2 = W_1 x \left( \frac{V_2}{V_1} \right)^2$$

3 Phase Amperes =  $\frac{\text{Total Watts}}{\text{Volts x 1.732}}$ 

# **Equations**

# Typical 3-Phase Wiring Diagrams and Equations for Resistive Heaters

#### **Definitions**

# For Both Wye and Delta (Balanced Loads)

V<sub>p</sub> = Phase voltage

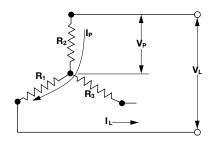
 $V_L$  = Line voltage

I<sub>p</sub> = Phase current

 $I_{L}$  = Line current

 $R = R_1 = R_2 = R_3 =$ 

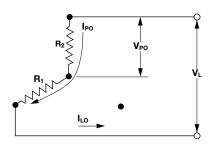
Resistance of each branch


W = Wattage

# Wye and Delta Equivalents

 $W_{DELTA}$  = 3  $W_{WYE}$  $W_{ODELTA}$  = 2/3  $W_{DELTA}$ 

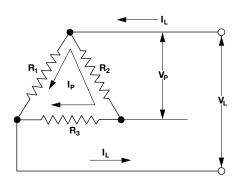
 $W_{\text{OWYE}} = 1/2 W_{\text{WYE}}$ 


### 3-Phase Wye (Balanced Load)



### **Equations For Wye Only**

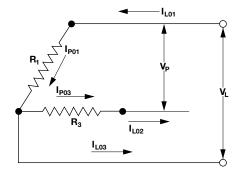
$$\begin{split} I_P &= I_L \\ V_P &= V_L/1.73 \\ W_{WYE} &= V_L^2/R = 3(V_P^2)/R \\ W_{WYE} &= 1.73\,V_LI_L \end{split}$$


### 3-Phase Open Wye (No Neutral)



### **Equations For Open Wye Only**

$$\begin{split} I_{PO} &= I_{LO} \\ V_{PO} &= V_L/2 \\ W_{OWYE} &= {}^{1}\!\!/_{2} \left(V_L{}^{2}\!/R\right) \\ W_{OWYE} &= 2 \left(V_{PO}{}^{2}\!/R\right) \\ W_{OWYE} &= V_L I_{LO} \end{split}$$


### 3-Phase Delta (Balanced Load)



### **Equations For Delta Only**

 $I_P = I_L/1.73$   $V_P = V_L$   $W_{DELTA} = 3(V_L^2)/R$   $W_{DELTA} = 1.73 V_L I_L$ 

### 3-Phase Open Delta



### **Equations For Open Delta Only**

$$\begin{split} V_P &= V_L \\ I_{PO1} &= I_{PO3} = I_{LO2} \\ I_{LO3} &= 1.73 \ I_{PO1} \\ W_{0DELTA} &= 2 \ (V_L^2/R) \end{split}$$

# **Wattage Requirements**

The following equations can be used to make quick estimates of wattage requirements.

### **For Steel**

Use equation:

 $kW = \frac{\text{pounds x temperature rise (°F)}}{20,000 \text{ x heat-up time (hrs.)}}$ DR

kW = kilograms x temperature rise (°C)

5040 x heat-up time (hrs.)

# For Heating Water in Tanks

Use equation:

 $kW = \frac{\text{gallons x temperature rise (°F)}}{375 \text{ x heat-up time (hrs)}}$ 

OR

 $kW = \frac{\text{liters x temperature rise (°C)}}{790 \text{ x heat-up time (hrs)}}$ 

1 cu. ft. = 7.49 gallons

### For Air

Use equation:

 $kW = \frac{CFM^{**} x \text{ temperature rise (°F)}}{3000}$ 

OR

 $kW = \frac{\text{cubic meters/min}^{\textcircled{1}} \text{ x temperature rise (°C)}}{47}$ 

- \* Gallons per minute
- \*\* Cubic feet per minute
- <sup>1</sup> Measured at normal temperature and pressure
- <sup>®</sup> Measured at heater system inlet temperature and pressure

#### For Oil

Use equation:

kW = gallons x temperature rise (°F)

800 x heat-up time (hrs.)

 $\frac{\text{kW} = \frac{\text{liters x temperature rise (°C)}}{1680 \text{ x heat-up time (hrs.)}}$ 

1 cu. ft. = 7.49 gallons

# For Heating Flowing Water

Use equation:

kW = GPM\* x temperature rise (°F) x 0.16

OR

kW = liters/min. x temperature rise (°C) x 0.076

### For Compressed Air

Use equation:

 $kW = \frac{CFM^{***2} \times density^{2} \times temperature rise (°F)}{228}$ 

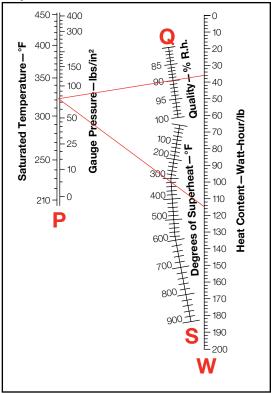
OR

kW = cubic meters/min<sup>®</sup> x temperature rise (°C) x density (kg/m³)<sup>®</sup>
57.5

# **Wattage Requirements**

# **Kilowatt-Hours to Superheat Steam**

- 1. Plot points on lines **P**, **Q** and **S**. **P** represents the inlet temperature (and saturation pressure) of the system.
  - **Q** represents the liquid content of the water vapor.
  - **S** indicates the outlet temperature minus the saturated temperature.
  - **W** indicates the heat content of the water vapor.
- 2. Draw a straight line from P through Q to W. Read W<sub>1</sub>.
- 3. Draw a straight line from **P** through **S** to **W**. Read **W**<sub>2</sub>.
- 4. Required watts = Weight (lbs) of steam/hour x ( $W_2$ - $W_1$ ) Watt density is critical. Review temperature and velocity prior to heater selection.


# **Example Shown:**

Q = 90% quality (% R.H.)

P = 75 psig

 $S = 320^{\circ}F$ 

### **Superheat Steam**



**Note:** Reference is based on >80% steam quality at >20 psig.

# Tubular Elements and Assembly Selection Guide

Watlow® tubular elements and assemblies are primarily used for direct immersion in water, oils, viscous materials, solvents, process solutions and molten materials as well as air and gases.

Additionally, round and flat surface tubular elements (WATROD $^{\text{TM}}$  and FIREBAR $^{\text{®}}$  heaters respectively) can be used for surface heating.

WATROD and FIREBAR heating elements may be purchased separately, or fabricated into process heating assemblies, including:

- Screw plug
- Flange
- Circulation
- Booster
- · Engine preheater
- Over-the-side
- Vertical loop
- Drum
- Duct

Both elements and assemblies are available from stock. They can be configured with a variety of watt and volt ratings, terminations, sheath materials and mounting options to satisfy the most demanding applications.

If our stock products do not meet your application needs, Watlow can custom engineer the optimum heater.

# **Performance Capabilities**

- Sheath temperatures up to 1800°F (983°C)
- Assembly wattages to 3 megawatts
- Process assembly ratings up to 3000psi
- Watt densities up to 120 W/in² (18.6 W/cm²)
- Enhanced performance beyond these specifications is available upon request
- Watlow can design thermal systems to meet specific performance criteria. Contact your local Watlow representative for assistance.



#### **Features and Benefits**

#### 53 standard bend formations

 Enables designing of the heating element around available space to maximize heating efficiency

#### FIREBAR flat surface geometry

- Enhances heat transfer in both immersion and air applications and also surface heating
- Increases surface area per linear inch allowing heaters to run cooler in viscous materials

# Wattages from 95 watts to 3 megawatts (on individual elements and assemblies respectively)

 Makes tubular heaters one of the most versatile electric heating sources available

# **Typical Applications**

- Liquids
- Air
- Gases
- Molten materials
- · Contact surface heating
- Radiant surface heating

WATLOW® \_\_\_\_\_\_ 553

# **Tubular Elements and Assembly Selection Guide**

The following two charts will help you select an appropriate heater based on your application and watt density restrictions. These charts are application driven. The total wattage required by your application should be known before selecting a specific heater type(s) from the stock tables. If your required wattage is not known, please contact your Watlow representative.

Once the heater type has been identified, turn to the appropriate product section for information on the element or assembly.

### **Element and Assembly Selection Guide**

To identify the tubular heater type best suited to your application, consult the *Element and Assembly Selection Guide*.

In most cases Watlow recommends using single tubular heating elements for low kilowatt applications.

Assemblies are better suited for large kilowatt applications to heat liquids, air or gases.

When selecting a heater according to watt density, be sure to consider the following:

- Liquid viscosity at start up and at process temperature
- Operating temperature
- Chemical composition

Under the "**Heating Method**" column in the *Element* and Assembly Selection Guide locate the method that applies to your application to find the recommended "Heater Type."

After identifying the heater type(s) suitable for your application, refer to the *Supplemental Applications Chart* for further application data. This chart will assist you in selecting the appropriate watt density and sheath material for your specific application. It also presents the performance characteristics for both WATROD and FIREBAR elements.

### **Element and Assembly Selection Guide**

| Application                                                                                                                                                                      | Heating Method                                 | Heater Type                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Liquids:                                                                                                                                                                         |                                                |                                                                                                                              |
| Acids                                                                                                                                                                            | Direct immersion (circulating/non-circulating) | FIREBAR, WATROD, screw plug, flange, over-the-side, vertical loop and pipe insert                                            |
| Caustic soda 12% concentrate 10% concentrate 75% concentrate                                                                                                                     | Direct immersion (circulating/non-circulating) | WATROD, screw plug, square flange, flange, over-the-side, vertical loop, circulation and pipe insert                         |
| Degreasing solutions                                                                                                                                                             | Direct immersion (circulating/non-circulating) | FIREBAR, WATROD, screw plug, square flange, flange, over-the-side and pipe insert                                            |
| Electroplating                                                                                                                                                                   | Direct immersion (circulating/non-circulating) | FIREBAR, WATROD, screw plug, square flange, flange, over-the-side, drum, vertical loop and pipe insert                       |
| Ethylene glycol<br>50% concentrate<br>100% concentrate                                                                                                                           | Direct immersion (circulating/non-circulating) | FIREBAR, WATROD, screw plug, flange, over-the-side, circulation, booster and engine preheater                                |
| Oils Asphalt Fuel oils Light grades 1 and 2 Medium grades 4 and 5 Heavy grade 6 and Bunker C Heat transfer Lubricating SAE 10, 20, 30 SAE 40, 50 API STD 614 Vegetable (cooking) | Direct immersion (circulating/non-circulating) | FIREBAR, WATROD, screw plug, square flange, flange, over-the-side, drum, vertical loop, circulation, booster and pipe insert |
| Paraffin or wax                                                                                                                                                                  | Direct immersion (circulating/non-circulating) | FIREBAR, WATROD, screw plug, square flange, flange, over-the-side, drum and pipe insert                                      |

CONTINUED

# **Tubular Elements and Assembly Selection Guide**

### **Element and Assembly Selection Guide** (Continued)

| Application                                         | Heating Method                                                                                | Heater Type                                                                                                                                                                                              |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Clean Deionized Demineralized Potable Process | Direct immersion (circulating/non-circulating)                                                | FIREBAR (non-process water only) WATROD, screw plug, screw plug with control assembly, square flange, flange, over-the-side, drum, vertical loop, circulation, booster, engine preheater and pipe insert |
| Air:                                                | Direct (forced or natural convection)                                                         | FIREBAR, WATROD, FINBAR, WATROD enclosure heater, screw plug, flange, circulation and duct                                                                                                               |
| Gas: Hydrocarbons, Nitrogen, Oxygen Ozone, Steam    | Direct (forced convection)                                                                    | FIREBAR, WATROD, screw plug, flange and circulation                                                                                                                                                      |
| Molten Materials: Aluminum Lead Salt Solder         | Indirect (radiant) Direct (non-circulating) Direct (non-circulating) Direct (non-circulating) | WATROD FIREBAR and WATROD FIREBAR and WATROD FIREBAR and WATROD                                                                                                                                          |
| Surface Heating: Dies, griddles, molds, platens     | Direct                                                                                        | FIREBAR and WATROD                                                                                                                                                                                       |

# **Supplemental Applications Chart**

This Supplemental Applications Chart is provided in addition to the Element and Assembly Selection Guide. This chart will help you select watt density and sheath materials for either WATROD or FIREBAR heating elements according to the specific media being heated.

For example, if you are heating vegetable oil, either WATROD or FIREBAR elements at 30 and 40 W/in<sup>2</sup> respectively (4.6 and 6.2 W/cm<sup>2</sup>) with 304 stainless steel, sheath can be used.

555

### **Supplemental Applications Chart**

|                      |                                    |       |                                 | WATRO | D Element       |     | FIREBA                         | R Element       |
|----------------------|------------------------------------|-------|---------------------------------|-------|-----------------|-----|--------------------------------|-----------------|
| Heated Material      | Max. Operating Temperature °F (°C) |       | Max. Watt Density W/in² (W/cm²) |       | Sheath Material | W   | ax.<br>att<br>nsity<br>(W/cm²) | Sheath Material |
| cid Solutions (Mild) |                                    |       |                                 | , ,   |                 |     | , ,                            |                 |
| Acetic               | 180                                | (82)  | 40                              | (6.2) | 316 SS          | 40  | (6.2)                          | Alloy 800       |
| Boric (30% max.)     | 257                                | (125) | 40                              | (6.2) | Titanium        | 40  | (6.2)                          | 304 SS          |
| Carbonic             | 180                                | (82)  | 40                              | (6.2) | Alloy 600       | 40  | (6.2)                          | 304 SS          |
| Chromic              | 180                                | (82)  | 40                              | (6.2) | Titanium        | N/A | N/A                            | N/A             |
| Citric               | 180                                | (82)  | 23                              | (3.6) | Alloy 800       | 30  | (4.6)                          | Alloy 800       |
| Fatty Acids          | 150                                | (65)  | 20                              | (3.1) | 316 SS          | 30  | (4.6)                          | Alloy 800       |
| Lactic               | 122                                | (50)  | 10                              | (1.6) | 316 SS          | N/A | N/A                            | N/A             |
| Levulinic            | 180                                | (82)  | 40                              | (6.2) | Alloy 600       | 40  | (6.2)                          | 304 SS          |
| Malic                | 122                                | (50)  | 10                              | (1.6) | 316 SS          | 16  | (2.5)                          | Alloy 800       |
| Nitric (30% max.)    | 167                                | (75)  | 20                              | (3.1) | 316 SS          | 30  | (4.6)                          | Alloy 800       |
| Phenol-2-4           |                                    |       |                                 |       |                 |     |                                |                 |
| Disulfonic           | 180                                | (82)  | 40                              | (6.2) | 316 SS          | 40  | (6.2)                          | Alloy 800       |
| Phosphoric           | 180                                | (82)  | 23                              | (3.6) | Alloy 800       | 30  | (4.6)                          | Alloy 800       |
|                      | 180                                | (82)  | 23                              | (3.6) | 304 SS          | 30  | (4.6)                          | 304 SS          |

# **Tubular Elements and Assembly Selection Guide**

**Supplemental Applications Chart** (Continued)

|                                     |                            |               |           |                        | D Element           |                    | FIREBAR Element |                     |  |  |
|-------------------------------------|----------------------------|---------------|-----------|------------------------|---------------------|--------------------|-----------------|---------------------|--|--|
| Heated Material                     | Max. Operating Temperature |               | V         | Max.<br>Vatt<br>ensity | Sheath Material     | Max<br>Wat<br>Dens | t               | Sheath Material     |  |  |
|                                     | °F                         | (°C)          | W/in²     | (W/cm²)                |                     | W/in²              | (W/cm²)         |                     |  |  |
| Proponic (10% max.)                 | 180                        | (82)          | 40        | (6.2)                  | Alloy 800           | 40                 | (6.2)           | 304 SS              |  |  |
| Tannic                              | 167/180                    | (75/82)       | 23/40     | (3.6/6.2)              | Steel/304 SS        | 40                 | (6.2)           | 304 SS              |  |  |
| Tartaric                            | 180                        | (82)          | 40        | (6.2)                  | 316 SS              | 40                 | (6.2)           | Alloy 800           |  |  |
| Acetaldehyde                        | 180                        | (82)          | 10        | (1.6)                  | Alloy 800           | 16                 | (2.4)           | Alloy 800           |  |  |
| Acetone                             | 130                        | (54)          | 10        | (1.6)                  | 304 SS              | 16                 | (2.4)           | 304 SS              |  |  |
| Air                                 |                            | ` ,           | 1         | 1                      | Alloy 800           | 1                  | 1               | Alloy 800           |  |  |
| Alcyl alcohol                       | 200                        | (93)          | 10        | (1.6)                  | Alloy 800           | 16                 | (2.4)           | Alloy 800           |  |  |
| Alkaline solutions                  | 212                        | (100)         | 40        | (6.2)                  | Steel               | 48                 | (7.4)           | 304 SS              |  |  |
| Aluminum acetate                    | 122                        | (50)          | 10        | (1.6)                  | 316 SS              | 16                 | (2.5)           | Alloy 800           |  |  |
| Aluminum potassium                  |                            | (/            |           | /                      |                     |                    | ( /             | - ,                 |  |  |
| sulfate                             | 212                        | (100)         | 40        | (6.2)                  | Alloy 800           | N/A                | N/A             | N/A                 |  |  |
| Ammonia gas                         | 1                          | 1             | 1         | 1                      | Steel               | 1                  | 1               | 304 SS              |  |  |
| Ammonium acetate                    | 167                        | (75)          | 23        | (3.6)                  | Alloy 800           | 30                 | (4.6)           | Alloy 800           |  |  |
| Amyl acetate                        | 240                        | (115)         | 23        | (3.6)                  | Alloy 800           | 30                 | (4.6)           | Alloy 800           |  |  |
| Amyl alcohol                        | 212                        | (110)         | 20        | (3.1)                  | 304 SS              | 30                 | (4.6)           | 304 SS              |  |  |
| Aniline                             | 350                        | (176)         | 23        | (3.6)                  | 304 SS              | 30                 | (4.6)           | 304 SS              |  |  |
| Asphalt                             | 200-500                    | (93-260)      | 4-10      | (0.6 - 1.6)            | Steel               | 6-12               | (0.9 - 1.8)     | 304 SS              |  |  |
| Barium hydroxide                    | 212                        | (100)         | 40        | (6.2)                  | 316 SS              | 40                 | (6.2)           | Alloy 800           |  |  |
| Benzene, liquid                     |                            | ` ′           |           | . ,                    |                     |                    |                 | 304 SS              |  |  |
| Butyl acetate                       | 150<br>225                 | (65)<br>(107) | 10<br>10  | (1.6)<br>(1.6)         | Alloy 800<br>316 SS | 16<br>16           | (2.5)           | Alloy 800           |  |  |
| Calcium bisulfate                   | 400                        | (204)         | 20        | (3.1)                  | 316 SS              | N/A                | (2.5)<br>N/A    | N/A                 |  |  |
| Calcium bisuliale  Calcium chloride | 200                        | (204)<br>(93) | 20<br>5-8 | (3.1)<br>(0.8 - 1.2)   | Alloy 600           | N/A<br>N/A         | N/A<br>N/A      | N/A<br>N/A          |  |  |
| Carbon monoxide                     |                            | (93)          | ①         | ① ①                    | Alloy 800           | 10/A               | 1               | Alloy 800           |  |  |
|                                     |                            |               |           |                        | •                   |                    |                 | ,                   |  |  |
| Carbon tetrachloride                | 160                        | (71)          | 23        | (3.6)                  | Alloy 800           | 30                 | (4.6)           | Alloy 800           |  |  |
| Caustic soda:                       | 040                        | (00)          | 40        | (7.4)                  | All - 000           |                    |                 | 0 1 1 \ \ \ - 1   - |  |  |
| 2%                                  | 210                        | (98)          | 48        | (7.4)                  | Alloy 800           | _                  | _               | Contact Watlow      |  |  |
| 10% concentrate                     | 210                        | (98)          | 23        | (3.6)                  | Alloy 800           | _                  | _               | Contact Watlow      |  |  |
| 75%                                 | 180                        | (82)          | 23        | (3.6)                  | Alloy 800           | _                  |                 | Contact Watlow      |  |  |
| Citric juices                       | 185                        | (85)          | 23        | (3.6)                  | Alloy 800           | 30                 | (4.6)           | Alloy 800           |  |  |
| Degreasing solution                 | 275                        | (135)         | 23        | (3.6)                  | Steel               | 30                 | (4.6)           | 304 SS              |  |  |
| Dextrose                            | 212                        | (100)         | 20        | (3.1)                  | 304 SS              | 30                 | (4.6)           | 304 SS              |  |  |
| Dyes and pigments                   | 212                        | (100)         | 23        | (3.6)                  | 304 SS              | 30                 | (4.6)           | 304 SS              |  |  |
| Electroplating Baths:               |                            |               |           |                        |                     |                    |                 |                     |  |  |
| Cadmium                             | 180                        | (82)          | 40        | (6.2)                  | 304 SS              | 40                 | (6.2)           | 304 SS              |  |  |
| Alloy 800                           | 180                        | (82)          | 40        | (6.2)                  | 316 SS              | N/A                | N/A             | N/A                 |  |  |
| Dilute cyanide                      | 180                        | (82)          | 40        | (6.2)                  | 316 SS              | N/A                | N/A             | N/A                 |  |  |
| Rochelle cyanide                    | 180                        | (82)          | 40        | (6.2)                  | 316 SS              | N/A                | N/A             | N/A                 |  |  |
| Sodium cyanide                      | 180                        | (82)          | 40        | (6.2)                  | 316 SS              | N/A                | N/A             | N/A                 |  |  |
| Potassium cyanide                   | 180                        | (82)          | 40        | (6.2)                  | 316 SS              | 40                 | (6.2)           | 304 SS              |  |  |
| <u> </u>                            |                            |               |           | . ,                    |                     |                    |                 |                     |  |  |
| Ethylene glycol                     | 300                        | (148)         | 30        | (4.6)                  | Steel               | 40                 | (6.2)           | 304 SS<br>304 SS    |  |  |
| Formaldehyde                        | 180                        | (82)          | 10        | (1.6)                  | 304 SS              | 16                 | (2.5)           |                     |  |  |
| Freon® gas                          | 300                        | (148)         | 2-5       | (0.3 - 0.8)            | Steel               | 20                 | (4.6)           | 304 SS<br>304 SS    |  |  |
| Gasoline                            | 300                        | (148)         | 23        | (3.6)                  | Steel               | 30                 | (4.6)           | JU4 JJ              |  |  |
|                                     |                            |               |           |                        |                     |                    |                 | CONTINU             |  |  |

 $\ensuremath{\textcircled{1}}$  Contact your Watlow representative.

# **Tubular Elements and Assembly Selection Guide**

**Supplemental Applications Chart** (Continued)

|                          |                                  |                        |       |                       | D Element       |       | FIREBAR Element        |                 |  |  |  |
|--------------------------|----------------------------------|------------------------|-------|-----------------------|-----------------|-------|------------------------|-----------------|--|--|--|
| Heated Material          | Max.<br>Operating<br>Temperature |                        | W     | lax.<br>/att<br>nsity | Sheath Material | V     | Max.<br>Vatt<br>ensity | Sheath Material |  |  |  |
|                          | °F                               | (°C)                   | W/in² | (W/cm²)               |                 | W/in² | (W/cm²)                |                 |  |  |  |
| Gelatin liquid           | 150                              | (65)                   | 23    | (3.6)                 | 304 SS          | 30    | (4.6)                  | 304 SS          |  |  |  |
| Gelatin solid            | 150                              | (65)                   | 5     | (0.8)                 | 304 SS          | 7     | (1.0)                  | 304 SS          |  |  |  |
| Glycerin                 | 500                              | (260)                  | 10    | (1.6)                 | Alloy 800       | 12    | (1.9)                  | 304 SS          |  |  |  |
| Glycerol                 | 212                              | (100)                  | 23    | (3.6)                 | Alloy 800       | 30    | (4.6)                  | 304 SS          |  |  |  |
| Grease:                  |                                  |                        |       |                       |                 |       |                        |                 |  |  |  |
| Liquid                   | _                                | _                      | 23    | (3.6)                 | Steel           | 30    | (4.6)                  | 304 SS          |  |  |  |
| Solid                    | _                                | _                      | 5     | (0.8)                 | Steel           | 7     | (1.0)                  | 304 SS          |  |  |  |
| Hydrazine                | 212                              | (100)                  | 16    | (2.5)                 | 304 SS          | 20    | (3.1)                  | 304 SS          |  |  |  |
| Hydrogen                 | 1                                | ①                      | _     | (Z.J)<br>—            | Alloy 800       | 1     | ①                      | Alloy 800       |  |  |  |
| Hydrogen chloride        | 1                                | 1                      | _     | _                     | Alloy 600       | 1     | 1)                     | N/A             |  |  |  |
| Hydrogen sulfide         | 1                                | 1                      | _     |                       | 316 SS          | U     | •                      | 11/7            |  |  |  |
| ryarogeri sulliue        |                                  | U                      | _     |                       | (heavy wall)    | 1     | 1                      | N/A             |  |  |  |
| Managani, managista data | 010                              | (4.00)                 | 40    | (0.0)                 |                 |       |                        |                 |  |  |  |
| Magnesium chloride       | 212                              | (100)                  | 40    | (6.2)                 | Alloy 600       | 40    | (6.2)                  | Alloy 800       |  |  |  |
| Magnesium sulfate        | 212                              | (100)                  | 40    | (6.2)                 | 304 SS          | 40    | (6.2)                  | 304 SS          |  |  |  |
| Magnesium sulfate        | 212                              | (100)                  | 40    | (6.2)                 | 316 SS          | 40    | (6.2)                  | 304 SS          |  |  |  |
| Methanol gas             | ①                                | ①                      | _     | -                     | 304 SS          | 1)    | ①                      | 304 SS          |  |  |  |
| Methylamine              | 180                              | (82)                   | 20    | (3.1)                 | Alloy 600       | 30    | (4.6)                  | 304 SS          |  |  |  |
| Methychloride            | 180                              | (82)                   | 20    | (3.1)                 | Alloy 800       | N/A   | N/A                    | N/A             |  |  |  |
| Molasses                 | 100                              | (37)                   | 4-5   | (0.6 - 0.8)           | 304 SS          | 5-8   | (0.8 - 1.2)            | 304 SS          |  |  |  |
| Molten salt bath         | 800-900                          | (426-482)              | 25-30 | (3.8 - 4.6)           | Alloy 400       | N/A   | N/A                    | N/A             |  |  |  |
| Naphtha                  | 212                              | (100)                  | 10    | (1.6)                 | Steel           | 16    | (2.5)                  | 304 SS          |  |  |  |
| Oils                     |                                  |                        |       |                       |                 |       |                        |                 |  |  |  |
| Fuel oils:               |                                  |                        |       |                       |                 |       |                        |                 |  |  |  |
| Grades 1 and 2           |                                  |                        |       |                       |                 |       |                        |                 |  |  |  |
| (distillate)             | 200                              | (93)                   | 23    | (3.6)                 | Steel           | 30    | (4.6)                  | 304 SS          |  |  |  |
| Grades 4 and 5           | 200                              | (00)                   | 20    | (0.0)                 | Gloor           | 00    | (1.0)                  | 00100           |  |  |  |
| (residual)               | 200                              | (93)                   | 13    | (2.0)                 | Steel           | 16    | (2.5)                  | 304 SS          |  |  |  |
| Grades 6 and Bunker C    | 200                              | (00)                   | 10    | (2.0)                 | Otool           | 10    | (2.0)                  | 00+00           |  |  |  |
| (residual)               | 160                              | (71)                   | 8     | (1.2)                 | Steel           | 10    | (1.6)                  | 304 SS          |  |  |  |
| Heat transfer oils: 2    | 100                              | (1-1)                  |       | (1.4)                 | 0.001           | 10    | (1.0)                  | 30-7 00         |  |  |  |
|                          | 563                              | (0.2.2)                |       | (0. =)                |                 |       | (0.5)                  | 204.00          |  |  |  |
| Static                   | 500                              | (260)                  | 16    | (2.5)                 | Steel           | 23    | (3.6)                  | 304 SS          |  |  |  |
| 0: 1::                   | 600                              | (315)                  | 10    | (1.6)                 | Steel           | 16    | (2.5)                  | 304 SS          |  |  |  |
| Circulating              | 500                              | (260)                  | 23    | (3.6)                 | Steel           | 30    | (4.6)                  | 304 SS          |  |  |  |
|                          | 600                              | (315)                  | 15    | (2.3)                 | Steel           | 20    | (3.1)                  | 304 SS          |  |  |  |
| Lubrication oils:        |                                  |                        |       |                       |                 |       |                        |                 |  |  |  |
| SAE 10, 90-100           |                                  |                        |       | ·                     |                 |       |                        |                 |  |  |  |
| SSU @ 130°F              | 250                              | (121)                  | 23    | (3.6)                 | Steel           | 30    | (4.6)                  | 304 SS          |  |  |  |
| SAE 20, 120-185          |                                  |                        |       | •                     |                 |       |                        |                 |  |  |  |
| SSU @ 130°F              | 250                              | (121)                  | 23    | (3.6)                 | Steel           | 30    | (4.6)                  | 304 SS          |  |  |  |
| SAE 30, 185-255          |                                  | . ,                    |       | • •                   |                 |       | . ,                    |                 |  |  |  |
| SSU @ 130°F              | 250                              | (121)                  | 23    | (3.6)                 | Steel           | 30    | (4.6)                  | 304 SS          |  |  |  |
| SAE 40, -80              |                                  | ` '                    | -     | ,                     |                 |       | /                      |                 |  |  |  |
| SSU @ 210°F              | 250                              | (121)                  | 13    | (2.0)                 | Steel           | 18    | (2.7)                  | 304 SS          |  |  |  |
| SAE 50, 80-105           |                                  | ( / )                  |       | (=-0)                 |                 |       | ( <del></del> )        | 32.22           |  |  |  |
| SSU @ 210°F              | 250                              | (121)                  | 13    | (2.0)                 | Steel           | 18    | (2.7)                  | 304 SS          |  |  |  |
| 130 0 2.01               |                                  | \ · <del>-</del> · · / | .0    | (=.0)                 | 2.00.           |       | ( <del></del> /        | CONTINU         |  |  |  |

① Contact your Watlow representative. ② Maximum operating temperatures and watt densities are detailed in *Heat Transfer Oil* charts on page 560.

# **Tubular Elements and Assembly Selection Guide**

**Supplemental Applications Chart** (Continued)

|                          |                                             |       |                           | WATRO     | ) Element           |                               | FIREBAF  | R Element       |
|--------------------------|---------------------------------------------|-------|---------------------------|-----------|---------------------|-------------------------------|----------|-----------------|
| Heated Material          | Max.<br>Operating<br>Temperature<br>°F (°C) |       | Ma<br>Wa<br>Dens<br>W/in² | tt        | Sheath Material     | Max<br>Watt<br>Densi<br>W/in² | t        | Sheath Material |
| Miscellaneous oils:      | •                                           | ( 9)  | ••/                       | (W/OIII)  |                     | VV/1                          | (W/OIII) |                 |
| Draw bath                | 600                                         | (315) | 23                        | (3.6)     | Steel               | 30                            | (4.6)    | 304 SS          |
| Hydraulic                | _                                           | (010) | 15 ③                      | (2.3)     | Steel               | 15 ③                          | (2.3)    | 304 SS          |
| Linseed                  | 150                                         | (65)  | 50                        | (2.0)     | Steel               | 60                            | (9.3)    | 304 SS          |
| Mineral                  | 200                                         | (93)  | 23                        | (3.6)     | Steel               | 30                            | (4.6)    | 304 SS          |
|                          | 400                                         | (204) | 16                        | (2.5)     | Steel               | 23                            | (3.6)    | 304 SS          |
| Vegetable/shortening     | 400                                         | (204) | 30                        | (4.6)     | 304 SS              | 40                            | (6.2)    | 304 SS          |
| Paraffin or wax (liquid) | 150                                         | (65)  | 16                        | (2.4)     | Steel               | 20                            | (3.1)    | 304 SS          |
| Perchloroethylene        | 200                                         | (93)  | 23                        | (3.6)     | Steel               | 30                            | (4.6)    | 304 SS          |
| Potassium chlorate       | 212                                         | (100) | 40                        | (6.2)     | 316 SS              | N/A                           | N/A      | N/A             |
| Potassium chloride       | 212                                         | (100) | 40                        | (6.2)     | 316 SS              | N/A                           | N/A      | N/A             |
| Potassium hydroxide      | 160                                         | (71)  | 23                        | (3.6)     | Alloy 400           | N/A                           | N/A      | N/A             |
| Soap, liquid             | 212                                         | (100) | 20                        | (3.1)     | 304 SS              | 30                            | (4.6)    | 304 SS          |
| Sodium acetate           | 212                                         | (100) | 40                        | (6.2)     | Steel               | 50                            | (7.7)    | 304 SS          |
| Sodium cyanide           | 140                                         | (60)  | 40                        | (6.2)     | Alloy 800           | 50                            | (7.7)    | Alloy 800       |
| Sodium hydride           | 720                                         | (382) | 28                        | (4.3)     | Alloy 800           | 36                            | (5.5)    | Alloy 800       |
| Sodium hydroxide         | _                                           |       | _                         |           | See Caustic Soda    | _                             |          | _               |
| Sodium phosphate         | 212                                         | (100) | 40                        | (6.2)     | Alloy 800           | 50                            | (7.7)    | 304 SS          |
| Steam, flowing           | 300                                         | (148) | 10                        | (1.6)     | Alloy 800           | 1                             | 1        | Alloy 800       |
| -                        | 500                                         | (260) | 5-10                      | (0.8-1.6) | Alloy 800           | 1                             | 1        | Alloy 800       |
|                          | 700                                         | (371) | 5                         | (0.8)     | Alloy 800           | 1                             | 1        | Alloy 800       |
| Sulfur, molten           | 600                                         | (315) | 10                        | (1.6)     | Alloy 800           | 12                            | (1.8)    | Alloy 800       |
| Toluene                  | 212                                         | (100) | 23                        | (3.6)     | Steel               | 30                            | (4.6)    | 304 SS          |
| Trichlorethylene         | 150                                         | (65)  | 23                        | (3.6)     | Steel               | 30                            | (4.6)    | 304 SS          |
| Turpentine               | 300                                         | (148) | 20                        | (3.1)     | 304 SS              | 25                            | (3.8)    | 304 SS          |
| Water                    |                                             |       |                           |           |                     |                               |          |                 |
| Clean                    | 212                                         | (100) | 60                        | (9.3)     | Alloy 800           | 45                            | (7)      | Alloy 800       |
| Deionized                | 212                                         | (100) | 60                        | (9.3)     | 316 SS (passivated) | 90                            | (14)     | Alloy 800       |
| Demineralized            | 212                                         | (100) | 60                        | (9.3)     | 316 SS (passivated) | 90                            | (14)     | Alloy 800       |
| Potable                  | 212                                         | (100) | 60                        | (9.3)     | Alloy 800           | 45                            | (7)      | Alloy 800       |
| Process                  | 212                                         | (100) | 48                        | (9.3)     | Alloy 800           |                               |          | Contact Watlow  |

① Contact your Watlow representative.

③ Per API standards.

# **Tubular Elements and Assembly Selection Guide**

# Free Cross Sectional Area of WATROD and FIREBAR Circulation Heaters

Free cross sectional areas from the chart are in square feet. Calculations are based on:

- Flange 12 inches and under, pipes are schedule 40
- Flanges 14 inches and above, pipes are standard wall thickness 0.375 in. (9.5 mm)
- All WATROD heating elements are 0.475 in. (12 mm) diameter

| Circulation<br>Heater Size<br>in. |        | Free Cross Sectional Area in Square Feet (Number of Elements in Parenthesis) |       |       |       |       |  |  |  |  |  |  |  |
|-----------------------------------|--------|------------------------------------------------------------------------------|-------|-------|-------|-------|--|--|--|--|--|--|--|
| WATROD                            |        |                                                                              |       |       |       |       |  |  |  |  |  |  |  |
| 2 <sup>1</sup> / <sub>2</sub> NPT | 0.044  | (3)                                                                          |       |       |       |       |  |  |  |  |  |  |  |
| 3 Flange                          | 0.044  | (3)                                                                          | 0.037 | (6)   |       |       |  |  |  |  |  |  |  |
| 4 Flange                          | 0.074  | (6)                                                                          |       |       |       |       |  |  |  |  |  |  |  |
| 5 Flange                          | 0.124  | (6)                                                                          | 0.117 | (9)   |       |       |  |  |  |  |  |  |  |
| 6 Flange                          | 0.172  | (12)                                                                         | 0.164 | (15)  |       |       |  |  |  |  |  |  |  |
| 8 Flange                          | 0.303  | (18)                                                                         | 0.296 | (21)  | 0.288 | (24)  |  |  |  |  |  |  |  |
| 10 Flange                         | 0.481  | (27)                                                                         | 0.460 | (36)  |       |       |  |  |  |  |  |  |  |
| 12 Flange                         | 0.697  | (36)                                                                         | 0.652 | (54)  |       |       |  |  |  |  |  |  |  |
| 14 Flange                         | 0.848  | (45)                                                                         | 0.781 | (72)  |       |       |  |  |  |  |  |  |  |
| 16 Flange                         | 1.091  | (72)                                                                         | 1.054 | (87)  | 1.017 | (102) |  |  |  |  |  |  |  |
| 18 Flange                         | 1.372  | (102)                                                                        | 1.357 | (108) | 1.342 | (114) |  |  |  |  |  |  |  |
| 20 Flange                         | 1.748  | (108)                                                                        | 1.733 | (114) | 1.704 | (126) |  |  |  |  |  |  |  |
| FIREBAR                           |        |                                                                              |       |       |       |       |  |  |  |  |  |  |  |
| 2 <sup>1</sup> / <sub>2</sub> NPT | 0.0417 | (3)                                                                          |       |       |       |       |  |  |  |  |  |  |  |
| 4 Flange                          | 0.0692 | (6)                                                                          |       |       |       |       |  |  |  |  |  |  |  |
| 6 Flange                          | 0.1540 | (15)                                                                         |       |       |       |       |  |  |  |  |  |  |  |

**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 559

# **Tubular Elements and Assembly Selection Guide**

### **Heat Transfer Oil Chart**

|                 | Recommended |        |         |        |           |         |          |           |           |         |       | Mir                  | . Velocity | / Thru I   | leater   |          |        |                      |
|-----------------|-------------|--------|---------|--------|-----------|---------|----------|-----------|-----------|---------|-------|----------------------|------------|------------|----------|----------|--------|----------------------|
|                 | Max.        | Temper | ature ° | F (°C) |           | Fl      | ammabili | ty Data ° |           |         |       | in Fee               | t/secor    | nd at W/ir | 1² (M/se | econd at | W/cm²) |                      |
| Heat Transfer   | Pro         | cess   | Sł      | neath  | Flash     | Point   | Fire     | Point     | Autoig    | nition  | 8     | (1.2)                | 16         | (2.8)      | 23       | (3.6)    | 30     | (4.7)                |
| Fluid           | F           | (°C)   | °F      | (°C)   | °F        | (°C)    | °F       | (°C)      | °F        | (°C)    | W/in² | (W/cm <sup>2</sup> ) | W/in²      | (W/cm²)    | W/in²    | (W/cm²)  | W/in²  | (W/cm <sup>2</sup> ) |
| Calflo HTF      | 600         | (316)  | 650     | (343)  | 414       | (212)   | 462      | (239)     | 670       | (354)   | 1.5   | (0.5)                | 3.0        | (0.9)      | 5.0      | (1.52)   | 7.0    | (2.1)                |
| Calflo AF       | 550         | (288)  | 600     | (316)  | 400       | (204)   | 437      | (225)     | 650       | (343)   | 1.5   | (0.5)                | 3.0        | (0.9)      | 5.0      | (1.52)   | 7.0    | (2.1)                |
| Dow Therm® A    | 750         | (399)  | 835     | (446)  | 255       | (124)   | 275      | (135)     | 1150      | (621)   | 0.5   | (0.15)               | 1.0        | (0.3)      | 2.0      | (0.61)   | 3.0    | (0.9)                |
| Dow Therm® G    | 700         | (371)  | 775     | (413)  | 305       | (152)   | 315      | (157)     | 1150      | (621)   | 0.7   | (0.2)                | 1.5        | (0.5)      | 2.5      | (0.75)   | 3.5    | (1.1)                |
| Dow Therm® J    | 575         | (302)  | 650     | (343)  | 145       | (63)    | 155      | (68)      | 806       | (430)   | 1.0   | (0.3)                | 2.0        | (0.61)     | 3.0      | (0.9)    | 4.5    | (1.37)               |
| Dow Therm® LF   | 600         | (316)  | 675     | (357)  | 260       | (127)   | 280      | (138)     | 1020      | (549)   | 0.7   | (0.2)                | 1.5        | (0.5)      | 2.5      | (1.75)   | 3.5    | (1.1)                |
| Dow Therm® HT   | 650         | (343)  | 700     | (371)  | no data r | no data | no data  | no data   | no data i | no data | 1.5   | (0.5)                | 2.5        | (0.75)     | 3.5      | (1.1)    | 5.0    | (1.52)               |
| Dow Therm® Q    | 625         | (329)  | 700     | (371)  | no data r | no data | no data  | no data   | 773       | (412)   | 0.7   | (0.2)                | 1.5        | (0.5)      | 2.5      | (0.75)   | 3.5    | (1.1)                |
| Marlotherm S    | 662         | (350)  | 698     | (370)  | 374       | (190)   | no data  | no data   | 932       | (500)   | 1.5   | (0.5)                | 3.0        | (0.9)      | 5.0      | (1.52)   | 7.0    | (2.1)                |
| Mobiltherm 603  | 590         | (310)  | 625     | (329)  | 380       | (193)   | no data  | no data   | no data i | no data | 1.5   | (0.5)                | 3.0        | (0.9)      | 5.0      | (1.52)   | 7.0    | (2.1)                |
| Multitherm IG-2 | 600         | (316)  | 650     | (343)  | 440       | (227)   | 500      | (260)     | 700       | (371)   | 0.8   | (0.24)               | 1.7        | (0.52)     | 2.3      | (0.7)    | 3.0    | (0.9)                |
| Multitherm PG-1 | 600         | (316)  | 640     | (338)  | 340       | (171)   | 385      | (196)     | 690       | (368)   | 1.0   | (0.3)                | 2.0        | (0.61)     | 3.0      | (0.9)    | 4.0    | (1.22)               |
| Para Cymene     | 600         | (316)  | 650     | (343)  | 117       | (47)    | 152      | (72)      | 817       | (438)   | 0.7   | (0.2)                | 1.5        | (0.5)      | 2.5      | (0.75)   | 3.5    | (1.1)                |
| Syltherm 800    | 750         | (399)  | 800     | (427)  | 350       | (177)   | 380      | (193)     | 725       | (385)   | 1.5   | (0.5)                | 3.0        | (0.9)      | 5.0      | (1.52)   | 7.0    | (2.1)                |
| Syltherm XLT    | 500         | (260)  | 550     | (288)  | 116       | (47)    | 130      | (54)      | 662       | (350)   | 1.5   | (0.5)                | 2.5        | (0.75)     | 4.0      | (1.22)   | 5.0    | (1.52)               |
| Texatherm       | 600         | (316)  | 640     | (338)  | 430       | (221)   | no data  | no data   | no data i | no data | 2.0   | (0.61)               | 4.0        | (1.22)     | 6.0      | (1.83)   | 8.0    | (2.4)                |
| Thermia 33      | 600         | (316)  | 650     | (343)  | 455       | (235)   | 495      | (257)     | no data i | no data | 1.5   | (0.5)                | 3.0        | (0.9)      | 5.0      | (1.52)   | 7.0    | (2.1)                |
| Therminol 44    | 400         | (204)  | 475     | (246)  | 405       | (207)   | 438      | (228)     | 705       | (374)   | 1.0   | (0.3)                | 2.0        | (0.61)     | 3.0      | (0.9)    | 4.0    | (1.22)               |
| Therminol 55    | 550         | (288)  | 605     | (318)  | 350       | (177)   | 410      | (210)     | 675       | (357)   | 1.5   | (0.5)                | 2.5        | (0.75)     | 3.5      | (1.1)    | 5.0    | (1.52)               |
| Therminol 59    | 600         | (316)  | 650     | (343)  | 302       | (150)   | 335      | (168)     | 770       | (410)   | 1.5   | (0.5)                | 2.5        | (0.75)     | 3.5      | (1.1)    | 5.0    | (1.52)               |
| Therminol 60    | 620         | (327)  | 655     | (346)  | 310       | (154)   | 320      | (160)     | 835       | (448)   | 1.5   | (0.5)                | 3.0        | (0.9)      | 5.0      | (1.52)   | 7.0    | (2.1)                |
| Therminol 68    | 650         | (343)  | 705     | (374)  | 350       | (177)   | 380      | (183)     | 705       | (374)   | 1.5   | (0.5)                | 2.5        | (0.75)     | 3.0      | (0.9)    | 4.5    | (1.37)               |
| Therminol 75    | 750         | (399)  | 805     | (429)  | 390       | (199)   | 440      | (227)     | 1000      | (538)   | 1.0   | (0.3)                | 2.0        | (0.61)     | 3.0      | (0.9)    | 4.0    | (1.22)               |
| Therminol LT    | 600         | (316)  | 650     | (343)  | 134       | (57)    | 150      | (66)      | 805       | (429)   | 1.5   | (0.5)                | 2.5        | (0.75)     | 4.0      | (1.22)   | 5.0    | (1.52)               |
| Therminol VP-1  | 750         | (399)  | 800     | (427)  | 255       | (124)   | 280      | (127)     | 1150      | (621)   | 1.0   | (0.3)                | 2.0        | (0.61)     | 3.0      | (0.9)    | 4.0    | (1.22)               |
| U-Con 500       | 500         | (260)  | 550     | (288)  | 540       | (282)   | 600      | (316)     | 750       | (399)   | 1.0   | (0.3)                | 2.0        | (0.61)     | 3.0      | (0.9)    | 4.0    | (1.22)               |

# **Agency Certifications, Recognition and Approvals**

| <br>56: |
|---------|
| <br>    |

Agency Certifications, Recognition and Approvals



# WATROD and FIREBAR® Element and Assemblies

# **Agency Recognition**

UL® and CSA recognition information charts are provided to ensure:

- Safety parameters in relationship to stated voltage and amperage
- Approved sheath materials, end seals and assembly electrical enclosures

Watlow believes that UL® and CSA recognition information is necessary to confirm the reliability of our heating products in relationship to your application. As such, the accompanying *Agency Recognition* charts illustrate the extent of coverage each heater type provides. Specific end use application information is required for each agency marking. Some products carry U.S. and Canada approvals.





# **UL®** Recognition and Listing

# File Number E52951 (UL® 499) — Component Recognition

All information for UL® File #E52951 can be found in the UL® Directory, Volume 2 under "Heaters Miscellaneous" (Classification KSOT2).

### Elements (Volume 2, Section 1)

|       | TROD<br>meter<br>(mm) | Allowable<br>Part Numbers |       | Max.<br>Volts | Max. Watt Density W/in² W/cm² | Min. Bend<br>Radius<br>in. (mm) | Allowable<br>Sheath Materials         | End Seal Types                      |
|-------|-----------------------|---------------------------|-------|---------------|-------------------------------|---------------------------------|---------------------------------------|-------------------------------------|
| 0.210 | (6.0)                 | RK series                 | U0-xx | 250           |                               | ()                              | Nickel alloy 400, 600,                | Epoxy resin,                        |
| 0.260 | (6.6)                 | RA series                 | U1-xx | 250           |                               |                                 | 800, 840, 800H,                       | Lavacone,                           |
| 0.315 | (8.0)                 | RB series                 | U3-xx | 480           |                               |                                 | 304, 316 SS,                          | Silicone resin,                     |
| 0.375 | (9.5)                 | RD, RS series             | U5-xx | 480           | 1                             | 1                               | Steel, Titanium, Copper coated steel, | Silicone rubber,<br>Silicone fluid. |
| 0.430 | (10.9)                | RC series                 | U6-xx | 600           |                               |                                 | Hastelloy C22, C276                   | Ceramic potting                     |
| 0.475 | (12.0)                | RG series                 | U7-xx | 600           |                               |                                 |                                       |                                     |
| 0.490 | (12.4)                | RJ series                 | U8-xx | 600           |                               |                                 |                                       |                                     |

① Dependent on application, contact your Watlow representative.

Note: All end seal types apply to all diameter heaters.

#### Elements (Volume 2, Section 6)

|       | TICOIL<br>meter<br>(mm) | Allowable<br>Part Numbers | Max.<br>Volts | Max.<br>Watt Density<br>W/in <sup>2</sup> W/cm <sup>2</sup> | Min. Bend<br>Radius<br>in. (mm) | Allowable<br>Sheath Materials | End Seal Types   |  |
|-------|-------------------------|---------------------------|---------------|-------------------------------------------------------------|---------------------------------|-------------------------------|------------------|--|
| 0.375 | (9.5)                   | <b>U5M</b> series         |               |                                                             |                                 | Nickel alloy 800, 840,        | Epoxy resin,     |  |
| 0.430 | (10.9)                  | U6M series                |               |                                                             | 1                               | 304, 316 SS,                  | Silicone resin,  |  |
| 0.475 | (12.0)                  | U7M series                |               |                                                             | Steel,                          | Silicone rubber,              |                  |  |
| 0.470 | (12.0)                  | OTH SCHOS                 |               |                                                             |                                 | Titanium                      | Lavacone,        |  |
| 0.490 | (12.4)                  | <b>U8M</b> series         |               |                                                             |                                 |                               | Ceramic potting, |  |
|       |                         |                           |               |                                                             |                                 |                               | Silicone fluid   |  |

<sup>&</sup>lt;sup>1</sup> Dependent on application, contact your Watlow representative.

WATLOW<sup>®</sup> 563

Notes: All end seal types apply to all diameter heaters.

UL® and CSA must be requested at the time order is placed.

# **WATROD** and **FIREBAR** Element and **Assemblies**

# **UL® Recognition and Listing** (Continued)

Elements (Volume 2, Section 4)

| FIR      | EBAR          | Allowabl                                   | le   |               | Max.                                                | N | lin. Ben        | d Radius            |                                  |                                                                                         |
|----------|---------------|--------------------------------------------|------|---------------|-----------------------------------------------------|---|-----------------|---------------------|----------------------------------|-----------------------------------------------------------------------------------------|
| H<br>in. | eight<br>(mm) | Part<br>Number                             | 'S   | Max.<br>Volts | Watt Density<br>W/in <sup>2</sup> W/cm <sup>2</sup> |   | or Axis<br>(mm) | Minor Axis in. (mm) | Allowable Sheath<br>Materials    | End Seal Types                                                                          |
| Air or   | Immers        | ion Heating                                |      |               |                                                     |   |                 |                     |                                  |                                                                                         |
| 5/8<br>1 | (16)<br>(25)  | FA, FS series FB, FS series sion Heating O | A-xx | 480<br>480    | <b>①</b>                                            | 1 | (25)            | •                   | Nickel alloy 800, 840, 304 SS    | Epoxy resin, Lavacone, Silicone resin, Silicone rubber, Silicone fluid, Ceramic potting |
| 5/8      | (16)          | FA, FS series FB, FS series                | U-xx | 480<br>480    | <b>①</b>                                            | 1 | (25)<br>(25)    | •                   | Nickel alloy 800, 840,<br>304 SS | Epoxy resin, Lavacone, Silicone resin, Silicone rubber, Silicone fluid, Ceramic potting |

<sup>&</sup>lt;sup>1</sup> Dependent on application, contact your Watlow representative.

Notes: All sheath materials and end seal types apply to all diameter heaters.

UL® and CSA must be requested at the time order is placed.

### **Assemblies**

Refer to applicable WATROD and FIREBAR elements for maximum voltage, watt density and sheath materials.

| Heater Type   | Allowable Part Numbers                                                                                                                               | Electrical Enclosure Options                                                                    |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Screw Plug    | All catalog models <b>B</b><br>Series <b>U1</b> to <b>U9</b>                                                                                         | General purpose or moisture resistant with or without thermostat (Type "3" thermostat excluded) |
| Flange        | All catalog models FE, FG, FH, FK, FL, FM, FN, FO, FP FR, FS, FT, FW—Series U1 to U9                                                                 | General purpose or moisture resistant with or without thermostat (Type "3" thermostat excluded) |
| Circulation   | All catalog models CB, CF, CP<br>Series U1 to U9                                                                                                     | General purpose or moisture resistant with or without thermostat (Type "3" thermostat excluded) |
| Over-the-Side | All catalog models <b>OL</b> and <b>OR</b><br>Series <b>U1</b> to <b>U9</b> , except <b>U2</b> and <b>U4</b>                                         | Moisture resistant with or without thermostat                                                   |
| Duct          | All catalog models <b>D6</b> to <b>D125</b> , <b>MDH6</b> to <b>MDH60</b> , <b>LDH9</b> to <b>LDH225</b> Series <b>U1</b> to <b>U9</b> and <b>U0</b> | General purpose enclosure only                                                                  |

# **WATROD** and **FIREBAR** Element and **Assemblies**

If CE Marking to the 2006/95/EC European Low Voltage Directive is required please contact your Watlow representative.

# **WATROD** and **FIREBAR** Element and **Assemblies**

**This Page Left Blank Intentionally** 

# WATROD and FIREBAR Element and Assemblies

### **CSA Certification**

#### File Number LR 31388

All information for CSA file LR 31388 can be found in the CSA *List of Certified Electrical Equipment* catalog, Volume II, under Heaters—Miscellaneous.

#### **Elements**

| Heater Type –<br>Diameter/Height                   |                                                       | Allowable<br>Part                                                                                                                                                    | Max.<br>Volts                          | Max. Watt<br>Density                   |                                                          | Allowable<br>Sheath                                                                     | End Seal<br>Type<br>(All Diameters)                                             |  |
|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| in.                                                | in. (mm) Numbers                                      |                                                                                                                                                                      |                                        | W/in <sup>2</sup> (W/cm <sup>2</sup> ) |                                                          | Materials <sup>⊕</sup>                                                                  |                                                                                 |  |
| WATRO                                              | D:                                                    |                                                                                                                                                                      |                                        |                                        |                                                          |                                                                                         |                                                                                 |  |
| 0.260<br>0.315<br>0.375<br>0.430<br>0.475<br>0.490 | (6.6)<br>(8.0)<br>(9.5)<br>(10.9)<br>(12.0)<br>(12.4) | All catalog models, 1-xx<br>All catalog models, 3-xx<br>All catalog models, 5-xx<br>All catalog models, 6-xx<br>All catalog models, 7-xx<br>All catalog models, 8-xx | 250<br>480<br>600<br>600<br>600<br>600 | 120<br>120<br>120<br>120<br>120<br>120 | (18.5)<br>(18.5)<br>(18.5)<br>(18.5)<br>(18.5)<br>(18.5) | Nickel alloy 400,<br>600, 800, 840,<br>304, 316 SS,<br>Steel,<br>Copper coated<br>steel | Epoxy resin, Lavacone, Silicone resin, Silicone rubber, Ceramic, Silicone fluid |  |
| <b>FIREBAF</b> 5/8 1                               | <b>3:</b><br>(15.9)<br>(25.0)                         | FA, FS models, 4-xx<br>FB, FS models, 2-xx                                                                                                                           | 480<br>480                             | 120<br>120                             | (18.5)<br>(18.5)                                         | Nickel alloy 800, 840<br>304 SS                                                         | Epoxy resin, Lavacone, Silicone resin, Silicone rubber Ceramic, Silicone fluid  |  |
| MULTIC                                             | ELL:                                                  | Contact Watlow                                                                                                                                                       |                                        |                                        |                                                          |                                                                                         |                                                                                 |  |

 $<sup>^{\</sup>scriptsize \textcircled{\tiny \$}}$  Some sheath materials not available on all diameters. Contact your Watlow representative.

**Note**: Heating elements are certified only for use in equipment where the acceptability of the construction combination is determined by the Canadian Standards Association.

Note: All sheath materials and end seal types apply to all diameter heaters.

#### **Assemblies**

| Heater Type   | Allowable Part Numbers                                | Electrical Enclosure Options                                                         |
|---------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| Screw Plug    | Catalog series "B" Series 1-xx to 9-xx                | General purpose with or without thermostat<br>Enclosure 4 with or without thermostat |
| Flange        | Catalog series "F" Series 1-xx to 9-xx                | General purpose with or without thermostat Enclosure 4 with or without thermostat®   |
| Circulation   | Catalog series "C" Series 1-10 to 9-10                | General purpose with or without thermostat Enclosure 4 with or without thermostat®   |
| Over-the-Side | Catalog series "OL" and "OR"<br>Series 1-30 to 9-30   | Enclosure 4 with or without thermostat                                               |
| Duct          | Catalog series "D", "LDH" and "MDH" Series 1-1 to 9-1 | General purpose enclosure only                                                       |

<sup>&</sup>lt;sup>⑤</sup> 4, 5, 6 and 8 inch flange size only.

### File Number LR 61707—Heater Assemblies-Miscellaneous-For Hazardous Locations

| Heater Type | Allowable Part Numbers                                                    | Electrical Enclosure Options                                                        |
|-------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Screw Plug  | Catalog series "B" Series 1-xx to 9-xx                                    | Class 1, Div. 1 and 2, Groups B, C and D and enclosure 4 with or without thermostat |
| Flange      | Catalog series "F" Series 1-xx to 9-xx, 700, 701, 702, 703, 704, 713, 714 | Class 1, Div. 1 and 2, Groups B, C and D and enclosure 4 with or without thermostat |
| Circulation | Catalog series "C" Series 1-10 to 9-10                                    | Class 1, Div. 1 and 2, Groups B, C and D and enclosure 4 with or without thermostat |

Note: UL® and CSA must be requested at the time the order is placed.

WATLOW<sup>®</sup> 567

# WATROD and FIREBAR Element and Assemblies

ATEX Certification
Certificate Number KEMA 07ATEX0172X

IECEx Certification
Certificate Number IECEx CSA 09.0010

Watlow can provide flange heaters with European ATEX or International IECEx flameproof (Ex 'd') and increased safety (EX 'E') Certifications. Contact your Watlow representative for details.

# Index

# Index

# Index

| Product Category Index | 571 |
|------------------------|-----|
| Part Number Index      | 572 |



# Index

# **Product Category Index**

| 375 Finned Strip Heaters                          | 409             |
|---------------------------------------------------|-----------------|
| 375 High-Temperature Strip Heaters                | 481             |
| Agency Certifications, Recognition and Approvals. | 561             |
| Band and Strip Emitters                           | 527             |
| Bayonet/Pipe Insert Immersion Heaters             | 316             |
| Booster Heaters                                   | 377             |
| Bulb and Capillary                                | 534             |
| Ceramic Fiber Heaters                             | 433             |
| Coil/Cable Heaters                                | 467             |
| Duct Heaters                                      | 391             |
| Enclosure Heaters                                 | 417             |
| Engine Preheaters                                 | 379             |
| FINBAR™ Single-Ended Heaters                      | 112             |
| Finned Heaters                                    | 409             |
| FIREBAR® Clamp-On Heaters                         | 489             |
| FIREBAR Single/Double-Ended Heaters               | 93              |
| FIREROD® Cartridge Heaters                        | 11              |
| FIREROD Immersion Heaters                         | 323             |
| Flexible Shapes and Geometries                    | 117             |
| FREEFLEX® Heaters                                 | 385             |
| Heater Selection Matrix                           | 4               |
| High-Temperature FIREROD Heaters                  | <b>36</b>       |
| High-Temperature Tubular Heaters                  | <mark>87</mark> |
| L and O Shaped Immersion Heaters                  | 318             |
| LDH SERIES and D SERIES                           | 391             |
| Line Heating                                      | 133             |
| MDH SERIES                                        | 405             |
| Metric FIREROD Cartridge Heaters                  | 48              |
| Milled Groove Tubular Heaters                     | 91              |
| Mineral Insulated (MI) Band Heaters               | 493             |
| Mineral Insulated (MI) Band and Strip Emitters    | 527             |
| Mineral Insulated (MI) Nozzle Heaters             | 507             |
| Mineral Insulated (MI) Strip Heaters              | 477             |
| MULTICELL™ Heaters                                | 425             |
| MULTICOIL™ Tubular Heaters                        | 89              |
| Over-the-Side Heaters                             | 318             |

| Plate Flange Immersion Heaters                       | .307       |
|------------------------------------------------------|------------|
| Polyimide Heaters                                    | .148       |
| Pre-Coiled Cable Nozzle Heaters                      | .509       |
| Protective Wells                                     | .539       |
| RAYMAX Panel Heaters                                 | .513       |
| Reference Data                                       | .54        |
| Screw Plug with Control Assembly                     | .23        |
| SERIES EHG® CL                                       | .158       |
| SERIES EHG                                           | .152       |
| SERIES EHG SL10                                      | .154       |
| Silicone Rubber Heaters                              | .119       |
| Square Flange Immersion Heaters                      | .313       |
| ST10 and ST207                                       | .53        |
| STARFLOW™ Heaters                                    | .329       |
| Syringe Heaters                                      | .388       |
| Terms and Conditions of Sale                         | .57        |
| Thick Film Conduction Heaters                        | .463       |
| ULTRAMIC® Advanced Ceramic Heaters                   | .459       |
| WATROD™ and FIREBAR ANSI Flange<br>Immersion Heaters | 237        |
| WATROD and FIREBAR Circulation Heaters               | 33         |
| WATROD and FIREBAR Flange Immersion Heaters          | .307       |
| WATROD and FIREBAR Screw Plug Immersion Heaters      | .16        |
| WATROD Single/Double-Ended Heaters                   | <b>6</b> ' |

# **Part Number Index**

# **How To Use This Index**

This easy cross reference contains the alpha or numeric prefixes for all Watlow product part numbers contained in this catalog. The spaces (\_) shown in some of the following prefixes indicate additional characters.

**Note:** Some part numbers include a suffix alpha character. This is the last alpha character that appears in the product part number.

| Part     |                                     | Page   |
|----------|-------------------------------------|--------|
| Number   | Description                         | Number |
| 005_     | STRETCH-TO-LENGTH™ line heaters     | 139    |
| 008_     | Modular gas line heaters            | 135    |
| 010_     | Silicone rubber wire-wound elements | 125    |
| 020_     | Silicone rubber wire-wound elements | 125    |
| 030_     | Silicone rubber wire-wound elements | 125    |
| 01202_   | STRETCH-TO-LENGTH line heaters      | 139    |
| 01203_   | STRETCH-TO-LENGTH line heaters      | 139    |
| 01206_   | Modular gas line heaters            | 135    |
| 01209_   | Modular gas line heaters            | 135    |
| 01212_   | Modular gas line heaters            | 135    |
| 0121805_ | STRETCH-TO-LENGTH line heaters      | 139    |
| 012180C_ | Modular gas line heaters            | 135    |
| 0122_    | Modular gas line heaters            | 135    |
| 0123_    | Modular gas line heaters            | 135    |
| 015_     | STRETCH-TO-LENGTH line heaters      | 139    |
| 0160205_ | STRETCH-TO-LENGTH line heaters      | 139    |
| 016020C_ | Modular gas line heaters            | 135    |
| 01603_   | Modular gas line heaters            | 135    |
| 01606_   | Modular gas line heaters            | 135    |
| 01609_   | Modular gas line heaters            | 135    |
| 01612_   | Modular gas line heaters            | 135    |
| 0161805_ | STRETCH-TO-LENGTH line heaters      | 139    |
| 016180C_ | Modular gas line heaters            | 135    |
| 0162_    | Modular gas line heaters            | 135    |
| 0163_    | Modular gas line heaters            | 135    |
| 017_     | Modular gas line heaters            | 136    |
| 018_     | Modular pump line heaters           | 144    |
| 02002_   | Silicone rubber wire-wound elements | 125    |
| 02005_   | Silicone rubber wire-wound elements | 125    |
| 02006_   | Modular pump line heaters           | 146    |
| 0201_    | Modular pump line heaters           | 146    |
| 0202_    | Modular pump line heaters           | 146    |
| 024_     | Modular gas line heaters            | 136    |
| 0260_    | Modular pump line heaters           | 144    |
| 03003_   | Silicone rubber wire-wound elements | 125    |
| 030050_  | Silicone rubber wire-wound elements | 125    |
| 030056_  | Modular pump line heaters           | 145    |
| 0301_    | Modular pump line heaters           | 145    |
| 031_     | Modular gas line heaters            | 137    |
| 032_     | Modular pump line heaters           | 144    |
| 034_     | Modular pump line heaters           | 146    |
| 035_     | Modular pump line heaters           | 146    |
| 038_     | Modular gas line heaters            | 137    |
| 04004_   | Silicone rubber wire-wound elements | 126    |
| 04005_   | Silicone rubber wire-wound elements | 126    |
| 04009_   | Modular pump line heaters           | 143    |
| 0401_    | Modular pump line heaters           | 146    |
| 042_     | Modular pump line heaters           | 144    |
| 044_     | Modular pump line heaters           | 146    |

| Part<br>Number      | Decemination                                    | Page          |
|---------------------|-------------------------------------------------|---------------|
| 045_                | Description  Modular pump line heaters          | Number<br>146 |
| 0470                | Modular pump line heaters                       | 144           |
| 04704               | Modular gas line heaters                        | 137           |
| 04704_              | Modular gas line heaters                        | 137           |
| 050050              | Silicone rubber wire-wound elements             | 126           |
| 050055              | Modular pump line heaters                       | 144           |
| 050100A             | Modular pump line heaters                       | 142           |
| 050100A_<br>050100C | Silicone rubber wire-wound elements             | 126           |
| 0501000_            | Silicone rubber wire-wound elements             | 126           |
| 05013_              | Modular pump line heaters                       | 142           |
| 0502_               | · ·                                             | 142           |
|                     | Modular pump line heaters                       | 144           |
| 0570_<br>057128A    | Modular pump line heaters                       | 144           |
|                     | Modular pump line heaters                       |               |
| 06_                 | Modular pump line heaters  Coil/Cable heaters   | 144           |
| 062_                |                                                 | 473           |
| 07_                 | Modular pump line heaters                       | 144           |
| 08_                 | Modular pump line heaters                       | 144           |
| 09_                 | Modular pump line heaters                       | 145           |
| 094_                | Coil/Cable heaters                              | 473           |
| 100_                | Modular pump line heaters                       | 143           |
| 104_                | Modular pump line heaters                       | 144           |
| 11                  | Thermostats                                     | 537           |
| 11_                 | Modular pump line heaters                       | 144           |
| 120_                | Modular pump line heaters                       | 145           |
| 125_                | Coil/Cable heaters (ex: 125CH38A18X)            | 473           |
| 1281_               | Modular pump line heaters                       | 144           |
| 157_                | Coil/Cable heaters (ex: 157CH124AX)             | 474           |
| 2                   | Thermostats                                     | 537           |
| 2A                  | Thermostats                                     | 537           |
| 3                   | Thermostats                                     | 537           |
| 3A                  | Thermostats                                     | 537           |
| 4                   | Thermostats                                     | 537           |
| 5A                  | Thermostats                                     | 537           |
| 62H_                | Stock coil/cable heaters (ex: 62H36A5X)         | 473           |
| 7A                  | Thermostats                                     | 537           |
| 8                   | Thermostats                                     | 537           |
| 9<br>94PC_          | Thermostats                                     | 537           |
| 94PC_               | Pre-coiled cable nozzle heaters (ex: 94PC30A1X) | 510           |
| BCN_                | WATROD™ - screw plug immersion heaters          | 172-174       |
| BCS_                | WATROD - screw plug immersion heaters           | 204-205       |
| BDN_                | WATROD - screw plug immersion heaters           | 175-176       |
| BDNF_               | FIREBAR® - screw plug immersion heaters         | 177-179,      |
| _                   | . 0                                             | 189-190,      |
|                     |                                                 | 208-210,      |
|                     |                                                 | 218-219,      |
|                     |                                                 | 228-229       |
| BEN_                | WATROD - screw plug immersion heaters           | 175-176,      |
|                     |                                                 | 198-199       |
| BES_                | WATROD - screw plug immersion heaters           | 206-207       |

# Index

# **Part Number Index**

| Part            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page<br>Number         |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Number          | Description NATEON Assessment by the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 180-182,               |
| BGN_            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 191-193                |
| BGS_            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 211-213                |
| BHN_            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180-182,               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 191-193,               |
| BHNA            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220-222                |
| BHNB            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 236                    |
| BHS             | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 211-213                |
| BHSS            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220-222                |
| BLN_            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 183-185,               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 194-195,               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 223-225                |
| BLNA_           | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 202-203                |
| BLNF_           | FIREBAR - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 196-197,<br>216-217,   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 226-227,               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 232-233                |
| BLR_            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 186-188                |
| BLS_            | WATROD - screw plug immersion heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 214-215,               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 230-231                |
| C_              | 1/4 in. FIREROD heaters (ex: C1E-921)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                     |
| CBDNF_          | FIREBAR - screw plug circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 337, 344,              |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 356, 365,              |
| CBE             | Departur heatare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 370                    |
|                 | Booster heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 378                    |
| CBEN_           | WATROD - screw plug circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 337, 350               |
| CBES_           | WATROD - screw plug circulation heaters WATROD - screw plug circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 356                    |
| CBLN_<br>CBLNA  | WATROD - screw plug circulation heaters  WATROD - screw plug circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 337, 344               |
| CBLNA_<br>CBLNF | FIREBAR - screw plug circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 338, 344,              |
| OBEN I          | Plag of condition floaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 357, 365,<br>371       |
| CBLR_           | WATROD - screw plug circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 342                    |
| CBLS_           | WATROD - screw plug circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 370                    |
| CER             | ULTRAMIC® heaters (ex: CER-1-01-00002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 462                    |
| CFBLKT_         | Ceramic fiber insulation blanket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 442                    |
| CFMN_           | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 338, 345,<br>366       |
| CFMNA_          | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 351                    |
| CFMS_           | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 358, 371               |
| CFNN_           | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340, 346,<br>367       |
| CFNNA_          | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 352-353                |
| CFNS_           | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 359-360,<br>372        |
| CFON_           | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 339, 345,<br>366       |
| CFONA_          | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 352                    |
| CFONF_          | FIREBAR - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 346, 359,<br>366, 372  |
| CFOR_           | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 342                    |
| CFOS_           | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 358, 372               |
| CFPN_           | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340-341,               |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 347, 367               |
| CFPNA_          | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 353-354                |
| CFPNF_          | FIREBAR - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 348, 361,<br>362, 368, |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 373                    |
|                 | WATROD - ANSI flange circulation heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |

| Part   |                                           | Page                  |
|--------|-------------------------------------------|-----------------------|
| Number | Description                               | Number                |
| CFPS_  | WATROD - ANSI flange circulation heaters  | 360-361,              |
|        | -                                         | 373                   |
| CFRN_  | WATROD - ANSI flange circulation heaters  | 341, 348,             |
| CFRNA  | WATROD - ANSI flange circulation heaters  | 368<br>354            |
| CFRS_  | WATROD - ANSI flange circulation heaters  | 362,                  |
| 01110_ | 7 THOS 7 THO MANAGE OF COLOREST           | 363, 374              |
| CFSN_  | WATROD - ANSI flange circulation heaters  | 349, 369              |
| CFSNA_ | WATROD - ANSI flange circulation heaters  | 355                   |
| CFSS_  | WATROD - ANSI flange circulation heaters  | 364, 374              |
| CFTN_  | WATROD - ANSI flange circulation heaters  | 349, 369              |
| CFTNA_ | WATROD - ANSI flange circulation heaters  | 355                   |
| CFTS_  | WATROD - ANSI flange circulation heaters  | 364, 375              |
| CFWN_  | WATROD - ANSI flange circulation heaters  | 349, 369              |
| CFWNA_ | WATROD - ANSI flange circulation heaters  | 355                   |
| CFWS_  | WATROD - ANSI flange circulation heaters  | 364, 375              |
| CH_    | STARFLOW™ circulation heaters             | 330                   |
|        | (ex: CHJTJT3000JXJA)                      |                       |
| CPBP_  | WATROD - engine preheaters                | 380-381               |
| CPCP_  | WATROD - engine preheaters                | 381                   |
| D_     | WATROD - duct heaters                     | 399-403               |
| E_     | 1/4 in. FIREROD® heaters (ex: E3A-12003)  | 11                    |
| EN_    | WATROD - enclosure heaters                | 418                   |
| F01_   | Silicone rubber etched foil elements      | 129                   |
| F02_   | Silicone rubber etched foil elements      | 129                   |
| F03_   | Silicone rubber etched foil elements      | 129                   |
| F04_   | Silicone rubber etched foil elements      | 129                   |
| F05_   | Silicone rubber etched foil elements      | 129                   |
| F06_   | Silicone rubber etched foil elements      | 129                   |
| FAN_   | FIREBAR heaters                           | 109                   |
| FBN_   | FIREBAR heaters                           | 107-108               |
| FGNFB_ | FIREBAR - square flange immersion heaters | 315                   |
| FHN_   | WATROD - square flange immersion heaters  | 314                   |
| FHNFA_ | FIREBAR - square flange immersion heaters | 315                   |
| FHNFB_ | FIREBAR - square flange immersion heaters | 315                   |
| FKN_   | WATROD - plate flange immersion heaters   | 309, 312              |
| FKS_   | WATROD - plate flange immersion heaters   | 311-312               |
| FLN_   | WATROD - plate flange immersion heaters   | 308, 310              |
| FMN_   | WATROD - ANSI flange immersion heaters    | 244,<br>253, 286      |
| FMNA_  | WATROD - ANSI flange immersion heaters    | 264                   |
| FMS_   | WATROD - ANSI flange immersion heaters    | 274, 296              |
| FNN_   | WATROD - ANSI flange immersion heaters    | 246-247,              |
|        | _                                         | 256-257,<br>289       |
| FNNA_  | WATROD - ANSI flange immersion heaters    | 266-267               |
| FNS_   | WATROD - ANSI flange immersion heaters    | 277-278               |
| FON_   | WATROD - ANSI flange immersion heaters    | 245,254,              |
| _      | Ŭ                                         | 287                   |
| FONA_  | WATROD - ANSI flange immersion heaters    | 265                   |
| FONF_  | FIREBAR - ANSI flange immersion heaters   | 255, 276,<br>288, 298 |
| FOR_   | WATROD - ANSI flange immersion heaters    | 250                   |
| FOS_   | WATROD - ANSI flange immersion heaters    | 275, 297              |
| FPN_   | WATROD - ANSI flange immersion heaters    | 248-249,              |
|        |                                           | 258-259,              |
|        |                                           | 290                   |

**WATLOW**<sup>®</sup> \_\_\_\_\_\_ 573

# Index

# **Part Number Index**

| D1             |                                            | D              |
|----------------|--------------------------------------------|----------------|
| Part<br>Number | Description                                | Page<br>Number |
| FPNA_          | WATROD - ANSI flange immersion heaters     | 268-269        |
| FPNF           | FIREBAR - ANSI flange immersion heaters    | 260, 281,      |
|                | Three or hange in increasing the realist   | 291, 301       |
| FPR            | WATROD - ANSI flange immersion heaters     | 251-252        |
| FPS            | WATROD - ANSI flange immersion heaters     | 279-280,       |
| _              | G                                          | 300            |
| FRN_           | WATROD - ANSI flange immersion heaters     | 261, 292       |
| FRNA_          | WATROD - ANSI flange immersion heaters     | 270            |
| FRS            | WATROD - ANSI flange immersion heaters     | 282, 302       |
| FSA_           | FIREBAR heaters                            | 111            |
| FSN_           | WATROD - ANSI flange immersion heaters     | 262, 293       |
| FSNA           | WATROD - ANSI flange immersion heaters     | 271            |
| FSP_           | FIREBAR heaters                            | 110, 114       |
| FSS            | WATROD - ANSI flange immersion heaters     | 283, 303       |
| FTN            | WATROD - ANSI flange immersion heaters     | 262, 294       |
| FTNA           | WATROD - ANSI flange immersion heaters     | 272            |
| FTS            | WATROD - ANSI flange immersion heaters     | 284, 304       |
| FWN            | WATROD - ANSI flange immersion heaters     | 263, 295       |
| FWNA           | WATROD - ANSI flange immersion heaters     | 273            |
| FWS            | WATROD - ANSI flange immersion heaters     | 285, 305       |
| G              | % in. FIREROD heaters (ex: G2N-4950)       | 11             |
| J_             | ½ in. FIREROD heaters (ex: J10J-10145)     | 11             |
| K0             | Polyimide heaters                          | 150-151        |
| L_             | % in. FIREROD heaters (ex: L12A-6489)      | 11             |
| LO             | Silicone rubber wire-wound elements        | 132            |
| L10            | Silicone rubber wire-wound elements        | 132            |
| L12            | Silicone rubber wire-wound elements        | 132            |
| L16            | Silicone rubber wire-wound elements        | 132            |
| L18            | Silicone rubber wire-wound elements        | 132            |
| L20            | Silicone rubber wire-wound elements        | 132            |
| LDH            | WATROD - duct heaters                      | 397-398        |
| M6             | WATROD - duct replacement modules          | 408            |
| MB             | MI band heaters (ex: MB2A1JN3)             | 503            |
| MBLK           | Duct blank module cover                    | 408            |
| MDH _          | WATROD - duct heaters                      | 407            |
| ME             | Expandable MI band heaters                 | 504            |
| MS             | MI strip heaters (ex: MS1J8AS1)            | 480            |
| MTC            | Duct thermocouple replacement kits         | 408            |
| N_             | 3/4 in. FIREROD heaters (ex: N8E-3912)     | 11             |
| OLN            | WATROD - L-shaped immersion heaters        | 321            |
| ORN_           | WATROD - O-shaped immersion heaters        | 321            |
| P              | RAYMAX 1120 panel heaters (ex: P1224AX062) | 517            |
| PWS_           | Thermowells                                | 539            |
| RAN            | WATROD heaters                             | 83             |
| RBN_           | WATROD heaters                             | 83             |
| RBR            | WATROD heaters                             | 85             |
| RBS_           | WATROD heaters                             | 82             |
| RCN_           | WATROD heaters                             | 82, 84         |
| RDN_           | WATROD heaters                             | 84-85          |
| RGN_           | WATROD heaters                             | 82, 85         |
| RGNA_          | WATROD heaters                             | 82             |
| RGS            | WATROD heaters                             | 83             |
| RGR_           | WATROD heaters                             | 85             |
| RGSS           | WATROD heaters                             | 82             |
| SGA1J_         | 375 strip heaters                          | 413-414,       |
|                |                                            | 486            |

| Part<br>Number | Description                            | Page<br>Number |
|----------------|----------------------------------------|----------------|
| ST_            | 1 in. FIREROD heaters (ex: ST20A-1234) | 11             |
| TFA_           | Thick film - conduction heaters        | 466            |
| T_             | Pre-set thermostats                    | 531            |
| VC_            | Ceramic fiber heaters                  | 447            |
| VF_S           | Ceramic fiber heaters                  | 449            |
| VF_T           | Ceramic fiber heaters                  | 452            |
| VP504_F        | RAYMAX 1220 heaters                    | 520            |
| VP504_T        | RAYMAX 2030 heaters                    | 520            |
| VS_S           | Ceramic fiber heaters                  | 450-451        |
| VS_T           | Ceramic fiber heaters                  | 453-454        |

# Terms and Conditions of Sale

#### **Quantity and Weights:**

Products purchased and sold hereunder shall be those for which buyer submits an order which is accepted by Watlow<sup>®</sup>. Watlow's quantities shall govern unless proved to be in error. On orders for products carried in stock, Watlow will deliver the ordered quantity specified. However, in the manufacture of products it is agreed that Watlow will be allowed production losses. Watlow shall have the right to manufacture, deliver and invoice for partial deliveries of products as stated below:

| Quantity Ordered       | <b>Delivery Variation</b> |
|------------------------|---------------------------|
| 1-4                    | No variation              |
| 5-24                   | ± 1 unit                  |
| 25-74                  | ± 2 units                 |
| 75-99                  | ± 3 units                 |
| 100+                   | ± 3 percent               |
| SERV-RITE® Insulated   | ·                         |
| Wire and Cable         | ± 10 percent              |
| XACTPAK® Sheathed Wire | ± 10 percent              |

Note: Watlow will deliver exact quantities on products with a net price of \$100.00 or more. If buyer expressly requests no variation in delivered quantity of products with a total net price under \$100.00, a ten percent (10%) surcharge will be added to the net billing on the invoice for such order.

#### Delivery:

FCA (Incoterms® 2010) - Watlow's Pickup Plant. Risk of loss and title transfer pass to buyer on delivery at the FCA point. Watlow shall prepay freight, assure the shipment and select the means of transportation unless buyer provides specific written instructions otherwise with buyer's order. Watlow shall not be bound to tender delivery of any quantities for which buyer has not given shipping instructions. Watlow shall be entitled to designate from time to time the locations from which buyer may receive or pick up products.

#### **Payment Terms:**

Terms are net 30 days from date of invoice with approved credit. Prices and discounts are subject to change without notice. All quotations are valid for 30 days unless otherwise stated.

#### **Restocking Charges:**

Stock heaters, controllers, sensors and accessories which have not been used or modified may be returned to the relevant Watlow plant for a twenty percent (20%) restocking charge. For Watlow's Hannibal plant products only, modified-stock products may be returned if not permanently modified, for a minimum thirty percent (30%) restocking charge. All stock and modified-stock products require Watlow's prior authorization to be returned and must be returned within one hundred twenty (120) days from the date of delivery. Controllers may not be returned if the packaging seal is broken. Non-stock (custom) heaters, controls, sensors and accessories are not returnable.

#### **Price Revision:**

Prices are subject to change without advance notice. If Watlow desires to revise the discounts, prices, points of delivery, service allowances or terms of payment but is restricted to any extent against so doing by reason of any governmental request, law, regulation, order or action, or if the discounts, prices, points of delivery, service allowances or terms of payment then in effect are altered by reason of governmental request, law, regulation, order or action, Watlow shall have the right (i) to terminate this order by notice to buyer, (ii) to suspend deliveries

for the duration of such restriction or alteration or (iii) to have applied to this order (as of the effective date of such restriction or alteration) any discounts, prices, points of delivery, service allowances or terms of payment governmentally acceptable. Any delivery suspended under this section may be canceled without liability.

#### **Return Policy:**

Prior approval must be obtained from the relevant Watlow plant to return any product. Watlow will assign a return authorization number and record the reason for the return. Watlow will examine returned product to determine the actual cause, if any, leading to buyer's return. If product has a manufacturing defect, Watlow, in its sole discretion, may issue a credit for the returned product or repair or replace with like product. If returned product is not subject to Watlow's warranty, buyer will be notified of the estimated cost of repair, if possible. Thereafter, buyer must advise Watlow whether or not buyer chooses to have product repaired at buyer's expense.

#### **Order Changes:**

Buyer must notify Watlow in writing of requested changes in the quantity, drawings, designs or specifications for products which are ordered but not yet in the process of manufacture. After receipt of such notice, Watlow will inform buyer of any adjustments to be made in price, delivery schedules, etc. resulting from buyer's requested changes prior to incorporating requested changes into manufactured products. Controller products require written notice of requested changes not less than sixty (60) days prior to last scheduled shipping date.

#### Freight and Taxes:

Prices do not include prepaid freight, federal, state or local taxes. Any increase in freight rates paid by Watlow on deliveries covered by this order and hereafter becoming effective and any tax or governmental charge or increase in same (excluding any franchise or income tax or other tax or charge based on income) (i) increasing the cost to Watlow of producing, selling or delivering products or of procuring products used therein or, (ii) payable by Watlow because of the production, sale or delivery of products, such as Sales Tax, Use Tax, Retailer's Occupational Tax, Gross Receipts Tax, Value Added Tax (VAT), and Ways Fees may, at Watlow's option, be added to the prices herein specified and be added to invoices.

#### **Engineering Charge:**

On complex products, systems or controller software modifications, an engineering charge shall be applied or included in the price of prototypes. This charge is not subject to discounts.

#### Tooling:

All tooling and fixtures are the property of Watlow. Watlow will accept buyer's special tooling if sent freight prepaid. Watlow will maintain this tooling, exercising reasonable care, in order to produce buyer's products. Permanent molds for aluminum cast-in and polymer products shall be the property and responsibility of buyer.

#### **Cancellation Charges:**

There will be no cancellation charge for non-modified stock products. Non-stock and modified-stock products may be subject to a cancellation charge to be determined by Watlow depending upon the portion of product completed at the time of such cancellation.

# Terms and Conditions of Sale

#### **Excuse of Performance:**

(A) Deliveries may be suspended by either party in the event of: Act of God, war, riot, fire, explosion, accident, flood, sabotage; lack of adequate fuel, power, raw materials, labor, containers or transportation facilities; compliance with governmental requirements (as hereinafter defined); breakage or failure of machinery or apparatus; national defense requirements or any other event, whether or not of the class or kind enumerated herein, beyond the reasonable control of such party; or in the event of labor trouble, strike, lockout or injunction (provided that neither party shall be required to settle a labor dispute against its own best judgment); which event makes impracticable the manufacture, transportation, sale, purchase, acceptance, use or resale of products or a material upon which the manufacture of products is dependent. (B) If Watlow determines that its ability to supply the total demand for products, or obtain any or a sufficient quantity of any material used directly or indirectly in the manufacture of products, is hindered, limited or made impracticable, Watlow may allocate its available supply of products or such material (without obligation to acquire other supplies of any such products or material) among itself and its purchasers on such basis as Watlow determines to be equitable without liability for any failure of performance which may result therefrom. (C) Deliveries suspended or not made by reason of this Section shall be canceled without liability, but this agreement and/or order shall otherwise remain unaffected.

#### **Prototypes:**

If buyer orders and/or Watlow delivers a product designated as a "prototype", no guarantees, warranties or representations as to fitness for a particular purpose or merchantability are made with respect to such prototype. Buyer shall have the duty and sole responsibility to test a prototype prior to acceptance and/or incorporation into end-use applications. Further, a production product based on a prototype design may differ in assembly methods and materials from the prototype. Buyer, therefore, shall have the duty and sole responsibility for testing and acceptance of production products which are based on prototype designs.

### Warranty and Limitation of Liability:

Watlow warrants its products against defects in material and workmanship for at least one (1) year (three (3) years on some controls) from the date of delivery, provided such product is properly applied, used and maintained. Refer to the express written warranty time period for each individual product or contact the relevant Watlow plant for such warranty time period information. Watlow does not warrant any product against damage from corrosion, contamination, misapplication, improper specification or wear and tear and operational conditions beyond Watlow's control. The terms of this warranty are the exclusive terms available to buyer and to any other person or entity to whom products are transferred during the period of this warranty. No person has authority to bind Watlow to a representation or warranty other than this express warranty. Watlow shall not be liable for incidental or consequential damages resulting from the use of products whether a claim for such damages is based upon warranty, contract, negligence or other cause of action. Should any product fail while subject to this warranty, such product shall be repaired or a substitute product shall be provided, at Watlow's option, at no charge to buyer or to any other person or entity to whom product is transferred during the period of this warranty.

Watlow must be notified of the alleged failure of product within thirty (30) days of such event and advanced authorization for repair or replacement must be obtained in writing from Watlow. THIS WARRANTY IS MADE EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY ARISING FROM A COURSE OF DEALING OR USAGE OF TRADE, AND ALL OTHER SUCH WARRANTIES ARE SPECIFICALLY EXCLUDED. THE CORRECTION OF ANY **DEFECT IN OR FAILURE OF PRODUCTS BY REPAIR OR** REPLACEMENT TO THE EXTENT SET FORTH ABOVE, SHALL BE WATLOW'S LIMIT OF LIABILITY AND THE **EXCLUSIVE REMEDY FOR ANY AND ALL LOSSES, DELAYS** OR DAMAGES RESULTING FROM THE PURCHASE OR USE OF THE PRODUCTS. IN NO EVENT SHALL WATLOW BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES. WATLOW SHALL NOT BE LIABLE FOR. AND BUYER AND ANY OTHER PERSON OR ENTITY TO WHOM PRODUCTS ARE TRANSFERRED **DURING THE PERIOD OF THIS WARRANTY ASSUMES** RESPONSIBILITY FOR, ALL PERSONAL INJURY AND PROPERTY DAMAGE RESULTING FROM OR RELATED TO THE HANDLING, POSSESSION OR USE OF PRODUCTS AND PRODUCTS MANUFACTURED AND SOLD BY WATLOW HEREUNDER.

#### Miscellaneous:

THE VALIDITY, INTERPRETATION AND PERFORMANCE OF THIS AGREEMENT AND/OR ORDER AND ANY DISPUTE CONNECTED HEREWITH SHALL BE GOVERNED AND CONSTRUED IN ACCORDANCE WITH THE LAWS OF THE STATE OF MISSOURI. These Terms and Conditions constitute the full understanding of the parties, a complete allocation of risks between them and a complete and exclusive statement of the terms and conditions of their agreement and/or order relating to the subject matter herein. Except as otherwise expressly provided herein, no conditions, usage of trade, course of dealing or performance, understanding or agreement and/or order purporting to modify, vary, explain or supplement the terms or conditions of this agreement and/or order shall be binding unless hereafter made in writing and signed by the party to be bound, and no modification shall be effected by the acknowledgment or acceptance of any purchase order or shipping instruction forms containing terms or conditions at variance with or in addition to those set forth herein. No waiver by either party with respect to any breach or default or of any right or remedy and no course of dealing or performance shall be deemed to constitute a continuing waiver of any other breach or default or of any other right or remedy, unless such waiver be expressed in writing signed by the party to be bound. If any term, condition or provision of this agreement and/or order or the application thereof is judicially or otherwise determined to be invalid or unenforceable, or if the parties mutually agree in writing to any revision of this agreement and/or order, the remainder of this agreement and/or order and the application thereof shall not be affected, and this agreement and/or order shall otherwise remain in full force and effect.

Rev. 11/07/11